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Abstract
—A vision-based algorithm brings a fast 

segmentation process to a 2D lidar point cloud. Extracted 

features allow us to set up a segment-based scan matcher. 

This matching is one of the steps for the localization. 

Features also give semantic information about the 

environment. The detection of a corner or a door 

indicates a potential encounter with human beings. Aware 

of this ―danger‖ area, the robot will be able to adapt its 

speed and define areas of focus to the vision algorithms. 

Indeed, vision is known for its high computation load. 

The focus provided by the lidar diminishes the area in the 

image to be analyzed and reduces the load. 
 

Index Terms—2D lidar segmentation, scan matching, safe 

navigation, sensor fusion, indoor environment 

I. INTRODUCTION 

The robot of tomorrow is built to work in the factory of 

the future in a cluttered, yet structured and human 

environment. The robot should navigate between 

locations, with a possibility of encountering humans. We 

need a navigation system to be able to work fast, be 

reliable, and take advantage of the structured 

characteristic of the environment. This navigation task 

can be divided into sub-tasks: localization, mapping, path 

planning, control, and safety management. All of these 

tasks must be performed within an embedded 

computation unit on the robot. This means that each task 

must consume computational resources as little as 

possible. The robot is moving and needs a regular update 

on its status. To perform this navigation, the robot has 

embedded sensors to perceive its environment and match 

the detected features with a list of features previously 

stored. A popular approach is the grid-based 

representation of the environment in which each cell is a 

probability of the presence or absence of an obstacle [1]. 

Another approach is the use of beacons, artificially placed 

beforehand [2], largely used in early versions of the 

robocup soccer (international competition of robotics, 

http://www.robocup.org). These approaches do not fit our 

case, which is navigation in a hospital or a factory. This 

environment implies that any physical modification is 

denied. The environment is also large, which means that 
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the grid would be either low resolution or high dimension. 

The first case brings the risk to be stuck, and the second 

requires heavy computation. To address these multiple 

problems, we rely on two basic and well-known sensors: 

the lidar and the camera. The first one gives fast but 

partial information about the environment: distances in a 

horizontal plane section. The second gives high-level 

information (doors, humans, etc.) but requires more 

computation time. Using sensor fusion, we aim to guide, 

by lidar information, the camera algorithm toward the 

area of interest. In other terms, the processing of lidar 

data is going to speed up the process by focusing the 

camera on a region of interest (ROI) inside the frame. 

These regions can be pedestrian encounter areas and the 

process, a human detection algorithm. In this paper, we 

focus on the first stages of this study: feature extraction 

from lidar data and defining regions of interest to 

cooperate with the camera. This efficient processing leads 

to a fast scan matcher which provides basic localization. 

It also cooperates with other sensors by pointing out 

elements of interest (corners/doors). Vision algorithms, 

under development, will include robust embedded real-

time constraints [3], [4] taking advantage of multi-

threading with multi-core ARM architectures. 

II. LIDAR DATA SEGMENTATION 

Lidar data is a 1D depth buffer generated by several 

beams of rays. To extract substantial information, we 

need to process efficiently the data. Several segmentation 

methods already exist, and some of them have already 

been tested and compared [5]. Those methods rely on 

different aspects of the point cloud or pixels. In one hand, 

global methods search for features with all points at the 

same time: Hough or Ransac [6]. Unfortunately, they 

need an important amount of time, and the result contains 

too much false positive features detected. On the other 

hand, local methods, applying sliding window in the list 

of points, are able to extract the features recursively [7] or 

iteratively [8], [9], [10]. In image processing, the list of 

points is provided by an edge linking process. These line 

finding algorithms are faster and less likely to produce 

false positive. In the lidar case, distances are sequentially 

measured and sorted, either clockwise or 

counterclockwise. The following hypothesis can be 

formulated: if a ray hits a 3D plane, the following (and 

preceding) rays are more likely to hit the same surface. 

Considering the hypothesis and criterion, iterative 
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methods are the most suited and natural. They spare the 

edge linking process and benefit the organized status of 

the 2D points provided by the sensor. A strong iterative 

segmentation with an implementation based on a double 

Kalman filter is given by [8]; the use of two Kalman 

filters to process the entire lidar point-cloud introduces 

heavy computation complexity and requires a lot of 

parameters to be tuned. We directed ourselves toward a 

simpler, yet robust and known method [10]. 

