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Abstract—In the age of IoT, pairing-based cryptography (PBC) 

can play an important role as a public key cryptography since it 

enables several innovative protocols such as anonymous 

encryption and certificate-less authentication. However, due to 

the computation complexity, PBC is often regarded 

computationally unfeasible for IoT devices. Therefore, this 

paper tries to push that limit by efficiently calculating the 

pairing operation together with scalar multiplication and 

exponentiation over the Barreto-Naehrig (BN) curve by 

applying the state of art techniques. In addition to the theoretical 

explanation of the applied techniques, the authors also show a 

high-level implementation using C programming on a raspberry 

pi model 3 B, instead of hardware specific implementation. 
 
Index Terms—Pairing-based cryptography, BN curve, efficient 

implementation. 

 

I. INTRODUCTION 

In 1976, the historic work of Whitfield Diffie and 

Martin Hellman [1] initiated a new era in information 

security known as public key cryptography. Two years 

later Rivest-Shamir-Adleman proposed RSA 

cryptography [2], which is still the most widely used 

public key cryptosystem. In the mid 80’s the independent 

work of Miller [3] and Koblitz [4] began the journey of 

the elliptic curve cryptosystem (ECC). However, due to 

the shorter key length for same security level than RSA, 

ECC became popular among researchers. At the 

beginning of this century when the debate between RSA 

and ECC was at its peak, a new paradigm of 

cryptography called pairing-based cryptography, which is 

based on an elliptic curve came into the limelight by the 

independent work of Sakai et al. [5] and Joux [6]. Since 

then, researchers have proposed many innovative 

cryptography applications based on pairing such as ID-

based encryption [7] and attribute based encryption [8]. 

Several pairing techniques such as ate [9], optimal-ate [10] 

and χ-ate [11] have been developed over the years. In 

general, pairing is a bilinear map from two additive 

rational point groups, 𝔾1  and 𝔾2 , to a multiplicative 

group, 𝔾3, denoted as 𝔾1 × 𝔾2 → 𝔾3. The efficiency of 

the pairing computation depends mostly on: 

 Miller’s algorithm 

 Final exponentiation 

 Scalar multiplication in the 𝔾1 and 𝔾2 groups 
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 Exponentiation in 𝔾3. 

This paper, focuses on efficiently optimizing the above 

operations and their implementation in C programming to 

verify the enhancement of the calculation efficiency on 

the Barreto-Naehrig (BN) curve [12].  

Unlike RSA, the security of ECC and PBC depends on 

the discrete logarithm problem (DLP). However, Kim et 

al. [13] have recently proposed a new algorithm to solve 

the DLP at CRYPTO2016. Therefore, the previous 

parameters, such as the length of the prime number 

⌊log2 𝑝⌋, should be updated. This paper applies the recent 

parameters of 128 bit security proposed by Barbulescu et 

al. [14], where ⌊log2 𝑝⌋ = 462 bit.  

Since pairing on the BN curve enables the calculation 

on the twisted isomorphic group, the authors adopted a 

skew Frobenius map [15] on the sextic twisted curve to 

efficiently carry out the elliptic curve scalar 

multiplication on 𝔾1 and 𝔾2. This paper also applies 7-

sparse multiplication [16] for an efficient Miller’s 

algorithm and the method of Fuentes et al.[17] for the 

final exponentiation. Finally, this paper also shows a 

high-level implementation using C programming 

language to evaluate the performance of the proposal on a 

raspberry pi 3 B. The optimized implementation for a 

raspberry pi 3 B using the ARM-NEON assembly is not 

the focus of this work. However, the proposed method 

can be implemented using the ARM-NEON assembly and 

to exploit the Quad Core CPU, a SIMD parallel 

computing technique can also be applied. 

