

Journal of Communications Vol. 13, No. 3, March 2018

139©2018 Journal of Communications

Vision-Based Lidar Segmentation for Accelerated Scan

Matching

Burtin. Gabriel1, Bonnin Patrick2, and Malartre Florent1
1 4D-Virtualiz, Clermont-Ferrand, France

2 LISV, Velizy, France

Email: gabriel.burtin@4d-virtualiz.com; patrick.bonnin@uvsq.fr; florent.malartre@4d-virtualiz.com

Abstract
—A vision-based algorithm brings a fast

segmentation process to a 2D lidar point cloud. Extracted

features allow us to set up a segment-based scan matcher.

This matching is one of the steps for the localization.

Features also give semantic information about the

environment. The detection of a corner or a door

indicates a potential encounter with human beings. Aware

of this ―danger‖ area, the robot will be able to adapt its

speed and define areas of focus to the vision algorithms.

Indeed, vision is known for its high computation load.

The focus provided by the lidar diminishes the area in the

image to be analyzed and reduces the load.

Index Terms—2D lidar segmentation, scan matching, safe

navigation, sensor fusion, indoor environment

I. INTRODUCTION

The robot of tomorrow is built to work in the factory of

the future in a cluttered, yet structured and human

environment. The robot should navigate between

locations, with a possibility of encountering humans. We

need a navigation system to be able to work fast, be

reliable, and take advantage of the structured

characteristic of the environment. This navigation task

can be divided into sub-tasks: localization, mapping, path

planning, control, and safety management. All of these

tasks must be performed within an embedded

computation unit on the robot. This means that each task

must consume computational resources as little as

possible. The robot is moving and needs a regular update

on its status. To perform this navigation, the robot has

embedded sensors to perceive its environment and match

the detected features with a list of features previously

stored. A popular approach is the grid-based

representation of the environment in which each cell is a

probability of the presence or absence of an obstacle [1].

Another approach is the use of beacons, artificially placed

beforehand [2], largely used in early versions of the

robocup soccer (international competition of robotics,

http://www.robocup.org). These approaches do not fit our

case, which is navigation in a hospital or a factory. This

environment implies that any physical modification is

denied. The environment is also large, which means that

Manuscript received December 23, 2017; revised March 20, 2018.

Corresponding author email: author@hostname.org.

doi:10.12720/jcm.13.3.139-144

the grid would be either low resolution or high dimension.

The first case brings the risk to be stuck, and the second

requires heavy computation. To address these multiple

problems, we rely on two basic and well-known sensors:

the lidar and the camera. The first one gives fast but

partial information about the environment: distances in a

horizontal plane section. The second gives high-level

information (doors, humans, etc.) but requires more

computation time. Using sensor fusion, we aim to guide,

by lidar information, the camera algorithm toward the

area of interest. In other terms, the processing of lidar

data is going to speed up the process by focusing the

camera on a region of interest (ROI) inside the frame.

These regions can be pedestrian encounter areas and the

process, a human detection algorithm. In this paper, we

focus on the first stages of this study: feature extraction

from lidar data and defining regions of interest to

cooperate with the camera. This efficient processing leads

to a fast scan matcher which provides basic localization.

It also cooperates with other sensors by pointing out

elements of interest (corners/doors). Vision algorithms,

under development, will include robust embedded real-

time constraints [3], [4] taking advantage of multi-

threading with multi-core ARM architectures.

II. LIDAR DATA SEGMENTATION

Lidar data is a 1D depth buffer generated by several

beams of rays. To extract substantial information, we

need to process efficiently the data. Several segmentation

methods already exist, and some of them have already

been tested and compared [5]. Those methods rely on

different aspects of the point cloud or pixels. In one hand,

global methods search for features with all points at the

same time: Hough or Ransac [6]. Unfortunately, they

need an important amount of time, and the result contains

too much false positive features detected. On the other

hand, local methods, applying sliding window in the list

of points, are able to extract the features recursively [7] or

iteratively [8], [9], [10]. In image processing, the list of

points is provided by an edge linking process. These line

finding algorithms are faster and less likely to produce

false positive. In the lidar case, distances are sequentially

measured and sorted, either clockwise or

counterclockwise. The following hypothesis can be

formulated: if a ray hits a 3D plane, the following (and

preceding) rays are more likely to hit the same surface.