A. Wall–Danielsson Application 

This was originally introduced with vision, particularly 

to simplify the extracted outline and polygonal shapes 

from pictures. With only a single parameter, wich allows 

us to drive the plasticity of segment detection. This 

method, initially created to link pixels connected with 

each other, is able to work even with distant points. The 

main advantages of the Wall–Danielson (WD) are its 

efficiency, speed, and deterministic behavior (contrary to 

Ransac). To perform this detection, it compares the 

difference between a threshold and a ratio. The ratio is 

between the surface of the polygon formed by all of the 

points and the distance between the first and last points. 

The main issue brought by this one-parameter 

implementation is that a bad threshold has large 

implications. A severe threshold denies any long 

segments to be detected: they do not fit the condition; 

only small segments are extracted because of the sensor 

noise. A soft threshold is also problematic: not detecting 

small variations is good, corners take more steps to be 

detected, and the equation of the wall is biased by the last 

points of the segment. This issue has been addressed by 

WD [10], [9]. The autors consider a back-stepping 

algorithm. A post-process is therefore needed to remove 

the extra points after the corners. Considering execution 

time, it is better to get rid of this post-process. Regarding 

the noise, the algorithm does not take into account its 

variation. The noise associated with the segment will be 

computed later using the parameters of the extracted 

segment. Indeed, the model of the noise, Gaussian 

distributed, can be transmitted to the equation of the 

extracted segment. 

B. Cascade Filter 

The noise has clear consequences: if we choose the 

wrong threshold, elements such as doors disappear. 

Because of the small difference in ranges data, an easy 

threshold will smooth the surface. If doors disappear, we 

cannot rely on this information to obtain longitudinal 

localization inside hallways. Depending on the 

granularity of the elements that we want to extract, we 

need to adjust the threshold parameter. This forces us 

either to run the algorithm several times with different 

parameters or to process again the segments extracted by 

the very first segmentation. In light of the complexity of 

each operation, re-using the extracted segments is much 

faster: from a dataset containing N points, a maximum of 

N/3 segments is expected. A reduced dataset means less 

computation, and our objective is precisely to gain time. 

The decision made was to work directly with the 

segments. Two operations have been implemented to 

filter the segment dataset. The first operation is a fusion 

between segments. This means observing two segments 

and deciding whether or not they have been split by 

mistake regarding the criterion given. If they have been 

noted as ―miss-split,‖ i.e., they belong to the same 3D 

plane, they are fused: the set of 2D points contained in 

each segment’s data is gathered inside one segment, and 

the parameters of the new segment are computed again. 

The fusion decision is motivated by a set of rules driven 

by the geometrical constraint of the environment (Fig. 1). 

They belong to the same 3D surface (plane); therefore, 

they are consecutive (i and i + 1), parallel, and aligned (d), 

and extremities are close (D). 

 
Fig. 1. Fusion criterion 

Applying the fusion process to the whole dataset of 

segments returns a new set with fewer but longer 

segments. However, if small elements such as a bin or a 

table foot are laid against the plane, the first condition 

(consecutive segments) is not complete. In that case, the 

two sides of the same plane, even if correctly segmented, 

cannot be fused. Depending on the post-process, the 

important element is to obtain strong and long segments. 

Considering the fact that small segments are often too 

unstable in terms of angle, their presence may induce too 

much noise in the post-segmentation algorithms. To 

eliminate the effect of those small segments, a fast 

erosion filter is used upon the remaining segments. All of 

these segments are deleted from the dataset using this 

erosion algorithm. When all of the small blocking 

segments are removed, a second layer of the fusion 

algorithm is applied. Depending on the case intended for 

the segment dataset, the next algorithm can access the 

data at any level (Fig. 2). Note that the erosion algorithm 

cannot be applied first as it will remove small segment 

candidates of the fusion algorithm. 

 
Fig. 2. Cascade filter process. 
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III.  FEATURE EXTRACTION 

Several applications can be found with this 

segmentation of the lidar data [11], [12]. A faster scan 

matching can be computed using two successive datasets. 

Contrary to [13], [14], and [15], in our case, we are able 

to use a reduced amount of data. All of the data are 

concentrated inside the remaining segments extracted 

with high-level segmentation (Fig. 2). Another 

application is the ability to detect semantic information: 

the lidar gives us a plane cut of the scene. Using detailed 

scan (i.e., low-level segmentation), we can detect the 

shape of common elements (doors). 

A. Segment Matching 

To perform an efficient scan matching, it is necessary 

to be able to match points of interest between frames. 

