
A Flexible Distributed Simulation Environment for Cyber-

Physical Systems Using ZeroMQ

Annika Ofenloch and Fabian Greif
Institute of Space Systems – German Aerospace Center (DLR), 28359 Bremen, Germany

Email: Annika.Ofenloch@dlr.de; Fabian.Greif@dlr.de

Abstract—Cyber-Physical Systems (CPS) are becoming

increasingly complex. Their development and evaluation are

carried out by several teams at different sites, while the time and

budget is limited. Costly delays can occur, when the interplay of

subsystems is to be tested and certain hardware components are

not continuously present on site. Before CPS can be put into

operation, they must be tested for functionality, reliability and

safety. Possible errors must be detected and corrected at an

early stage, both in software and hardware. Therefore,

simulators are increasingly used in the development,

verification and test phase. By replacing parts of the CPS with a

simulated variant, hardware and software components can be

developed in parallel at different locations by various

organizations. The aim of this paper is to present a distributed

event-based simulation environment for CPS that is reusable

across various organizations and easily expandable. The

simulation is carried out with software models, which simulate

the functional behavior of the CPS to be tested. Simulation

models or interface adapters for hardware components can be

developed using defined software interfaces, regardless of the

chosen platform or programming language. They can be

integrated into the simulation environment with minimal effort

and executed on distributed computer systems, while the

communication takes place via ZeroMQ. The simulation

environment is particularly suitable for systems that require low

latency to guarantee real-time performance.

Index Terms—Distributed Simulation, ZeroMQ, simulation

environment, cyber-physical systems, co-simulation

I. INTRODUCTION

For inaccessible, cost-intensive or fictitious systems,

models are created which represent a physical,

mathematical or logical representation of the system [1].

According to ISO/IEC/IEEE 15288, a system is a

combination of interacting elements organized to achieve

one or more specified goals [2].

In order to get quantitative information about the

behavior of a complex Cyber-Physical System (CPS), it is

simplified to an abstract model. Therefore, the CPS is

divided into its subsystems. For each subsystem, a

software model is created that implements the respective

functional behavior. This is usually done in small teams

distributed at different locations.

Manuscript received January 2, 2017; revised May 15, 2017.
This work was supported in part by the EU under Grant No. 644905.

Corresponding author email: Annika.Ofenloch@dlr.de.
doi:10.12720/jcm.13.6.333-337

Against this background, a simulation environment for

CPS with a loosely-coupled infrastructure is presented

called FRASER (Flexible DistRibuted Event-Based

Simulation EnviRonment), in which models can be easily

integrated or replaced with minimal user interaction.

Software models can be used to replace parts of the CPS

to test subsystems and their interplay independently of

other hardware components. This is particularly helpful if

individual subsystems are not constantly available on site.

Once the physical hardware is available, it can replace the

software model to perform Hardware-In-The-Loop (HIL)

verifications.

II. RELATED WORK

Simulation is a wide research field and different tools,

standards and approaches for the simulation of complex

systems exist. In this paper decentralized simulation is

examined to execute modelled subsystems distributed on

different computers.

An early work of a distributed simulation environment

comes from the SIMNET (SIMulator NETworking)

project for military training in 1983 [3]. SIMNET is the

precursor to the Distributed Interactive Simulation (DIS)

that was approved as a standard (IEEE 1278) in 1993 [4].

Many basic principles, which are defined in SIMNET and

DIS, are still included in the High Level Abstraction

(HLA) approach, developed by the U.S. Department of

Defense and approved as a standard (IEEE 1516) in 1996

[5]. The latest standard of HLA (IEEE 1516-2010) was

released in 2010 [6]. The data distribution and other

operations in HLA are carried out by a distributed

operating system called Runtime Infrastructure (RTI) that

provides several services. All interactions among the

subsystems (local or remote) flow through the RTI [7].

This leads to a drawback in the performance, since in a

decentralized simulation the data must be sent twice over

the network. In order to achieve a better performance, a

simulation environment is presented where the

communication takes place directly between the

subsystems.