Considering the hypothesis and criterion, iterative

mailto:gabriel.burtin@4d-virtualiz.com

Journal of Communications Vol. 13, No. 3, March 2018

140©2018 Journal of Communications

methods are the most suited and natural. They spare the

edge linking process and benefit the organized status of

the 2D points provided by the sensor. A strong iterative

segmentation with an implementation based on a double

Kalman filter is given by [8]; the use of two Kalman

filters to process the entire lidar point-cloud introduces

heavy computation complexity and requires a lot of

parameters to be tuned. We directed ourselves toward a

simpler, yet robust and known method [10].

A. Wall–Danielsson Application

This was originally introduced with vision, particularly

to simplify the extracted outline and polygonal shapes

from pictures. With only a single parameter, wich allows

us to drive the plasticity of segment detection. This

method, initially created to link pixels connected with

each other, is able to work even with distant points. The

main advantages of the Wall–Danielson (WD) are its

efficiency, speed, and deterministic behavior (contrary to

Ransac). To perform this detection, it compares the

difference between a threshold and a ratio. The ratio is

between the surface of the polygon formed by all of the

points and the distance between the first and last points.

The main issue brought by this one-parameter

implementation is that a bad threshold has large

implications. A severe threshold denies any long

segments to be detected: they do not fit the condition;

only small segments are extracted because of the sensor

noise. A soft threshold is also problematic: not detecting

small variations is good, corners take more steps to be

detected, and the equation of the wall is biased by the last

points of the segment. This issue has been addressed by

WD [10], [9]. The autors consider a back-stepping

algorithm. A post-process is therefore needed to remove

the extra points after the corners. Considering execution

time, it is better to get rid of this post-process. Regarding

the noise, the algorithm does not take into account its

variation. The noise associated with the segment will be

computed later using the parameters of the extracted

segment. Indeed, the model of the noise, Gaussian

distributed, can be transmitted to the equation of the

extracted segment.

B. Cascade Filter

The noise has clear consequences: if we choose the

wrong threshold, elements such as doors disappear.

Because of the small difference in ranges data, an easy

threshold will smooth the surface. If doors disappear, we

cannot rely on this information to obtain longitudinal

localization inside hallways. Depending on the

granularity of the elements that we want to extract, we

need to adjust the threshold parameter. This forces us

either to run the algorithm several times with different

parameters or to process again the segments extracted by

the very first segmentation. In light of the complexity of

each operation, re-using the extracted segments is much

faster: from a dataset containing N points, a maximum of

N/3 segments is expected. A reduced dataset means less

computation, and our objective is precisely to gain time.

The decision made was to work directly with the

segments. Two operations have been implemented to

filter the segment dataset. The first operation is a fusion

between segments. This means observing two segments

and deciding whether or not they have been split by

mistake regarding the criterion given. If they have been

noted as ―miss-split,‖ i.e., they belong to the same 3D

plane, they are fused: the set of 2D points contained in

each segment’s data is gathered inside one segment, and

the parameters of the new segment are computed again.

The fusion decision is motivated by a set of rules driven

by the geometrical constraint of the environment (Fig. 1).

They belong to the same 3D surface (plane); therefore,

they are consecutive (i and i + 1), parallel, and aligned (d),

and extremities are close (D).

Fig. 1. Fusion criterion

Applying the fusion process to the whole dataset of

segments returns a new set with fewer but longer

segments. However, if small elements such as a bin or a

table foot are laid against the plane, the first condition

(consecutive segments) is not complete. In that case, the

two sides of the same plane, even if correctly segmented,

cannot be fused. Depending on the post-process, the

important element is to obtain strong and long segments.

Considering the fact that small segments are often too

unstable in terms of angle, their presence may induce too

much noise in the post-segmentation algorithms. To

eliminate the effect of those small segments, a fast

erosion filter is used upon the remaining segments. All of

these segments are deleted from the dataset using this

erosion algorithm. When all of the small blocking

segments are removed, a second layer of the fusion

algorithm is applied. Depending on the case intended for

the segment dataset, the next algorithm can access the

data at any level (Fig. 2). Note that the erosion algorithm

cannot be applied first as it will remove small segment

candidates of the fusion algorithm.

Fig. 2. Cascade filter process.

Journal of Communications Vol. 13, No. 3, March 2018

141©2018 Journal of Communications

III. FEATURE EXTRACTION

Several applications can be found with this

segmentation of the lidar data [11], [12]. A faster scan

matching can be computed using two successive datasets.

Contrary to [13], [14], and [15], in our case, we are able

to use a reduced amount of data. All of the data are

concentrated inside the remaining segments extracted

with high-level segmentation (Fig. 2). Another

application is the ability to detect semantic information:

the lidar gives us a plane cut of the scene. Using detailed

scan (i.e., low-level segmentation), we can detect the

shape of common elements (doors).