Thus, with the transformation between each point of 

interest, we can compute the rigid transformation 

between the two frames. Segment matching is a complex 

task: few parameters can describe appropriately the 

segments. These parameters can be considered only to be 

two if the representation of the segment is (ρ, θ) [16]. A 

common similarity weight would only consider those 

parameters. This leads to many mismatches because a 

structured environment has several segments with the 

same parameters (ρ, θ). We chose to use the 

representation (ρ, θ, COG, length). The COG is the 

middle of the segment (Center Of Gravity). Keeping the 

length of the segment is useful in estimating the strength 

and interest in the segment. A long segment is more 

likely to be very stable and be seen for a long period by 

the perception system. Therefore, the new similarity 

weight considers all of the coefficients. The final goal is 

to match segments from a set of n segments in the 

previous frame with segments from a set of m segments 

in the current frame. Given the set of extracted segments, 

we seek every (i, j) couple of related segments. This gives 

us an n by m weight matrix. The lower values of the 

matrix give us the potential matches. Computation of the 

matrix has to be improved: the computational cost 

increases as m and n increase. Two mechanisms are 

implemented to improve efficiency. The first one is a 

movement prediction: we use the previous velocity of the 

robot as an input. When the robot is spinning, long range 

segments tend to have a high weight because of the large 

changes in the COG position. Predicting the new position 

gives better weights and improves significantly the 

matching between segments. This also allows us to 

introduce an accelerated weight: we first compute the 

distance between COGs. If this distance between 

segments is bigger than a certain threshold, then the 

weight is given the maximum value without the rest of 

the computation. The smart weight spares the 

computation cost of the other elements of the complete 

weight. The second improvement mechanism is focused 

on the computation of the weights only on a certain area 

of the weight matrix. The movement prediction not only 

allows us to reduce the mean value of the weight, it also 

gives a hint on the position of potential matches inside 

the matrix. If the robot goes straight, the matched values 

are concentrated on the diagonal and around. When the 

robot spins clockwise, this diagonal tends to translate to 

the lower triangle. Logically, when the robot spins 

counterclockwise, the matches are found in the higher 

triangle of the match matrix. Then, knowing the robot’s 

previous move, we can focus on the most important part 

of the match matrix. Scan matching accelerated process 

from 2D lidar data is composed of the following steps:  

1) Extract the high-level segments  

2) Predict the position of previous segments 

3) Compute the weight on the focused area of the 

matrix 

4) Determine every (i; j) couple, i.e.,., matrix minima  

5) Compute the rigid transformation using matched 

segment parameters. 

All those mechanisms allow us to accelerate the scan 

matching with segment-based features. 

B. Camera Fusion 

Using another level of segmentation can be interesting 

in detecting high-level or semantic information such as 

doors and corners. Indeed, a door or a corner means that a 

person could suddenly appear in front of the robot 

because of the limited field of view. Failure of the robot 

to anticipate the possibility of an encounter, depending on 

the speed and weight of the robot, could lead to severe 

injury. Having the ability to detect this feature is 

important to adapt the robot speed and behavior. To 

perform this sort of detection, we relied on the low-level 

segmentation because it contains more details about the 

environment. The corner and the door were described as a 

set of conditions [8] applied to the set of segments: they 

allowed us to detect the presence and extract the position 

of these features. Detecting doors and corners to establish 

an encounter area is crucial for the safety task. The 

awareness focuses the heavy computing process in a 

small area. Once the feature (door or corner) has been 

identified inside the lidar frame, we need the projection in 

the image generated by the camera. Equation (1) is the 

projection of this 3D point in the camera frame. It 

requires the camera intrinsic parameters (K) and the rigid 

transformation between the lidar and the camera frame 

(T). After this projection of the lidar point (P) in the 

camera image (p), we can determine an ROI and focus. 

This allows two things: a lower computation cost and a 

higher chance of finding a pedestrian. 

.      (1) 

IV. RESULTS 

A. Set-up 

Preliminary tests have been run on a professional 

virtual platform, a realistic and advanced real-time 

robotic simulator [19] sold by 4D-Virtualiz. This tool has 

been developed by two PhD students to accelerate the 
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development of their robotic applications. The simulation 

offers the ability to have ground truth, repeatability, and 

easy environment management with the same robot-

sensor set-up. The simulated robot is a Dr. Robot Jaguar, 

virtually equipped with an LMS100 SICK lidar and a 640 

× 480 camera (pinhole model). The simulator lidar has 

the same parameters as the real LMS100 (min angle, max 

angle, resolution, frequency, etc.). The noise added to the 

measures is Gaussian distributed, with parameters given 

by the factory data-sheet. We chose different values of 

the seed for the random part of the noise with the 

simulations. Thus, the noise varies with every simulation, 

resulting in slightly different localization outputs. The 

virtual lidar also reproduces the ―rolling shutter‖ effect 

when the robot is moving. Indeed, a real lidar does not 

grasp all of the ranges at the same moment, a mirror 

rotates and measure distances sequentially with time-of-

flight technology. This has also been implemented in the 

simulator to output the most realistic lidar data possible. 

