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Abstract—Nowadays, multi-sensor architectures are popular to 

provide a better understanding of environment perception for 

intelligent vehicles. Using multiple sensors to deal with 

perception tasks in a rich environment is a natural solution. 

Most of the research works have focused on PC-based 

implementations for perception tasks and very few concerns 

have been addressed for customized embedded designs. In this 

paper, we propose a Multi-Sensor Data Fusion (MSDF) 

embedded design for vehicle perception tasks using stereo 

camera and Light Detection and Ranging (LIDAR) sensors. A 

modular and scalable architecture based on Zynq-7000 SoC was 

designed. 
 
Index Terms—Sensor Fusion, Embedded Systems, FPGA, 

Intelligent Vehicles. 

 

I. INTRODUCTION 

Intelligent Transportation System (ITS) applications 

are widely involved in our daily life. Among these 

applications, we can mention intelligent vehicles, 

Advanced Driver Assistance System (ADAS) for lane 

detection, parking assist, tracking [1], cross traffic alert, 

pedestrian detection... [2]-[4]. 

Building ITS systems requires the use of different 

types of sensors to improve the traffic safety, to ensure 

the reliability of navigation tasks and efficient perception. 

The main goal to use multi-sensors architecture is to 

achieve tasks that cannot be performed with a single 

sensor. In fact, a single sensor is limited in the amount of 

details that can be captured when used to measure a 

physical quantity. This limitation arises because one 

single sensor generally suffers from many problems: (1) 

Field of View limited coverage (FOV). (2) limited 

temporal coverage due to the limited rate of sensor 

acquisition. (3) The breakdown and dysfunction of sensor 

affect the system reliability. (4) The measurements from 

individual sensors are limited to the precision of the 

employed sensing element. (5) The measured data is 

uncertain when some features are missed (e.g. occluded 

objects). Therefore, using multiple sensors is a potential 

solution to overcome the problems as mentioned above. 

Combining information from multi-sensor system 

introduces new challenges [5]. One of the important 
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challenges is a spatio-temporal task: the spatial part is the 

alignment of frame sensors while the second is handling 

the update rates of sensors. The alignment process 

consists of finding the relation between the coordinates of 

sensor frames to ensure the transformation from one 

frame into another. The second challenge is the 

operational timing in the case of homogeneous or 

heterogeneous sensors. The operation frequencies of the 

sensors are different. Consequently, a well-designed data 

fusion method should incorporate multiple time scales to 

deal with such timing variations in data [5]. We mention 

others challenges such as data association and the 

architecture that will be used to perform data fusion either 

centralized or decentralized. 

Many classifications are proposed for data fusion 

techniques in the literature [6]. Among these 

classifications is based on the abstraction level of the 

employed data. This class is subdivided into three levels: 

(1) Low-level fusion where the raw data will be directly 

fused. (2) Medium-level, in this case, the characteristics 

(e.g. shape, texture, and position) are combined to obtain 

the features that could be employed to perform specific 

tasks. (3) High-level fusion where the fusion is carried-

out at the level of decision. 

Most of the research works have focused on PC-based 

implementations for perception tasks [7] and very few 

concerns have been addressed for customized embedded 

designs. FPGA reconfigurable circuits are considered as a 

preferable choice to implement perception tasks for 

different reasons: (1) FPGA offers high performance 

computing power at lower operating frequencies. (2) 

They can realize massively parallel architectures by 

profiting from the huge amount of programmable logics 

available on a single chip. (3) FPGAs are good candidates 

for building energy efficient systems due to their low 

power consumption. (4) Sensors are modular devices that 

use standard communication ports like CAN bus, 

Ethernet, FPGA Mezzanine Card (FMC)... Thus, FPGA 

can play a role as a communication-centric platform 

between the connected sensors [8]. 

In this paper, we present a Multi-Sensor Data Fusion 

(MSDF) design for vehicle perception tasks for 

embedded systems. This is mainly based on Zynq-7000 

heterogeneous System-on-Chip (SOC) platform. 
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Fig. 1. Multi-sensor data fusion framework. 