Further approaches for distributed simulations are to be

found especially in the field of smart grids and in the

automotive industry. One example is the Functional

Mockup Interface (FMI) for co-simulation initiated by

Daimler AG [8]. FMI is used primarily in the automotive

industry, but also in other areas such as aerospace. The

333©2018 Journal of Communications

Journal of Communications Vol. 13, No. 6, June 2018

FMI for co-simulation assumes to have a master-slave

structure, in which all interactions are handled by the

master. Otherwise, there is a direct dependency between

the subsystems. The master-slave structure has the

advantage that the modelled subsystems are completely

decoupled from each other. However, the disadvantage is

that an additional communication step to the master is

always required. This leads to a loss of performance. In

addition, the master must be changed if the system

composition is modified. In comparison, a simulation

environment without a master-slave structure is

introduced, in which the subsystems are still loosely

coupled.

An example from the aerospace sector is the

Simulation Modeling Platform (SMP) as described in the

E-40-07 standard of European Cooperation for Space

Standardization (ECSS) [9]. This standard enables

effective reuse of simulation models and applications

across space projects, minimizing the cost for the

development of simulators. However, the SMP standard

does not explicitly support a distributed simulation. This

results from the architecture of the simulation

environment that provides simulation services (e.g.

Logger, Time Keeper, Event Manager). Instances of these

services are created once within the simulation

environment and passed on to the other models of the

system [10]. An example for a software infrastructure that

implements this standard is the ESOC Simulation

Infrastructure for Satellites (SIMSAT) [11]. In order to

use the SMP standard for a distributed simulation, a

central network node is needed that transfers the packets

based on the configuration to the corresponding

subsystem. In other words, the simulation services will be

sent to the switching node, which then takes care of the

forwarding [12]. In addition, the switching node has to be

changed if the model hierarchy or model links are to be

changed. Therefore, the SMP standard for a distributed

simulation is suitable for projects where the architecture

is not constantly changing and is clearly defined in

advance [13]. It is not well applicable for simulations

where models need to be exchanged, added or removed

during the design and verification processes. For this, a

simulation environment is needed that is able to react on

design changes and can flexible switch between software

models and hardware components.

Against this background, a simulation environment is

presented where the communication takes place directly

between the subsystems to decrease the number of

network hops during the simulation. This is particularly

suitable for systems that require low latency to guarantee

real-time performance. At the same time, the tested

system can be quickly configured and its composition

modified with minimal effort without recompiling the

application.

III. SIMULATION ENVIRONMENT DESIGN

The simulation environment FRASER consists of a

simulation model (MSim), configuration server (MConfig),

an event queue (MQueue) and user-defined models Mi, i ∈

D, while D is the name set of subsystems of the CPS

being tested. The component diagram in Fig. 1 shows the

data exchange within a possible implementation. In the

illustrated example, model A (MA) and B (MB) represent

user-defined models.

Port

Simulation Model

MSim

REQ

PUB

Port

Event Queue

MQueue

SUB

REQ

PUB

Port

SUB

REQ

PUB

Port

SUB

REQ

PUB

Event(ti)

Model A

MA

Model B

MB

Event

Event Event

Configuration Server

MConfig Port
REP

Event

Event

Event

Fig. 1. Data exchange within a possible implementation of FRASER

A. Data Exchange

The simulation is event-based and controlled by the

exchange of events [14]. An event has an identifier, a

start time, data, and the indication whether it is periodic.

An event queue contains events which are called at

discrete points in time during the simulation. When a

model receives an event, its states may be changed or

new events may be triggered. The treatment routine for

each event is defined within the models. Different event

queues and initial states make it possible to simulate

individual scenarios.

In addition, models can be executed on multiple

computers. This distributes the processor load and models

can be flexibly replaced by the physical hardware

components using interface adapters, enabling HIL

verifications. Interface adapters contain optionally

hardware drivers and provide the interface to the

simulation environment to enable a data exchange

between hardware components and system level models.

In order for models to run on distributed computer

systems, the communication between the models takes

place via TCP connections. This is performed by

ZeroMQ, an open-source network library written in C

under LGPL license by IMatix [15].