A. Segment Matching

To perform an efficient scan matching, it is necessary

to be able to match points of interest between frames.

Thus, with the transformation between each point of

interest, we can compute the rigid transformation

between the two frames. Segment matching is a complex

task: few parameters can describe appropriately the

segments. These parameters can be considered only to be

two if the representation of the segment is (ρ, θ) [16]. A

common similarity weight would only consider those

parameters. This leads to many mismatches because a

structured environment has several segments with the

same parameters (ρ, θ). We chose to use the

representation (ρ, θ, COG, length). The COG is the

middle of the segment (Center Of Gravity). Keeping the

length of the segment is useful in estimating the strength

and interest in the segment. A long segment is more

likely to be very stable and be seen for a long period by

the perception system. Therefore, the new similarity

weight considers all of the coefficients. The final goal is

to match segments from a set of n segments in the

previous frame with segments from a set of m segments

in the current frame. Given the set of extracted segments,

we seek every (i, j) couple of related segments. This gives

us an n by m weight matrix. The lower values of the

matrix give us the potential matches. Computation of the

matrix has to be improved: the computational cost

increases as m and n increase. Two mechanisms are

implemented to improve efficiency. The first one is a

movement prediction: we use the previous velocity of the

robot as an input. When the robot is spinning, long range

segments tend to have a high weight because of the large

changes in the COG position. Predicting the new position

gives better weights and improves significantly the

matching between segments. This also allows us to

introduce an accelerated weight: we first compute the

distance between COGs. If this distance between

segments is bigger than a certain threshold, then the

weight is given the maximum value without the rest of

the computation. The smart weight spares the

computation cost of the other elements of the complete

weight. The second improvement mechanism is focused

on the computation of the weights only on a certain area

of the weight matrix. The movement prediction not only

allows us to reduce the mean value of the weight, it also

gives a hint on the position of potential matches inside

the matrix. If the robot goes straight, the matched values

are concentrated on the diagonal and around. When the

robot spins clockwise, this diagonal tends to translate to

the lower triangle. Logically, when the robot spins

counterclockwise, the matches are found in the higher

triangle of the match matrix. Then, knowing the robot’s

previous move, we can focus on the most important part

of the match matrix. Scan matching accelerated process

from 2D lidar data is composed of the following steps:

1) Extract the high-level segments

2) Predict the position of previous segments

3) Compute the weight on the focused area of the

matrix

4) Determine every (i; j) couple, i.e.,., matrix minima

5) Compute the rigid transformation using matched

segment parameters.

All those mechanisms allow us to accelerate the scan

matching with segment-based features.

B. Camera Fusion

Using another level of segmentation can be interesting

in detecting high-level or semantic information such as

doors and corners. Indeed, a door or a corner means that a

person could suddenly appear in front of the robot

because of the limited field of view. Failure of the robot

to anticipate the possibility of an encounter, depending on

the speed and weight of the robot, could lead to severe

injury. Having the ability to detect this feature is

important to adapt the robot speed and behavior. To

perform this sort of detection, we relied on the low-level

segmentation because it contains more details about the

environment. The corner and the door were described as a

set of conditions [8] applied to the set of segments: they

allowed us to detect the presence and extract the position

of these features. Detecting doors and corners to establish

an encounter area is crucial for the safety task. The

awareness focuses the heavy computing process in a

small area. Once the feature (door or corner) has been

identified inside the lidar frame, we need the projection in

the image generated by the camera. Equation (1) is the

projection of this 3D point in the camera frame. It

requires the camera intrinsic parameters (K) and the rigid

transformation between the lidar and the camera frame

(T). After this projection of the lidar point (P) in the

camera image (p), we can determine an ROI and focus.

This allows two things: a lower computation cost and a

higher chance of finding a pedestrian.

. (1)

IV. RESULTS

A. Set-up

Preliminary tests have been run on a professional

virtual platform, a realistic and advanced real-time

robotic simulator [19] sold by 4D-Virtualiz. This tool has

been developed by two PhD students to accelerate the

Journal of Communications Vol. 13, No. 3, March 2018

142©2018 Journal of Communications

development of their robotic applications. The simulation

offers the ability to have ground truth, repeatability, and

easy environment management with the same robot-

sensor set-up. The simulated robot is a Dr. Robot Jaguar,

virtually equipped with an LMS100 SICK lidar and a 640

× 480 camera (pinhole model). The simulator lidar has

the same parameters as the real LMS100 (min angle, max

angle, resolution, frequency, etc.). The noise added to the

measures is Gaussian distributed, with parameters given

by the factory data-sheet. We chose different values of

the seed for the random part of the noise with the

simulations. Thus, the noise varies with every simulation,

resulting in slightly different localization outputs. The

virtual lidar also reproduces the ―rolling shutter‖ effect

when the robot is moving. Indeed, a real lidar does not

grasp all of the ranges at the same moment, a mirror

rotates and measure distances sequentially with time-of-

flight technology. This has also been implemented in the

simulator to output the most realistic lidar data possible.

