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Abstract—Cyber-Physical Systems (CPS) are becoming 

increasingly complex. Their development and evaluation are 

carried out by several teams at different sites, while the time and 

budget is limited. Costly delays can occur, when the interplay of 

subsystems is to be tested and certain hardware components are 

not continuously present on site. Before CPS can be put into 

operation, they must be tested for functionality, reliability and 

safety. Possible errors must be detected and corrected at an 

early stage, both in software and hardware. Therefore, 

simulators are increasingly used in the development, 

verification and test phase. By replacing parts of the CPS with a 

simulated variant, hardware and software components can be 

developed in parallel at different locations by various 

organizations. The aim of this paper is to present a distributed 

event-based simulation environment for CPS that is reusable 

across various organizations and easily expandable. The 

simulation is carried out with software models, which simulate 

the functional behavior of the CPS to be tested. Simulation 

models or interface adapters for hardware components can be 

developed using defined software interfaces, regardless of the 

chosen platform or programming language. They can be 

integrated into the simulation environment with minimal effort 

and executed on distributed computer systems, while the 

communication takes place via ZeroMQ. The simulation 

environment is particularly suitable for systems that require low 

latency to guarantee real-time performance. 
 
Index Terms—Distributed Simulation, ZeroMQ, simulation 

environment, cyber-physical systems, co-simulation 

 

I. INTRODUCTION 

For inaccessible, cost-intensive or fictitious systems, 

models are created which represent a physical, 

mathematical or logical representation of the system [1]. 

According to ISO/IEC/IEEE 15288, a system is a 

combination of interacting elements organized to achieve 

one or more specified goals [2]. 

In order to get quantitative information about the 

behavior of a complex Cyber-Physical System (CPS), it is 

simplified to an abstract model. Therefore, the CPS is 

divided into its subsystems. For each subsystem, a 

software model is created that implements the respective 

functional behavior. This is usually done in small teams 

distributed at different locations. 
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Against this background, a simulation environment for 

CPS with a loosely-coupled infrastructure is presented 

called FRASER (Flexible DistRibuted Event-Based 

Simulation EnviRonment), in which models can be easily 

integrated or replaced with minimal user interaction. 

Software models can be used to replace parts of the CPS 

to test subsystems and their interplay independently of 

other hardware components. This is particularly helpful if 

individual subsystems are not constantly available on site. 

Once the physical hardware is available, it can replace the 

software model to perform Hardware-In-The-Loop (HIL) 

verifications. 

II. RELATED WORK 

Simulation is a wide research field and different tools, 

standards and approaches for the simulation of complex 

systems exist. In this paper decentralized simulation is 

examined to execute modelled subsystems distributed on 

different computers. 

An early work of a distributed simulation environment 

comes from the SIMNET (SIMulator NETworking) 

project for military training in 1983 [3]. SIMNET is the 

precursor to the Distributed Interactive Simulation (DIS) 

that was approved as a standard (IEEE 1278) in 1993 [4]. 

Many basic principles, which are defined in SIMNET and 

DIS, are still included in the High Level Abstraction 

(HLA) approach, developed by the U.S. Department of 

Defense and approved as a standard (IEEE 1516) in 1996 

[5]. The latest standard of HLA (IEEE 1516-2010) was 

released in 2010 [6]. The data distribution and other 

operations in HLA are carried out by a distributed 

operating system called Runtime Infrastructure (RTI) that 

provides several services. All interactions among the 

subsystems (local or remote) flow through the RTI [7]. 

This leads to a drawback in the performance, since in a 

decentralized simulation the data must be sent twice over 

the network. In order to achieve a better performance, a 

simulation environment is presented where the 

communication takes place directly between the 

subsystems. 