In traditional message queuing systems, such as

ActiveMQ or RabbitMQ, there is a central message

server (broker) with which all applications connect. There

is no direct communication between the applications, but

the messages are forwarded by the broker. As a result,

each message must be sent twice over the network (from

the sender to the broker and the broker to the receiver). In

comparison, ZeroMQ is brokerless and does not need a

central message server. The applications communicate

directly with each other, so that messages can be

transferred faster with fewer transmissions [16]-[18].

For the connection setup, required port numbers and

public IP addresses are queried via a central network

334©2018 Journal of Communications

Journal of Communications Vol. 13, No. 6, June 2018

point (MConfig). To ensure that the models are not tightly

coupled and still able to communicate with each other,

the publisher subscriber design pattern as described in

Design Patterns: Elements Of Reusable Object-Oriented

Software [19] is used. ZeroMQ allows publishing events

without making any assumptions about the recipients.

Other models can subscribe to these events. Due to this

design, new models and computers can be easily added to

the simulation environment without great adoption efforts.

For example, a model for fault management that

analyzes the state changes for each event execution can

be easily added to the simulation environment. Therefore,

all models publish their state via an event. The fault

management model receives these states and compares

them with previously defined ones. Detected anomalies

are logged, making it easier to identify and localize errors

in the CPS.

B. Simulation Process

The sequence diagram in Fig. 2 shows an example

event-oriented simulation process. Before the simulation

starts, all models must be configured and the connections

must be established. At the same time, predefined events

are loaded into an event queue and sorted via a scheduler

by their time stamps.

Before MSim starts the simulation, it must be ensured

that all models finished their configuration and no

failures occurred. For this purpose, MSim begins

periodically to publish synchronization messages, to

which all models subscribe during their configuration

phase. When they are ready for operation, they sent back

a confirmation message. Once MSim has received all

responses, it starts the simulation. However, if a model

misses the time frame to response, the simulation is

terminated due to a failed synchronization process.

MSim MQueue MA MB

loop
PublishEvent(e10(ti))

PublishEvent(e20(ti+1))

PublishEvent(e11)

PublishEvent(e12)

PublishEvent(e21)

{Δd }

[tn]

Configure() Configure()

ReceiveEvent()

Configure()

ReceiveEvent()

ReceiveEvent()

ReceiveEvent()

LoadEvents()

ReceiveEvent()

Fig. 2. Possible simulation process

If the synchronization process was successful, MSim

starts to publish the current simulation time ti via an event

e01, distributing it to the other models. Since MQueue has

subscribed to e01, it receives the current simulation time,

with which the next event e11 is determined and published.

The execution of a subsequent event in the same

simulation cycle is called delta cycle since no simulation

time passes. In the illustrated example, e11 is received by

MA. After e11 has been processed, MA publishes event e12,

which has been previously defined within the model and

is triggered at certain states or actions. Next, the last

event e12 of the cycle is received and processed by MB.

As soon as the defined cycle time Δd, measured in wall

clock time, has elapsed, a new simulation cycle starts at

ti+1 by increasing the simulation time by Δt. One more

time, the modified simulation time is communicated via

an event. This triggers the next scheduled event within

MQueue. The simulation is performed until the end time tn

has been reached, where n indicates the number of

simulation steps.

The simulation can be executed in real time as well as

faster and slower than real time. All three modes have the

same simulation time ti and simulation time step Δt, but a

different cycle time Δd. The smaller Δd is, the faster the

simulation will be run and vice versa. If the simulation

time step Δt is equal to the cycle time Δd, the simulation

runs in real time. The cycle time can be calculated via Δd

= Δt / s, whereby s indicates the speed.

IV. DETECTION OF CAUSALITY ERRORS AND LIVELOCKS

A. Causality Errors

Causality errors occur if events are executed in the

wrong order [20]. This happens when a new simulation

cycle starts at ti and the previous cycle at ti-1 has not yet

completed all delta cycles. Thus, the newly started cycle

may access parameters of a model which have not yet

been updated in the previous time step. This leads to

misinterpretations and error propagation during the

simulation. Such a critical cycle shown in Fig. 3 must be

detected and intercepted.