II. FUNDAMENTALS 

A. Elliptic Curve [18] 

Let 𝐸 be the elliptic curve defined over the prime field 

𝔽𝑝 as follows: 

 𝐸/𝔽𝑝 ∶ 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏 (1) 

where 4𝑎3 + 27𝑏2 ≠ 0  and 𝑎, 𝑏 ∈ 𝔽𝑝 . Points satisfying 

Eq. (1) are known as the rational points on the curve. The 

set of rational points including the point at infinity 𝒪 on 

the curve forms an additive Abelian group denoted by 

𝐸(𝔽𝑝) , whose total number of points #𝐸(𝔽𝑝)  can be 

obtained as follows: 

 #𝐸(𝔽𝑝) = 𝑝 + 1 − 𝑡 (2) 

where 𝑡 is the Frobenius trace of 𝐸(𝔽𝑝). 

 Point addition and doubling. 
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Let 𝐿 = (𝑥𝑙 , 𝑦𝑙)  and 𝑀 = (𝑥𝑚, 𝑦𝑚)  be two rational 

points on 𝐸 . Their addition 𝑁 = 𝐿 +𝑀 , where 𝑁 =

(𝑥𝑛, 𝑦𝑛) and 𝐿 , 𝑀 , 𝑁 ∈ 𝐸(𝔽𝑝). The 𝑥  and 𝑦  coordinates 

of 𝑁 are given as follows: 

 (𝑥𝑛, 𝑦𝑛) = ((𝜆
2 − 𝑥𝑙 − 𝑥𝑚), (𝑥𝑙 − 𝑥𝑛)𝜆 − 𝑦𝑙) (3) 

where 𝜆 is given as follows: 

 𝜆 = {
(𝑦𝑚 − 𝑦𝑙)(𝑥𝑚 − 𝑥𝑙)

−1 (𝐿 ≠ 𝑀)

(3𝑥𝑙
2 + 𝑎)(2𝑦𝑙)

−1   (𝐿 = 𝑀)
 (4) 

Here 𝜆 is the tangent point on the curve and 𝒪 is the 

additive unity in 𝐸(𝔽𝑝). When 𝐿 ≠ 𝑀 , 𝐿 +𝑀  is called 

the elliptic curve addition (ECA). If 𝐿 = 𝑀 , then 

𝐿 +𝑀 = 2𝐿, which is known as elliptic curve doubling 

(ECD). 

 Scalar multiplication. 

Let 𝑟 be the order of the target rational point group and 

𝑠 be a scalar such that 0 ≤ 𝑠 < 𝑟. Scalar multiplication of 

the rational point 𝑀, typically denoted as [𝑠]𝑀, can be 

calculated using (𝑠 − 1)-times additions of 𝑀 as follows: 

 [𝑠]𝑀 = 𝑀 +𝑀 +⋯+𝑀⏟          
𝑠−1 times additions

. (5) 

When 𝑠 = 𝑟, where 𝑟  is the order of the curve, then 

[𝑟]𝑀 = 𝒪. If [𝑠]𝑀 = 𝑁 and 𝑠 are unknown, then solving 

𝑠  from 𝑀  and 𝑁  is called an elliptic curve discrete 

logarithm problem (ECDLP). The security of elliptic 

curve cryptography lies on the difficulty of solving the 

ECDLP. 

B. Barreto-Naehring curve [12] 

The Barreto-Naehrig (BN) curve is a type of non-

super-singular (ordinary) pairing-friendly elliptic curve of 

the embedding degree, 𝑘 = 12, defined over 𝔽𝑝12, given 

as follows: 

 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑏 , 𝑏 ≠ 0 (6) 

As a typical feature of the BN curve, its characteristic 

𝑝, Frobenius trace 𝑡 and order 𝑟 are given as a polynomial 

of an integer χ, also known as the mother parameter as 

follows: 

 𝑝(𝜒) = 36𝜒4 + 36𝜒3 + 24𝜒2 + 6𝜒 + 1 (7a) 

 𝑟(𝜒) = 36𝜒4 + 36𝜒3 + 18𝜒2 + 6𝜒 + 1 (7b) 

 𝑡(𝜒) = 6𝜒2 + 1 (7c) 

The smallest positive integer 𝑘  such that 𝑟  divides 

𝑝𝑘 − 1 is called the embedding degree. 

C. Extension field arithmetic 

Pairing-based cryptography requires performing the 

arithmetic operation in extension fields of degree 𝑘 ≥ 6. 