Further approaches for distributed simulations are to be 

found especially in the field of smart grids and in the 

automotive industry. One example is the Functional 

Mockup Interface (FMI) for co-simulation initiated by 

Daimler AG [8]. FMI is used primarily in the automotive 

industry, but also in other areas such as aerospace. The 
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FMI for co-simulation assumes to have a master-slave 

structure, in which all interactions are handled by the 

master. Otherwise, there is a direct dependency between 

the subsystems. The master-slave structure has the 

advantage that the modelled subsystems are completely 

decoupled from each other. However, the disadvantage is 

that an additional communication step to the master is 

always required. This leads to a loss of performance. In 

addition, the master must be changed if the system 

composition is modified. In comparison, a simulation 

environment without a master-slave structure is 

introduced, in which the subsystems are still loosely 

coupled. 

An example from the aerospace sector is the 

Simulation Modeling Platform (SMP) as described in the 

E-40-07 standard of European Cooperation for Space 

Standardization (ECSS) [9]. This standard enables 

effective reuse of simulation models and applications 

across space projects, minimizing the cost for the 

development of simulators. However, the SMP standard 

does not explicitly support a distributed simulation. This 

results from the architecture of the simulation 

environment that provides simulation services (e.g. 

Logger, Time Keeper, Event Manager). Instances of these 

services are created once within the simulation 

environment and passed on to the other models of the 

system [10]. An example for a software infrastructure that 

implements this standard is the ESOC Simulation 

Infrastructure for Satellites (SIMSAT) [11]. In order to 

use the SMP standard for a distributed simulation, a 

central network node is needed that transfers the packets 

based on the configuration to the corresponding 

subsystem. In other words, the simulation services will be 

sent to the switching node, which then takes care of the 

forwarding [12]. In addition, the switching node has to be 

changed if the model hierarchy or model links are to be 

changed. Therefore, the SMP standard for a distributed 

simulation is suitable for projects where the architecture 

is not constantly changing and is clearly defined in 

advance [13]. It is not well applicable for simulations 

where models need to be exchanged, added or removed 

during the design and verification processes. For this, a 

simulation environment is needed that is able to react on 

design changes and can flexible switch between software 

models and hardware components. 

Against this background, a simulation environment is 

presented where the communication takes place directly 

between the subsystems to decrease the number of 

network hops during the simulation. This is particularly 

suitable for systems that require low latency to guarantee 

real-time performance. At the same time, the tested 

system can be quickly configured and its composition 

modified with minimal effort without recompiling the 

application. 

III. SIMULATION ENVIRONMENT DESIGN 

The simulation environment FRASER consists of a 

simulation model (MSim), configuration server (MConfig), 

an event queue (MQueue) and user-defined models Mi, i ∈ 

D, while D is the name set of subsystems of the CPS 

being tested. The component diagram in Fig. 1 shows the 

data exchange within a possible implementation. In the 

illustrated example, model A (MA) and B (MB) represent 

user-defined models. 
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Fig. 1. Data exchange within a possible implementation of FRASER 

A. Data Exchange 

The simulation is event-based and controlled by the 

exchange of events [14]. An event has an identifier, a 

start time, data, and the indication whether it is periodic. 

An event queue contains events which are called at 

discrete points in time during the simulation. When a 

model receives an event, its states may be changed or 

new events may be triggered. The treatment routine for 

each event is defined within the models. Different event 

queues and initial states make it possible to simulate 

individual scenarios. 

In addition, models can be executed on multiple 

computers. This distributes the processor load and models 

can be flexibly replaced by the physical hardware 

components using interface adapters, enabling HIL 

verifications. Interface adapters contain optionally 

hardware drivers and provide the interface to the 

simulation environment to enable a data exchange 

between hardware components and system level models. 

In order for models to run on distributed computer 

systems, the communication between the models takes 

place via TCP connections. This is performed by 

ZeroMQ, an open-source network library written in C 

under LGPL license by IMatix [15]. 

In traditional message queuing systems, such as 

ActiveMQ or RabbitMQ, there is a central message 

server (broker) with which all applications connect. There 

is no direct communication between the applications, but 

the messages are forwarded by the broker. As a result, 

each message must be sent twice over the network (from 

the sender to the broker and the broker to the receiver). In 

comparison, ZeroMQ is brokerless and does not need a 

central message server. The applications communicate 

directly with each other, so that messages can be 

transferred faster with fewer transmissions [16]-[18]. 