PublishEvent(e13)

MSim MQueue MA MB

loop
PublishEvent(ti)

PublishEvent(ti+1)

PublishEvent(e11)

PublishEvent(e12)

PublishEvent(e21)

{Δd }

[tn]

Configure() Configure()

ReceiveEvent()

Configure()

ReceiveEvent()

ReceiveEvent()

ReceiveEvent()

LoadEvents()

ReceiveEvent()

Fig. 3. Simulation process with a causality error

Since the simulation model and the other models do

not know when the last delta cycle within a simulation

cycle is completed, critical sections must be identified by

checking the time stamps of the received events. Each

model must check whether the time stamp from the

currently received event is smaller than the time stamp of

the previously received events. If this is not the case, an

event from the new cycle has already been executed and

the simulation must be terminated. Thereafter, the cycle

time can be increased to provide more time to complete

all delta cycles and the simulation must be restarted.

B. Livelocks

Livelocks occur when two or more processes are

blocked. But unlike a deadlock, they do not remain in one

335©2018 Journal of Communications

Journal of Communications Vol. 13, No. 6, June 2018

state. Instead, they are constantly switching back and

forth between several states [21].

As shown in Fig. 4, a livelock occurs when a cyclic

dependency between two models in the data exchange is

present and endlessly many delta cycles are executed.

They will not necessarily lead to errors in other models,

but indicate a general error in the defined system or

models. If no events from the next simulation cycle are

sent to the affected models, livelocks cannot be identified

by checking the time stamps. Instead, it must be ensured

that the simulation is terminated after a specific number

of delta cycles. According to that, the event gets as

additional information the current number of delta cycles.

Another approach is to stop the execution of delta

cycles as soon as no relevant state changes occur.

Therefore, the simulation will be carried out completely

and not be terminated prematurely.

MSim MQueue

PublishEvent(e10(ti))

PublishEvent(e11)

PublishEvent(e12)

MA MB

Configure() LoadEvents() Configure() Configure()

ReceiveEvent()

ReceiveEvent()

ReceiveEvent()
ReceiveEvent()

ReceiveEvent()

PublishEvent(e20(ti+1))

PublishEvent(e30(ti+2))

PublishEvent(e40(ti+3))
PublishEvent(e14)

PublishEvent(e13)

PublishEvent(e15)

ReceiveEvent()

ReceiveEvent()

Fig. 4. Simulation process with a livelock

V. SATELLITE AS AN USE CASE

As an example we are using a power control

application as part of an On-Board Computer (OBC) of

the Eu:CROPIS satellite from the German Aerospace

Center (DLR) [22]. This application tightly integrates a

safety-critical digital control system with its physical

environment. The objective of the system is to manage

the energy sources by controlling and distributing the

power to the satellite’s units. The OBC, on which the

flight software (On-Board Software – OBSW) runs, is

located on the satellite bus and connected to all

subcomponents – providing data handling services,

receiving commands and generating telemetry. In this

example the Power Conditioning and Distribution Unit

(PCDU) is connected to the OBC via a serial interface.

The PCDU performs power control tasks, which includes

the acquisition of telemetry like current and voltage. In

order to test them, models for the OBC and PCDU are

developed and integrated into the simulation environment.

An implementation of the simulation environment can

be found in Fig. 5, referring to the Eu:CROPIS satellite

[23]. A flight software simulation is used and integrated

into the simulation environment to test the OBSW. The

OBSW uses a Hardware Abstraction Layer (HAL) called

Device Driver Factory to access the connected physical

or simulated hardware. To integrate the simulation into

the HAL, it requires a clock model (MClock) which

specifies the time since the OBC started. The OBC starts

at the same time as the simulation. Thus, the clock model

must get the current simulation time, which is converted

by the OBSW to its internal representation and passed on

to the other devices.