Bailey et al. [19] explained the optimal extension field by 

towering using irreducible binomials, which is adopted 

for the BN curve as follows:  

 Towering of the 𝔽𝑝12 extension field. 

Let 6|(𝑝 − 1), where 𝑝 is the characteristic of the BN 

curve. In the context of the BN, where 𝑘 =  12, 𝔽𝑝12 is 

constructed as a tower field with an irreducible binomial 

as follows: 

 {

𝔽𝑝2 = 𝔽𝑝[𝛼]/(𝛼
2 + 1)

𝔽𝑝4 = 𝔽𝑝2[𝛽]/(𝛽
2 − (𝛼 + 1))

𝔽𝑝12 = 𝔽𝑝4[𝛾]/(𝛾
3 − 𝛽)

 (8) 

To construct this tower of extension field, −1 should 

be a quadratic non-residue in 𝔽𝑝 and (𝛼 + 1) should be a 

quadratic and cubic non-residue in 𝔽𝑝2. 

D. Ate and optimal-ate pairing on the BN Curve 

In the context of pairing-based cryptography, 

especially on the BN curve, two additive rational point 

groups 𝔾1 and 𝔾2, and a multiplicative group 𝔾3 of order 

𝑟 are considered. From [20], 𝔾1 , 𝔾2  and 𝔾3  are defined 

as follows: 

𝔾1 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ Ker(𝜙𝑝 − [1]) 

𝔾2 = 𝐸(𝔽𝑝𝑘)[𝑟] ∩ Ker(𝜙𝑝 − [𝑝]) 

𝔾3 = 𝔽𝑝𝑘
∗ / (𝔽

𝑝𝑘
∗ )

𝑟

 

𝐸(𝔽𝑝𝑘)[𝑟]  denotes the rational points of order 𝑟  and 

[𝑛] denotes the 𝑛 times scalar multiplication for a rational 

point. 𝜙𝑝  denotes the Frobenius mapping given by 

𝜙𝑝 ∶ (𝑥, 𝑦) ↦ (𝑥𝑝, 𝑦𝑝)  and Ker (·)  is a set whose 

elements are mapped to the zero element by ·. The Ate 

pairing [9] is generally given as follows: 

 𝑒 = 𝔾1 × 𝔾2 → 𝔾3, (9) 

In the case of BN curve, the above 𝔾1 is just 𝐸(𝔽𝑝). In 

what follows, rest of this paper considers 𝑃 ∈ 𝔾1  ⊂

𝐸(𝔽𝑝) and 𝑄 ∈ 𝔾2  ⊂ 𝐸(𝔽𝑝12) for BN curve. Ate pairing 

𝑒 (𝑄, 𝑃) is given as follows: 

 𝑒(𝑄, 𝑃) = 𝑓𝑡−1,𝑄(𝑃)
𝑝12−1

𝑟 , (10) 

where 𝑓𝑡−1,𝑄(𝑃)  symbolizes the output of Miller’s 

algorithm and ⌊log2(𝑡 − 1)⌋ is the loop length, where 𝑡 is 

the Frobenius trace given in Eq. (7c). The bilinearity of 

Ate pairing is satisfied after calculating the final 

exponentiation 
𝑝12−1

𝑟
.  

Vercauteren proposed a more efficient variant of the 

Ate pairing named as the optimal-Ate pairing [10], where 

the Miller’s loop length was reduced to ⌊log2 𝑠⌋ , 𝑠 =
 6𝜒 +  2. 

 𝑒𝑜𝑝𝑡(𝑄, 𝑃) = (𝑓𝑠,𝑄(𝑃) ⋅ 𝑙[𝑠]𝑄,[𝑝]𝑄(𝑃) ⋅ 𝑙[𝑠+𝑝]𝑄,[−𝑝2]𝑄)
𝑝12−1

𝑟  

(11) 

where 𝑓 is the main Miller loop’s outcome. The authors 

applied 7-sparse multiplication for the line evaluations of 

Miller’s algorithm described in Section 4. The ECA and 
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ECD are also calculated efficiently in the twisted curve. 