For the connection setup, required port numbers and 

public IP addresses are queried via a central network 
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point (MConfig). To ensure that the models are not tightly 

coupled and still able to communicate with each other, 

the publisher subscriber design pattern as described in 

Design Patterns: Elements Of Reusable Object-Oriented 

Software [19] is used. ZeroMQ allows publishing events 

without making any assumptions about the recipients. 

Other models can subscribe to these events. Due to this 

design, new models and computers can be easily added to 

the simulation environment without great adoption efforts. 

For example, a model for fault management that 

analyzes the state changes for each event execution can 

be easily added to the simulation environment. Therefore, 

all models publish their state via an event. The fault 

management model receives these states and compares 

them with previously defined ones. Detected anomalies 

are logged, making it easier to identify and localize errors 

in the CPS.  

B. Simulation Process 

The sequence diagram in Fig. 2 shows an example 

event-oriented simulation process. Before the simulation 

starts, all models must be configured and the connections 

must be established. At the same time, predefined events 

are loaded into an event queue and sorted via a scheduler 

by their time stamps. 

Before MSim starts the simulation, it must be ensured 

that all models finished their configuration and no 

failures occurred. For this purpose, MSim begins 

periodically to publish synchronization messages, to 

which all models subscribe during their configuration 

phase. When they are ready for operation, they sent back 

a confirmation message. Once MSim has received all 

responses, it starts the simulation. However, if a model 

misses the time frame to response, the simulation is 

terminated due to a failed synchronization process. 
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Fig. 2. Possible simulation process 

If the synchronization process was successful, MSim 

starts to publish the current simulation time ti via an event 

e01, distributing it to the other models. Since MQueue has 

subscribed to e01, it receives the current simulation time, 

with which the next event e11 is determined and published. 

The execution of a subsequent event in the same 

simulation cycle is called delta cycle since no simulation 

time passes. In the illustrated example, e11 is received by 

MA. After e11 has been processed, MA publishes event e12, 

which has been previously defined within the model and 

is triggered at certain states or actions. Next, the last 

event e12 of the cycle is received and processed by MB. 

As soon as the defined cycle time Δd, measured in wall 

clock time, has elapsed, a new simulation cycle starts at 

ti+1 by increasing the simulation time by Δt. One more 

time, the modified simulation time is communicated via 

an event. This triggers the next scheduled event within 

MQueue. The simulation is performed until the end time tn 

has been reached, where n indicates the number of 

simulation steps. 

The simulation can be executed in real time as well as 

faster and slower than real time. All three modes have the 

same simulation time ti and simulation time step Δt, but a 

different cycle time Δd. The smaller Δd is, the faster the 

simulation will be run and vice versa. If the simulation 

time step Δt is equal to the cycle time Δd, the simulation 

runs in real time. The cycle time can be calculated via Δd 

= Δt / s, whereby s indicates the speed. 

IV. DETECTION OF CAUSALITY ERRORS AND LIVELOCKS 

A. Causality Errors 

Causality errors occur if events are executed in the 

wrong order [20]. This happens when a new simulation 

cycle starts at ti and the previous cycle at ti-1 has not yet 

completed all delta cycles. Thus, the newly started cycle 

may access parameters of a model which have not yet 

been updated in the previous time step. This leads to 

misinterpretations and error propagation during the 

simulation. Such a critical cycle shown in Fig. 3 must be 

detected and intercepted. 
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Fig. 3. Simulation process with a causality error 

Since the simulation model and the other models do 

not know when the last delta cycle within a simulation 

cycle is completed, critical sections must be identified by 

checking the time stamps of the received events. Each 

model must check whether the time stamp from the 

currently received event is smaller than the time stamp of 

the previously received events. If this is not the case, an 

event from the new cycle has already been executed and 

the simulation must be terminated. Thereafter, the cycle 

time can be increased to provide more time to complete 

all delta cycles and the simulation must be restarted. 

B. Livelocks 

Livelocks occur when two or more processes are 

blocked. But unlike a deadlock, they do not remain in one 
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state. Instead, they are constantly switching back and 

forth between several states [21]. 