Two environments have been used: the first one is an 

artificial ―maze,‖ a simple environment only composed of 

walls, and the second one is the virtual model of a real 

hospital located in the USA (Fig. 3). The algorithms were 

also tested in real world, inside a building located in 

Clermont-Ferrand, France. The robot used for the test 

was a real Jaguar robot, with a Hokuyo UTM-30-LX lidar. 

 
Fig. 3. Virtual realistic environment/lidar beam. 

B. Lidar Segmentation, Cascade Filter, and Scan 

Matching 

The cascade process is visible: as the level goes higher, 

there are fewer and longer segments (Fig. 4). Segments 8 

and 6 have been deleted from one level to another. At the 

end, we have a smoothed view of the environment. Using 

only the scan matching between frames, we were able to 

perform basic localization. The robot was sent in the 

―maze‖ to do a defined trajectory, starting at a [0;0] 

position, and came back. The data given by the lidar were 

then processed by both our algorithm and the Canonical 

Scan Matcher (CSM) [20] provided by the ROS 

community [21] with the same parameters. Odometry and 

IMU improvement were deactivated, and we only used 

lidar data and constant speed assumption. The goal is not 

to compare complete localization methods, but rather to 

perform scan matching between two frames. Therefore, 

there is no feature recording over time, occupancy grid, 

nor loop closing. We were able to run autonomously the 

algorithm 50 times and output the trajectory, execution 

time and errors in scan matching (Table I). edx (edy) is 

the mean error in displacement toward x (y). edθ is the 

mean angular change error. The computer used is an 

XPS-9550 Dell laptop with an i5-6300HQ 2.3 GHz 

processor (mono-thread execution). In the end, our 

localization algorithm is the closest to the initial point. 

The total trajectory length is 110 m. Our average final 

error is 0.8 m, and CSM has a 1.4 m error (Fig. 5). Only 

12 trajectories are shown. 

 
Fig. 4. Two levels of observation: left, low level; right, high level. 

 
Fig. 5. Benchmark trajectories and zoom on the final error 

TABLE I: BENCHMARK RESULTS  

Comparison CSM W-D matcher 

t (ms) 10.8655 0.2473 

σ t (ms) 4.3691 0.0396 

edx (m) 0.0898 0.0073 

σ edx (m) 0.1785 0.0113 

edy (m) 0.0026 0.0113 

σ edy (m) 0.0739 0.0087 

edθ (rad) 0.0088 0.0100 

σ edθ (rad) 0.1260 0.0122 

C. Fusion with Camera 

 
Fig. 6. Corner and door detection. 

We observe an effective detection of doors and corners 

inside the lidar frame (Fig. 6). The robot is the red cross, 

doors are the red circles, and corners are the green circles. 

Then, we can visualize the projection of these features in 

the camera image (Fig. 7). We can define a box around 

the detected feature (corner and sides of the doors). They 

can become SLAM features or area of interest. In this 

use/case, the image had already been processed by region 

segmentation. The lidar works together with the camera 
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and gives information on the location of the area of focus. 

This combined work gives the boxes to process in the 

vision algorithm, saving time and CPU/GPU resources. 

 
Fig. 7. Projection of the features in the camera image and segmentation 

V. CONCLUSIONS 

In this paper, we presented our approach to use an 

algorithm from another robotic field and adapt it. One 

goal was to exploit the structure of the environment to be 

able to quickly and efficiently perform scan matching for 

robot navigation. The execution time of our scan matcher 

is significantly lower than that of the other scan matcher, 

including the segmentation process. The computed 

localization with our scan matching was also more 

accurate. However, this requires a structured environment, 

which is not a requirement for every scan matcher. The 

other goal was to extract semantic information of this 

structured environment. The door and corner detector 

works fine with this segmentation method. The method 

was able to pinpoint the features in the camera image, but 

it did not detect doors with small shift and doors with too 

small angles with the lidar. These features will be 

included in any SLAM algorithm as new features to track 

and localize with. Therefore, this feature detection can 

help in several aspects of robot navigation: robot safety 

and localization. They bring localization information for 

the SLAM and semantic information for human detection.  

VI. FUTURE WORK 

Our work will focus on pedestrian anticipation, 

detection, and tracking. Using the area of focus given by 

the lidar, it should improve the computation complexity 

and assure a real-time detection simultaneously with the 

localization algorithm 
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