The [𝑝]𝑄  and [𝑝2]𝑄  terms are calculated efficiently by 

applying a skew Frobenius map over 𝔽𝑝2, since 𝑄 can be 

mapped in the sub-field twisted isomorphic group. The 

final exponentiation is calculated by applying Fuentes et 

al.’s work for the BN curve [17]. 

E. Twist of the BN curves 

There exists a twisted curve 𝐸′ of order 𝑟 isomorphic 

to the group where the rational point 𝑄 ∈ 𝐸(𝔽𝑝𝑘) belongs 

to. This sub-field isomorphic rational point group 

includes an isomorphic point of 𝑄, typically denoted as 

𝑄′ ∈ 𝐸′(𝔽𝑝𝑘/𝑑), where 𝑘 is the embedding degree and 𝑑 

is the twist degree. Since the points on the twisted curve 

are defined over a smaller field than 𝔽𝑝𝑘, the ECA and 

ECD therefore become faster. However, when required in 

the pairing calculation, such as for the line evaluation, 

they can be quickly mapped to a point on 𝐸(𝔽𝑝𝑘). In the 

context of the BN curve, there exists a 6-th degree twist, 

also known as a sextic twist since 6|𝑘. 

 Sextic twist of the BN curve. 

When the embedding degree 𝑘 = 6𝑒, where 𝑒 = 2 is a 

positive integer, the sextic twist is given as follows: 

 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑏, 𝑏 ∈ 𝔽𝑝 (12) 

 𝐸′ ∶ 𝑦2 = 𝑥3 + 𝑏(𝛼 + 1) (13) 

where α + 1  is a quadratic and cubic non-residue in 

𝐸(𝔽𝑝𝑒) and 3|𝑝𝑒 − 1. The isomorphism between 𝐸′(𝔽𝑝𝑒) 

and 𝐸(𝔽𝑝6𝑒) is given as follows: 

 𝜓6 ∶ {
𝐸′(𝔽𝑝𝑒) → 𝐸(𝔽𝑝6𝑒),

(𝑥, 𝑦) ↦ (𝑥(𝛼 + 1)−
1

3, 𝑦(𝛼 + 1)−
1

2)
 (14) 

III. PROPOSED IMPLEMENTATION TECHNIQUES 

This section describes the efficient pairing implemen-

tation techniques on the BN curve for the parameters 

given in [14]. The overall contributions are can be 

summarized as follows: 

 Efficient line evaluation of Miller’s algorithm by 7-

sparse multiplication. 

 Efficient scalar multiplication of 𝔾1  and 𝔾2  by 

applying skew Frobenius mapping and Frobenius 

mapping over the twisted isomorphic curve 𝐸′(𝔽𝑝2). 

 Efficient exponentiation of the 𝔾3 points. 

Fig. 1 shows the sextic twisted isomorphic mapping of 

𝑄 ′ ∈ 𝐸′(𝔽𝑝2)  ↦ 𝑄 ∈ 𝐸(𝔽𝑝12)  and isomorphic mapping 

of 𝑃 ∈ 𝐸(𝔽𝑝) ↦ 𝑃′ ∈ 𝐸′(𝔽𝑝12) . The following sub-

sections give the explicit formulas to implement the 

above ideas and in Section 5 give the comparative 

implementation results. 

A. 7-Sparse Multiplication 

Since the line equations inside of the Miller loop and 

outside are sparsely obtained (7 zero coefficients and 5 

no-zero coefficients), the following optimized line 

calculation can be given as follows: 

 Elliptic curve doubling 𝑇 = 𝑄. 

𝐴 =
1

2𝑦𝑇′
, 𝐵 = 3𝑥𝑇′

2 , 𝐶 = 𝐴𝐵, 𝐷 = 2𝑥𝑇′ , 𝑥2𝑇′ = 𝐶
2 − 𝐷, 

𝐸 = 𝐶𝑥𝑇′ − 𝑦𝑇′, 𝑦2𝑇′ = 𝐸 − 𝐶𝑥2𝑇′  , 

𝑙𝑇,𝑇(𝑃) = 𝑦𝑃 + (𝛼 + 1)
−1𝐸𝛽 − (𝛼 + 1)−1𝐶𝑥𝑃𝛽𝛾

2 

 Elliptic curve addition 𝑇 ≠ 𝑄. 