Our proposed design represents a modular architecture 

based on FMC Input/Output (I/O) interface for 

automotive applications. 

The rest of the paper is organized as follows. Section II 

presents the MSDF framework. In section III, we 

describe the proposed design of the embedded platform. 

Section IV presents the results of the functions that 

already implemented. Finally, the conclusions and the 

future works are discussed in Section V. 

II. MSDF FRAMEWORK 

Based on the described problem and solution in [9], we 

aim to represent the position uncertainty of a detected 

object as a 2D Gaussian distribution. We extend the 

proposed approach to n sensors and we append the 

alignment process. 

These sensors are homogeneous and/or heterogeneous 

and their task is to measure the position of the detected 

obstacles. Fig. 1 shows the structure of MSDF generic 

framework for n given sensors. It consists of two main 

processes: (1) Sensor alignment process (off-line). The 

inputs of this process are sensors data while the outputs 

are the calibration parameters (rotation matrix and 

translation vector). This process is an extrinsic calibration 

between different sensors (source and targets) allows 

estimating the relative position of point p in a common 

frame. (2) Object detection process (on-line). In this step, 

there are n processing chains each of them provides a list 

of the detected objects. With the conjunction of the 

calibration parameters obtained from sensor alignment 

process, we are able to fuse the data together to better 

detect the objects in the surroundings. In this work, we 

are interested in LIDAR and stereo camera sensors. We 

aim to use Bayesian fusion technique on objects of these 

two lists provided by the two sensors to get a new list of 

fused objects. In the following subsections, we will detail 

each task. 

A. Frames Alignement  

To efficiently perform sensor fusion, the sensors 

should be calibrated. The calibration process is an 

alignment procedure of a given sensor frames. That is to 

say, find the relation between the coordinates of sensor 

frames to ensure the transformation from a frame into 

another. 

To carry-out this process we used the method 

described in [10] based on least squares analytical 

solution to find the 6 Degree of Freedom (DOF) 

transformation between the two sensor frames. This 

method provides an analytical solution using a white 

board with three black lines in the middle. It is based on 

point-normal vector correspondences and it is using the 

detected lines from the camera frame and the end-points 

from LIDAR sensor to establish the closed-form solution. 

Fig. 2 shows the main steps to perform the sensor 

alignment process.  

 
Fig. 2. Calibration process. 

The first step is to extract the co-features for both types 

of sensors: line detections for cameras and segmentation 

process for LIDAR sensors to make fully automated 

feature acquisition. To detect the lines, the Hough 

transform is used and to detect the end-points, we use the 

segmentation process described in the next section. The 

second step is to establish and solve the closed-form to 

obtain the rotation matrix and translation vector allowing 

alignment of sensor frames. 
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To summarize, the goal is to find the rigid 

transformation [
C
RL | 

C
tL], where 

C
RL is the rotation matrix 

and 
C
tL is the translation vector allow to make the 

transformation from LIDAR to camera sensor frame. It 

consists to determine the correspondence of a given 

LIDAR point represented as pL = [xL; yL; zL]
T
 located into 

the frame of the LIDAR sensor {L}, in the frame of the 

camera {C}. Let pC = [xC; yC; zC]
T
 be the correspondence 

of pL, so we write the transformation between the camera 

and LIDAR frames as follows: 

𝑝𝑐  =  𝑅𝐿
𝐶  𝑝𝐿  +  𝑡𝐿

𝐶                  (1) 

Fig. 3 illustrates the relevant transformations between 

the different frames for LIDAR and stereo vision system. 

We distinguish four geometric transformations: 

 [
L
Rw | 

L
tw]: Transformation between real world and 

LIDAR. 

 [
LC

Rw | 
LC

tw]: Transformation between real world and 

camera (Left). 

 [
LC

RL | 
LC

tL]: LIDAR to left camera transformation. 