Two environments have been used: the first one is an

artificial ―maze,‖ a simple environment only composed of

walls, and the second one is the virtual model of a real

hospital located in the USA (Fig. 3). The algorithms were

also tested in real world, inside a building located in

Clermont-Ferrand, France. The robot used for the test

was a real Jaguar robot, with a Hokuyo UTM-30-LX lidar.

Fig. 3. Virtual realistic environment/lidar beam.

B. Lidar Segmentation, Cascade Filter, and Scan

Matching

The cascade process is visible: as the level goes higher,

there are fewer and longer segments (Fig. 4). Segments 8

and 6 have been deleted from one level to another. At the

end, we have a smoothed view of the environment. Using

only the scan matching between frames, we were able to

perform basic localization. The robot was sent in the

―maze‖ to do a defined trajectory, starting at a [0;0]

position, and came back. The data given by the lidar were

then processed by both our algorithm and the Canonical

Scan Matcher (CSM) [20] provided by the ROS

community [21] with the same parameters. Odometry and

IMU improvement were deactivated, and we only used

lidar data and constant speed assumption. The goal is not

to compare complete localization methods, but rather to

perform scan matching between two frames. Therefore,

there is no feature recording over time, occupancy grid,

nor loop closing. We were able to run autonomously the

algorithm 50 times and output the trajectory, execution

time and errors in scan matching (Table I). edx (edy) is

the mean error in displacement toward x (y). edθ is the

mean angular change error. The computer used is an

XPS-9550 Dell laptop with an i5-6300HQ 2.3 GHz

processor (mono-thread execution). In the end, our

localization algorithm is the closest to the initial point.

The total trajectory length is 110 m. Our average final

error is 0.8 m, and CSM has a 1.4 m error (Fig. 5). Only

12 trajectories are shown.

Fig. 4. Two levels of observation: left, low level; right, high level.

Fig. 5. Benchmark trajectories and zoom on the final error

TABLE I: BENCHMARK RESULTS

Comparison CSM W-D matcher

t (ms) 10.8655 0.2473

σ t (ms) 4.3691 0.0396

edx (m) 0.0898 0.0073

σ edx (m) 0.1785 0.0113

edy (m) 0.0026 0.0113

σ edy (m) 0.0739 0.0087

edθ (rad) 0.0088 0.0100

σ edθ (rad) 0.1260 0.0122

C. Fusion with Camera

Fig. 6. Corner and door detection.

We observe an effective detection of doors and corners

inside the lidar frame (Fig. 6). The robot is the red cross,

doors are the red circles, and corners are the green circles.

Then, we can visualize the projection of these features in

the camera image (Fig. 7). We can define a box around

the detected feature (corner and sides of the doors). They

can become SLAM features or area of interest. In this

use/case, the image had already been processed by region

segmentation. The lidar works together with the camera

Journal of Communications Vol. 13, No. 3, March 2018

143©2018 Journal of Communications

and gives information on the location of the area of focus.

This combined work gives the boxes to process in the

vision algorithm, saving time and CPU/GPU resources.

Fig. 7. Projection of the features in the camera image and segmentation

V. CONCLUSIONS

In this paper, we presented our approach to use an

algorithm from another robotic field and adapt it. One

goal was to exploit the structure of the environment to be

able to quickly and efficiently perform scan matching for

robot navigation. The execution time of our scan matcher

is significantly lower than that of the other scan matcher,

including the segmentation process. The computed

localization with our scan matching was also more

accurate. However, this requires a structured environment,

which is not a requirement for every scan matcher. The

other goal was to extract semantic information of this

structured environment. The door and corner detector

works fine with this segmentation method. The method

was able to pinpoint the features in the camera image, but

it did not detect doors with small shift and doors with too

small angles with the lidar. These features will be

included in any SLAM algorithm as new features to track

and localize with. Therefore, this feature detection can

help in several aspects of robot navigation: robot safety

and localization. They bring localization information for

the SLAM and semantic information for human detection.