𝐴 =
1

𝑥𝑄′ − 𝑥𝑇′
, 𝐵 = 𝑦𝑄′ − 𝑦𝑇′ , 𝐶 = 𝐴𝐵, 𝐷 = 𝑥𝑇′ + 𝑥𝑄′ , 

𝑥𝑅′ = 𝐶
2 − 𝐷, 𝐸 = 𝐶𝑥𝑇′ − 𝑦𝑇′ , 𝑦𝑅′ = 𝐸 − 𝐶𝑥𝑅′  , 

𝑙𝑇,𝑄(𝑃) = 𝑦𝑃 + (𝛼 + 1)
−1𝐸𝛽 − (𝛼 + 1)−1𝐶𝑥𝑃𝛽𝛾

2 

Here the temporary variables 𝐴 to 𝐸 are in 𝔽𝑝2 and 𝑄′, 

𝑇′ are in 𝐸′(𝔽𝑝2). The basis element 𝛽 and 𝛽𝛾2 identifies 

the coordinates position in the 𝔽𝑝12 vector. 

 
Fig. 1. The isomorphic map of 𝑃 ↦ 𝑃′ and the sextic twisted map of 

𝑄′ ↦ 𝑄. 

B. Scalar Multiplication in 𝔾1 

 Skew Frobenius Map in  𝔾1. 

The skew Frobenius map �̃�𝑒  for 𝔾1  is defined as 

follows: 

 �̃�𝑒 ∶ {
𝐸(𝔽𝑝) → 𝐸(𝔽𝑝),

(𝑥𝑝 , 𝑦𝑝) ↦ (𝑥𝑝/𝑣
2(𝑝𝑒−1)/𝑑 , 𝑦𝑝/𝑣

3(𝑝𝑒−1)/𝑑  ),
 (15) 

where 𝑣 =  (𝛼 +  1)5 . In the case of the BN curves, 

since 𝑘 =  12 , 𝑑 =  6  and 𝑒 =  𝑘/𝑑 =  2 , here (𝛼 +

 1)5(𝑝
2−1)/2 becomes −1 since (𝛼 +  1) is quadratic non-

residue in 𝔽𝑝2  and (𝛼 +  1)5(𝑝
2−1)/3  is a primitive cube 

root of 1, 𝜖3. Finally, the skew Frobenius map is given as 

follows: 

�̃�2 ∶ (𝑥𝑝, 𝑦𝑝) ↦ (𝑥𝑝/(𝛼 + 1)
5(𝑝2−1)/3, 𝑦𝑝/𝑣

5(𝑝2−1)/2 ), 

 = (𝑥𝑝𝜖3, −𝑦𝑝). (16) 

�̃�2  and 𝑝  have following relationship and we can 

calculate [𝑝2]𝑃 easily. 

 [𝑝2]𝑃 = �̃�2(𝑃). (17) 

 𝔾1 scalar multiplication with �̃�𝑒. 

The previous work of Sakemi et al. [15] shows the 

following relationships. 

 6χ2 − 4𝜒 + 1 ≡ (−2𝜒 + 1)𝑝2 mod 𝑟 (18) 
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Using this relationship, we can get the following 

relationships for the 𝔾1 scalar multiplication to consider 

the (6χ2 − 4𝜒 + 1)-adic representation of scalar 𝑠. 

 𝑠 = (𝑠5 − 𝑠4)𝑝
2 + (𝑠2 − 𝑠5) mod 𝑟 (19) 

However, 𝑠2 , 𝑠4  and 𝑠5  satisfiy these conditions using 

ν = 6χ2 − 4𝜒 + 1 and 𝜇 =  −2𝜒 +  1. 