 [
LC

RRC | 
LC

tRC]: Right to left camera transformation. 

 
Fig. 3. Transformations between different frames 

B. Exraction of LIDAR Points  

To extract the projected points of the source sensor on 

the calibration board, the automatic extraction approach 

by differentiation of the measurements and background 

data in static environments is often used. However, in this 

work, this task is carried out by using a segmentation 

process. Each segment (cluster) is defined as a set of 

points and is composed of a minimum number of points 

distant according to a threshold distance denoted Thr. 

Therefore, if dist(pi; pi+1) < Thr then a segment is 

defined with Ci as its centroid. Where pi is the impact 

point of the LIDAR sensor, dist(pi , pi+1) is the Euclidean 

distance between two adjacent points and Thr is the 

required threshold. The coordinate of each centroid Ci is 

calculated as follows: (∑
𝑝𝑥𝑖

𝑛
 , ∑

𝑝𝑦𝑖

𝑛
 )  where n is the 

number of points. We can add another parameter to fix 

the minimum number of points that make a segment. 

C. Sum of Absolute Difference stereo Matching 

Algorithm 

Fig. 4(a) shows how the depth of objects is determined 

in stereo matching problem. For every pixel xR in the 

right image, we try to find its best matching pixel xL in 

the left image at the same image line. Assuming two 

cameras of focal length (f) at the same horizontal level, 

separated from each other by a distance baseline (b). 

Pixel (p) in the space will be located at point (xR) and 

point (xL) in the right and left image respectively. The 

difference between the two points on the image plane is 

defined as disparity (d) as depicted in Fig. 4(b). Therefore, 

the depth of pixel (p) from the two cameras can be 

calculated using the following equation: 

 

𝑑𝑒𝑝ℎ =
baseline∗focal length 

disparity 
=

𝑏∗𝑓

(𝑥𝑅−𝑥𝐿)
         (2) 

 

 
Fig. 4. Calculating the depth of an object in stereo matching problem. 

There are different algorithms in the literature that are 

used to solve the stereo matching problem. In this work, 

Multiwindow Sum of Absolute Difference (Multi-

window SAD) was used with 5-window configuration. 

Fig. 5(a) shows that pixel (p) lies in the middle of the 

window (E) while it is surrounded by another four 

windows named (A, B, C and D).  

The four windows are partially overlapped at the 

border pixel. The dimension of each of them is equal to 

(winH+1 x winV+1) while the size of the window (E) is 

equal to (2*cwinH+1 x 2*cwinV+1). A score of a 

window is equal to the aggregation of its pixels. In 5- 

window SAD, the correlation score at pixel (p) is equal to 

the score value of window (E) in addition to the best 

minimum two score values of the other four windows (A, 

B, C and D). The score is calculated at different 

disparities such that the best matching between 

candidates is one of the minimum scores as shown in Fig. 

5(b). 

 
Fig. 5. (a) 5-window SAD configuration (b) Disparity of minimum 
score is considered as the best matching. 

D. MSDF Using Bayesian Approach  

The authors of [9] used the Bayesian Fusion technique 

to fuse the positions acquired by two sensors in the 

context of environment perception of autonomous 

vehicles. 
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The sensors are employed to detect the positions of 

obstacles. Position uncertainty is represented using 2D 

Gaussian distribution for both objects. Therefore, if X is 

the true position of the detected object, by using the 

Bayesian fusion, the probability of fused position PF [xF 

yF]
T
 by the two sensors is given as: 

𝑃𝑝𝑟𝑜𝑏(𝑃|𝑋) =
𝑒

−(𝑃−𝑋)𝑇𝑅−1(𝑃−𝑋)
2

2𝜋√|𝑅| 
             (3) 

where P is the fused position and R is the covariance 

matrix are given as: 

𝑃 =

𝑃1

𝑅1
+

𝑃2

𝑅2

1
𝑅1

+
1

𝑅2

 𝑎𝑛𝑑 
1

𝑅
=  

1

𝑅1

+
1

𝑅2

 

where P1 and R1 are respectively the position and 

covariance matrix of sensor 1 and P2 and R2 are that of 

sensor 2. So, we will represent the position uncertainty as 

2D Gaussian distribution. To explain how the Bayesian 

approach works, we simulated the behavior of two 

sensors which detect an object. Fig. 6 presents the results 

of the simulation. 