VI. FUTURE WORK

Our work will focus on pedestrian anticipation,

detection, and tracking. Using the area of focus given by

the lidar, it should improve the computation complexity

and assure a real-time detection simultaneously with the

localization algorithm

ACKNOWLEDGMENT

This research was performed within the framework of

a CIFRE grant (ANRT 2016/0316) for the doctoral work

of G. Burtin at 4D-Virtualiz and LISV

REFERENCES

[1] O. El Hamzaoui, ―Simultaneous localization and mapping

for a mobile robot with a laser scanner: CoreSLAM,‖

theses, Ecole Nationale Supérieure des Mines de Paris,

September 2012.

[2] C. F. Chang, C. C. Tsai, J. C. Hsu, S. C. Lin, and C. C. Lin,

―Laser self-localization for a mobile robot using retro-

reflector landmarks,‖ 2003.

[3] A de Cabrol, T Garcia, P. Bonnin, and M. Chetto. ―A

concept of dynamically reconfigurable real time vision

system for autonomous mobile robots,‖ International

Journal of Automation and Computing, vol. 5, no. 2, pp.

174-184, April 5, 2008.

[4] A. de Cabrol, P. Bonnin, T. Costis, V. Hugel, and P.

Blazevic, ―A new video rate region colour segmentation

and classification for sony legged robot application,‖

Lecture Notes in Computer Science, 2005, pp. 436-443.

[5] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, ―A

comparison of line extraction algorithms using 2d laser

rangefinder for indoor mobile robotics,‖ in Proc. IEEE/RSJ

International Conference on Intelligent Robots and

Systems, 2005, pp. 1929–1934.

[6] K. Bayer, ―Wall following for autonomous navigation,‖

SUNFEST, University of Pennsylvania, 2012.

[7] T Pavlidis, Algorithms for Graphics ANS Image

Processing, Springer Verlag, 1982.

[8] S. I. Roumeliotis and G. A. Bekey, ―Segments: A layered,

dual-Kalman filter algorithm for indoor feature extraction,‖

in Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2000, vol. 1, pp. 454–461.

[9] R. A. Nachar, ―Vers un efficace détecteur de trait: Les

coins de contour et ses applications,‖ PhD thesis,

Versailles-St Quentin en Yvelines, 2014.

[10] K. Wall and P. E. Danielsson. ―A fast-sequential method

for polygonal approximation of digitized curves,‖

Computer Vision, Graphics, and Image Processing, vol. 28,

no. 2, pp. 220–227, 1984.

[11] F. Vincent, ―Modelisation de l’environnement et

localisation pour un véhicule,‖ Master’s thesis, L’Institut

National Polytechnique de Grenoble, 1997.

[12] I. Ohya, A. Kosaka, and A. Kak, ―Vision-based navigation

by a mobile robot with obstacle avoidance using single-

camera vision and ultrasonic sensing,‖ IEEE Transactions

on Robotics and Automation, vol. 14, no. 6, pp. 969–978,

1998.

[13] Y. Hieida, T. Suenaga, K. Takemura, J. Takamatsu, and T.

Ogasawara, ―Real-time scan-matching using l0-norm

minimization under dynamic crowded environments,‖ in

Proc. Fourth Workshop Planning, Perception &

Navigation for Intelligent Vehicles2, 2012, pp. 257–26.

[14] E. B Olson, ―Real-time correlative scan matching,‖ in Proc.

IEEE International Conference on Robotics and

Automation, 2009, pp. 4387–4393.

[15] P. Vath and B. Ummenhofer, ―2d multi-resolution

correlative scan matching using a polygon-based similarity

measurement,‖ Ais. Informatik. Uni., 2013.

[16] C. Berger, ―Toward rich geometric map for slam: Online

detection of planes in 2d lidar,‖ Journal of Automation

Mobile Robotics and Intelligent Systems, vol. 7, 2013.

[17] A. Censi, ―On achievable accuracy for range-finder

localization,‖ in Proc. IEEE International Conference on

Robotics and Automation, Roma, Italy, pp. 4170–4175,

2007.

[18] M. Alshawa, ―lcl: Iterative closest line a novel point cloud

registration algorithm based on linear features,‖ Ekscentar,

vol. 10, pp. 53–59, 2007.

Journal of Communications Vol. 13, No. 3, March 2018

144©2018 Journal of Communications

[19] G. Burtin, F. Malartre, and R. Chapuis, ―Reducing the

implementation uncertainty using an advanced robotic

simulator,‖ in Machine, Control and Guidance, 2016.

[20] A. Censi, ―An ICP variant using a point-to-line metric,‖ in

Proc. IEEE International Conference on Robotics and

Automation, Pasadena, CA, May 2008.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, et

al., ―ROS: An open-source robot operating system,‖ in

Proc. ICRA Workshop on Open Source Software, 2009.