{

𝑠 = νs1 + 𝑠2
𝜇𝑠1 = νs3 + 𝑠4
𝑠5 = 𝜇𝑠3

 

When 𝐴 =  𝑠5  − 𝑠4  and 𝐵 =  𝑠2  − 𝑠5 , 𝑠[𝑃] is 

calculated as follows: 

 [𝑠]𝑃 = [𝐴]�̃�2(𝑃) + [𝐵]𝑃 (20) 

C. Scalar multiplication in 𝔾2 

 Skew Frobenius Map in 𝔾2 

The skew Frobenius map �̂�𝑙  for 𝔾2  is defined as 

follows: 

 �̂�𝑙 ∶ {
𝐸′(𝔽𝑝2) → 𝐸′(𝔽𝑝2)

(𝑥, 𝑦) ↦ (𝑣1/3(𝑣−1/3𝑥)
𝑝𝑙

, 𝑣1/2(𝑣−1/2𝑦)
𝑝𝑙

)
 (21) 

In the case of the BN curves,  𝑣 = (𝛼 +  1), where 𝛼 

is a root of the polynomial 𝑥2 + 1. Then, �̂�𝑙 becomes 

�̂�𝑙 ∶ (𝑥, 𝑦) ↦ ((𝛼 + 1)1/3((𝛼 + 1)−1/3𝑥)
𝑝𝑙

, 

                       (𝛼 + 1)1/2((𝛼 + 1)−1/2𝑦)
𝑝𝑙

) (22) 

�̂�𝑙  and 𝑝  have following relationships and we can 

calculate [6𝜒] 𝑃, [6𝜒2]𝑃 and [36𝜒3]𝑃 easily as given in 

[15]. 

[6𝜒]𝑃 = −{(1 + �̂�) + �̂�3(1 − �̂�)}𝑃 

[6𝜒2]𝑃 = �̂�(𝑃) 

 [36𝜒3]𝑃 = −�̂�3{(1 + �̂�) + �̂�3(1 − �̂�)}𝑃 (23) 

 𝔾2 scalar multiplication with �̂�𝑙 
We can get following relationships for the 𝔾2 scalar 

multiplication to consider the (6𝜒2)-adic representation 

of scalar 𝑠. 

 𝑠 = (6𝜒2)𝐴 + 𝐵 (24) 

Then, we consider (6𝜒)-adic for 𝐴 and 𝐵 as follows: 

𝐴 = (6𝜒)𝑠1 + 𝑠2 

 𝐵 = (6𝜒)𝑠3 + 𝑠4 (25) 

Using this relationship between 𝐴  and 𝐵 , 𝑠  can be 

represented as follows: 

 𝑠 = 𝑠1(36𝜒
3) + 𝑠2(6𝜒

2) + 𝑠3(6𝜒) + 𝑠4 (26) 

Therefore, using Eq. (23) we can reduce the scalar 

multiplication by 𝑠 as follows: 

 𝑠 = 𝑠1[36𝜒
3]𝑃 + 𝑠2[6𝜒

2]𝑃 + 𝑠3[6𝜒]𝑃 + 𝑠4𝑃 (27) 

D. Exponentiation in 𝔾3 

We can calculate the 𝔾3 exponentiation like the 𝔾2 

scalar multiplication. 

 Frobenius map in 𝔾3. 

The Frobenius map 𝜙𝑙 is defined as follows: 

 𝜙𝑙 ∶ {
𝔽
𝑝𝑘
∗ → 𝔽

𝑝𝑘
∗ ,

𝑋 ↦ 𝑋𝑝
𝑙
.

 (28) 

𝜙𝑙  and 𝑝  have following relationship and we can 

calculate 𝑓6𝜒, 𝑓6𝜒
2
 and 𝑓36𝜒

3
 as follows: 

𝑓6𝜒 = {(𝑓 ⋅ 𝜙(𝑓)) ⋅ 𝜙3(𝑓 ⋅ 𝜙(𝑓)−1)}
−1

, 

𝑓6𝜒
2
= 𝜙(𝑓), 

 𝑓36𝜒
3
= 𝜙3 ({(𝑓 ⋅ 𝜙(𝑓)) ⋅ 𝜙3(𝑓 ⋅ 𝜙(𝑓)−1)}

−1
) (29) 

 𝔾3 exponentiation with 𝜙𝑙 
We can get the same relationship as the 𝔾2  scalar 

multiplication. Then, 𝑠  also can be represented as Eq. 