 

 

 
Fig. 6. Fusion of positions using Bayesian approach :(a) The two 

sensors have similar covariance matrices (b) Sensor 2 has a covariance 
matrix greater than that of sensor 1 (c) Sensor 1 has a covariance matrix 

greater than that of sensor 2. 

We explain this approach according to three cases: 

Case (1) Fig. 6(a) presents the results when the two 

sensors have a similar covariance matrix i.e. the fused 

position (the black crosses) will be in the middle of the 

tow provided positions by sensors 1 and 2. Case (2) (Fig. 

6(b)) When Sensor 2 has a covariance matrix greater than 

that of sensor 1, in this case, the fused positions (the 

black crosses) follows the positions provided by the 

sensor 1 (blue curve). Case (3) (Fig. 6(c)) When the 

sensor 1 has a covariance matrix greater than that of 

sensor 2, contrary to the previous case the fused positions 

(the black crosses) follows the positions provided by the 

sensor 2 (red curve). Therefore, the outcome is a 

combination of the two measurements weighted by their 

noise covariances matrices. To summary, the fused 

results using Bayesian approach follow the measurements 

provided by the sensor which has the smallest covariance 

matrix and gives more trust to it. 

III. EMBEDDED PLATFORM 

Fig. 7 shows the design architecture of MSDF based 

on Zynq-7000 SoC. This SoC integrates dual-core ARM 

Cortex- A9 based Processing System (PS) and 

Programmable Logic (PL) in a single device. The sensors 

are coupled to the platform through FMC interface. The 

image frames coming from the camera are buffered in the 

DDR memory through AXI-DMA communication.  

 
Fig. 7. MSDF architecture based on Zynq-7000 SoC. 
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The stored left/right frames are sent sequentially to 

Stereo Processing block for stereo matching processing. 

Two main steps are executed: disparity calculation to 

obtain the disparity of detected objects followed by depth 

calculation to know how far are the objects from the 

vehicle. On the other hand, the data from LIDAR sensor 

are processed by LIDAR processing Intellectual Property 

(IP). 

The inputs for Data Fusion IP are the vectors 

containing the positions of the detected objects. The 

output of this IP is a vector containing a fused list of the 

detected objects. Taking into consideration that the input 

sensors data must be synchronized according to their time 

stamps. 

The implemented algorithms running on this platform 

are developed using High-Level Synthesis (HLS) tools. 

These tools allow compiling C/C++ code into Register 

Transfer Level (RTL) design. Time-to-market is a crucial 

constraint in the automotive industry; therefore, using 

HLS tools permit the designers to rapidly test different 

algorithms and their implementation alternatives within 

short design cycle. In order to obtain an efficient 

hardware implementation, the high-level code is 

subjected to a set of HLS optimization steps [11]. 

IV. EXPERIMENTS 

A. Frames Alignment 

This process is performed by using a white board with 

three black lines in the middle. The used sensors are a 

color camera with 640x480 resolution and a line scan 

LIDAR with an angular resolution 0.25 degree. The 

camera is modeled by the standard pinhole model. The 

calibration board was moved in a 3m to 9m distance 

range. Fig. 8 shows the correspondence between two 

frames: images and LIDAR sensors. It presents the results 

using two approaches: (1) The original approach using a 

white pattern contains one black line (2) Multi-lines 

approach using a white pattern contains three black lines. 

For more details, the interested reader is referred to [10]. 

Note that, the alignment process task is carried-out on 

off-line for a specific number of poses taken by both of 

sensors. So, this step allows finding the rigid 

transformation between different sensor frames to project 

all the object detections in the same frame to carry-out 

the fusion process. 