As shown in Fig. 4, a livelock occurs when a cyclic 

dependency between two models in the data exchange is 

present and endlessly many delta cycles are executed. 

They will not necessarily lead to errors in other models, 

but indicate a general error in the defined system or 

models. If no events from the next simulation cycle are 

sent to the affected models, livelocks cannot be identified 

by checking the time stamps. Instead, it must be ensured 

that the simulation is terminated after a specific number 

of delta cycles. According to that, the event gets as 

additional information the current number of delta cycles. 

Another approach is to stop the execution of delta 

cycles as soon as no relevant state changes occur. 

Therefore, the simulation will be carried out completely 

and not be terminated prematurely.  
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Fig. 4. Simulation process with a livelock 

V. SATELLITE AS AN USE CASE 

As an example we are using a power control 

application as part of an On-Board Computer (OBC) of 

the Eu:CROPIS satellite from the German Aerospace 

Center (DLR) [22]. This application tightly integrates a 

safety-critical digital control system with its physical 

environment. The objective of the system is to manage 

the energy sources by controlling and distributing the 

power to the satellite’s units. The OBC, on which the 

flight software (On-Board Software – OBSW) runs, is 

located on the satellite bus and connected to all 

subcomponents – providing data handling services, 

receiving commands and generating telemetry. In this 

example the Power Conditioning and Distribution Unit 

(PCDU) is connected to the OBC via a serial interface. 

The PCDU performs power control tasks, which includes 

the acquisition of telemetry like current and voltage. In 

order to test them, models for the OBC and PCDU are 

developed and integrated into the simulation environment. 

An implementation of the simulation environment can 

be found in Fig. 5, referring to the Eu:CROPIS satellite 

[23]. A flight software simulation is used and integrated 

into the simulation environment to test the OBSW. The 

OBSW uses a Hardware Abstraction Layer (HAL) called 

Device Driver Factory to access the connected physical 

or simulated hardware. To integrate the simulation into 

the HAL, it requires a clock model (MClock) which 

specifies the time since the OBC started. The OBC starts 

at the same time as the simulation. Thus, the clock model 

must get the current simulation time, which is converted 

by the OBSW to its internal representation and passed on 

to the other devices. 
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Fig. 5. Simulation environment for the Eu:CROPIS satellite 

Furthermore, a serial model (MSerial) is needed to 

provide an interface to the device model (MPCDU), which 

performs the power control tasks. During operation, 

PCDU commands are generated and sent to the device 

model via the serial model. The device model includes a 

virtual PCDU that has the functionality to process the 

received command and generates the corresponding 

telemetry data. This data is sent back to and temporarily 

stored in the serial model. When the flight software 

simulation evaluates the PCDU telemetry data, the 

buffered data is read out and returned from the serial 

model. Additional events can be triggered through the 

event queue to modify the model states. This is used to 

analyze the behavior of the system in case of errors or 

state changes. 

VI.  CONCLUSION 

The developed event-oriented simulation environment 

named FRASER allows a distributed simulation to test 

and validate complex CPS. FRASER is very extensible 

and has hardly any restrictions in the modeling of a CPS. 

Models can be executed on distributed computer systems, 

while the communication takes place via ZeroMQ with 

no message broker. Due to the publisher-subscriber 

pattern, the models are loosely coupled. This allows 

adding new software models to the simulation or 

replacing them by physical hardware components with 

minimal effort during the development process. The 

elegance of the simulation environment is its simplicity. 

Causality errors are detected and intercepted when 

several events are executed from different simulation 

cycles within the models. In addition, two approaches 

have been presented with which endless cyclic delta 

cycles can be identified, without comparing the time 

stamps of the events. 

The use of FRASER in the Eu:CROPIS mission of the 

DLR shows the power of the simulation environment. 

Especially the possibility to simulate error scenarios and 

to analyze the reactions of software and hardware 

components is of central importance. 
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In the future, the simulation environment will be used 

to simulate various fault management methods in order to 

test, modify and optimize new approaches. This is 

intended to enable complex critical systems to be 

operated autonomously. 
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