(26). Therefore, using Eq. (29) we can efficiently 

calculate the exponentiation using  𝑠 as follows: 

 𝑓𝑠 = (𝑓36𝜒
3
)
𝑠1
⋅ (𝑓6𝜒

2
)
𝑠2
⋅ (𝑓6𝜒)𝑠3 ⋅ 𝑓𝑠4 . (30) 

IV. EVALUATION OF THE RESULTS 

This section gives a comparative implementation of the 

techniques described in Section 3. 

 Environment  

We implemented the proposal using C language. For 

large-integer arithmetic GMP 6.1.1 has been used. The 

programs were tested on a Raspberry Pi 3 B and PC. The 

Raspberry Pi was specified as 1.2 GHz 64 bit CPU, 1 GB 

RAM, gcc compiler version 4.9.2 on Raspbian 4.9.2-10 

OS. The PC is equipped with a core i5 3.3 GHz CPU, 8 

GB RAM with Ubuntu 16.04 OS, gcc ver-5.4.0. In both 

cases only a single core was utilized. 

 Parameter and result analysis.  

As said before this paper uses the most recent 

parameters [14] where the mother parameter is χ =

2114 + 2101 − 214 − 1, which is resistant to exTNFS [13] 

for 128 bit security level. The size of the ECDL, 

length(𝑟) = 462 bit and the DLP length (𝑝𝑘) = 5544 bit. 

For 𝔾1  and 𝔾2  SCM an integer 𝑠 ≈ 𝑟  was considered. 

Table I shows the time comparison of the implementation. 

The source code can be found in Github.
1
 

TABLE I: THE TIME COMPARISON OF PAIRING THE SCM IN 𝔾1,  𝔾2 AND 

EXPONENTIATION IN 𝔾3 

Operation Time [ms] 

Device type Raspberry pi PC 

Pairing 

Miller Algo. 𝟖. 𝟓𝟒 × 101 𝟖. 𝟏𝟓 × 100 

Final Exp.[17] 2.29 × 102 1.94 × 101 
Total 3.15 × 102 2.76 × 101 

𝔾1 SCM 
Previous 2.81 × 101 3.76 × 100 

This 𝟏. 𝟔𝟔 × 101 𝟐. 𝟐𝟒 × 100 

𝔾2 SCM Previous 7.96 × 101 8.00 × 100 

                                                           
1 https://github.com/YukiNanjo/BN12raspi 
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Operation Time [ms] 

This: 2-split 4.62 × 101 4.53 × 100 

This: 4-split  𝟐. 𝟕𝟏 × 101 𝟐. 𝟕𝟔 × 100 

𝔾3 Exp. 
Previous 2.31 × 102 2.02 × 101 

This 𝟖. 𝟒𝟖 × 101 𝟔. 𝟔𝟐 × 100 

 

Here 2-split and 4-split refers to dividing the scalar s 

into 2 and 4 parts, respectively. “Previous” refers to the 

implementation without any optimization and “This” 

refers to the optimization given in Section 3. It is clear 

from the results that the given implementation methods 

are faster than the “Previous” method. The time is 

different in two environments but the ratio is same. In 

both environments the 𝔾1 SCM is two times faster than 

the “Previous” approach. Similarly, the 𝔾2  2-split is 

about 2 times, 4 splits are 3 times and 𝔾3 exp is about 3 

times faster than the “Previous” method. However, since 

it shows a high-level general implementation, it is not 

practical for raspberry pi. Implementing the proposed 

optimized methods using the ARM-NEON assembly will 

be the most efficient, which is not the focus of this work. 

V. CONCLUSIONS 

This paper shows the techniques for efficient pairing 

calculations on the BN curve for 128 bit security level. In 

addition, it also shows the state of art techniques for 

efficient scalar multiplication in the 𝔾1 , 𝔾2  groups 

together with 𝔾3  exponentiation. The implementation 

result on the raspberry pi and PC substantiated the 

proposed techniques efficiency. As future work, the 

authors would like to apply this pairing on a customized 

SSL/TLS suite for authentication using ID-based 

encryption. 
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