B. Stereo Matching Algorithm 

The C-code for Multi-window SAD algorithm was 

implemented into hardware design by using Vivado HLS 

2015.2. During our experiments, we used Vivado 2015.2 

design suite to implement our system over Zynq ZC706 

FPGA evaluation board (XC7Z045-FFG900) with input 

grey images of size 640x480. The system was configured 

for 5-window SAD with the following parameters: winH 

=23, winV =7, cwinH =7, cwinV =3 and maximum 

disparity=64. Table I shows the synthesis results for some 

design alternatives for stereo matching algorithm at the 

different frame rate. The final choice is constrained by 

how much hardware resources are available after system 

integration or at what frame rate the system will operate. 

For example, Design #9 utilized 71% of the available 

hardware resources at frame rate of 87 frame/s operating 

at 200 MHz. But we can decrease the frame rate to 73 or 

59 frame/s in order to save between 12%-25% of the 

available HW resources for accelerating the other 

functionalities in the system. 

TABLE I: DIFFERENT DESIGN ALTERNATIVES FOR STEREO MATCHING ALGORITHM 

Design 

alternatives 

Slice 

(54650) 

FF 

(437200) 

LUT 

(218600) 

BRAM36K 

(545) 

HW 

utilization (%) 

Frequency 

(MHz) 

Frame rate 

(frame/s) 

Power 

 (in Watt) 

#1 26548 69268 80493 177.5 48.5 100 32.58 1.2354 

#2 26041 64792 80512 177.5 47.6 150  46.94 1.411 

#3 25143 72259 80567 177.5 46 200 59.55 1.6437 

#4 33640 105228 89444 233.5 61.55 100 40.55 1.4157 

#5 34944 83480 105341 233.5 63.9 150 58.2 1.6478 

#6 32616 93435 105423 233.5 59.6 200 73.47 1.9121 

#7 40326 109624 130054 289.5 73.79 100 48.64 1.5119 

#8 41208 102174 130168 289.5 75.4 150 69.59 1.7952 

#9 38980 114617 130097 289.5 71.32 200 87.41 2.109 

 

 
Fig. 8. Calibration results. 

C. Power Consumption  

Table I also presents the power consumption in Watt 

for Zynq-7000 SOC at different frame rates. We could 

notice that the power consumption increases as the 

frequency increases for the respective values: 100, 150 

and 200 MHz.  

Moreover, the maximum power consumption in all 

possible designs is about 2 watts for the design #9 which 
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is still lower than the power consumed by the other 

potential industrial solutions such as PCs [12]. 

V. CONCLUSIONS 

In these works, we presented an embedded design for 

MSDF based on stereoscopic camera and LIDAR sensors 

for vehicle perception tasks. We detailed the main steps 

to build the MSDF design. The first step is about the 

sensor calibration i.e. the alignment camera and LIDAR 

sensor frames. This process allows finding the relation 

between the coordinates of sensor frames to ensure the 

transformation from a frame into another. Since we aim 

to fuse the detected obstacles provided by each sensor, 

the idea is to represent the position uncertainty as 2D 

Gaussian distribution. Therefore, we used the Bayesian 

approach to combine the detected objects. According to 

the simulation results, we saw that the outcome is a 

combination of the sensor measurements weighted by 

their noise covariance’s matrices. Otherwise, since the 

generation of clusters by the LIDAR sensor is faster than 

the stereo camera, using FPGA solution is a potential 

solution to improve the power processing. Hence, we can 

reduce the necessary time to provide the detected object 

by cameras. For stereo matching, we could obtain frame 

rate ranges between 32-87 frame/s according to the 

chosen implementation. Our future work will be focused 

to implement the second module of stereo processing IP 

which is the depth calculation in order to generate the 

clusters that will be fused to that of LIDAR. In addition, 

we aim to add the RADAR sensor to our platform to 

improve the accuracy of the obstacle detection tasks. 
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