Event(ti)

Port

MSim

Port
PUB

Port

MQueue
Port

SUB

PUB

Port

MPCDU

Port

SUB

PUB

VirtualPCDU

Event(ti)

OBSW

Device Driver Factory

Port

MSerial

Port

SUB

PUB

MClockSUB

Event(PCDUCommand)

Event(PCDUTelemetry)

Event

Fig. 5. Simulation environment for the Eu:CROPIS satellite

Furthermore, a serial model (MSerial) is needed to

provide an interface to the device model (MPCDU), which

performs the power control tasks. During operation,

PCDU commands are generated and sent to the device

model via the serial model. The device model includes a

virtual PCDU that has the functionality to process the

received command and generates the corresponding

telemetry data. This data is sent back to and temporarily

stored in the serial model. When the flight software

simulation evaluates the PCDU telemetry data, the

buffered data is read out and returned from the serial

model. Additional events can be triggered through the

event queue to modify the model states. This is used to

analyze the behavior of the system in case of errors or

state changes.

VI. CONCLUSION

The developed event-oriented simulation environment

named FRASER allows a distributed simulation to test

and validate complex CPS. FRASER is very extensible

and has hardly any restrictions in the modeling of a CPS.

Models can be executed on distributed computer systems,

while the communication takes place via ZeroMQ with

no message broker. Due to the publisher-subscriber

pattern, the models are loosely coupled. This allows

adding new software models to the simulation or

replacing them by physical hardware components with

minimal effort during the development process. The

elegance of the simulation environment is its simplicity.

Causality errors are detected and intercepted when

several events are executed from different simulation

cycles within the models. In addition, two approaches

have been presented with which endless cyclic delta

cycles can be identified, without comparing the time

stamps of the events.

The use of FRASER in the Eu:CROPIS mission of the

DLR shows the power of the simulation environment.

Especially the possibility to simulate error scenarios and

to analyze the reactions of software and hardware

components is of central importance.

336©2018 Journal of Communications

Journal of Communications Vol. 13, No. 6, June 2018

In the future, the simulation environment will be used

to simulate various fault management methods in order to

test, modify and optimize new approaches. This is

intended to enable complex critical systems to be

operated autonomously.

ACKNOWLEDGMENT

This work was supported in part by the European

Union (Horizon 2020 IMMORTAL project, grant no.

644905).

REFERENCES

[1] J. A. Sokolowski and C. M. Banks, Modeling and

Simulation Fundamentals - Theoretical Unterpinnings

and Practical Domains, Hoboken, New Jersey: Wiley and

Sons, 2010.

[2] ISO/IEC/IEEE International Standard, Systems and

Software Engineering - System Life Cycle Processes -

ISO/IEC/IDEE 15288, 1st ed. Switzerland, 2015.

[3] D. C. Miller and J. A. Thorpe, “SIMNET: The advent of

simulator networking,” Proc. of the IEEE, vol. 83, no. 8,

pp. 1114–1123, August 1995.

[4] M. L. Loper, “Introduction to distributed interactive

simulation,” in Distributed Interactive Simulation Systems

for Simulation and Training in the Aerospace

Environment: A Critical Review, vol. 10280. International

Society for Optics and Photonics, 1995.

[5] R. M. Fujimoto, “Parallel and distributed simulation

systems,” in Proc. Winter Simulation Conference,

Arlington, VA, vol. 1, 2001, pp. 147-157.

[6] R. M. Fujimoto, “Parallel and distributed simulation,” in

Proc. Winter Simulation Conference, Huntington Beach,

CA, 2015, pp. 45-59.

[7] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly,

“The department of defense high level architecture,” in

Proc. 29th Conference on Winter Simulation, Washington,

DC, USA, 1997, pp. 142-149.

[8] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H.

Elmqvist, A. Junghanns, et al., “The functional mockup

interface for tool independent exchange of simulation

models,” in Proc. 8th International Modelica Conference,

Dresden, Germany, no. 63, pp. 105-114. Linkoeping

University Electronic Press, Mar. 2011.

[9] ESA Requirements and Standards Division, “Space

engineering - simulation modelling platform: Principles

and requirements,” in ECSS-E-TM-40-07, vol. 1, Jan.

2011.

[10] ESA Requirements and Standards Division, “Space

Engineering - System Modelling and Simulation,” in

ECSS-E-TM-10-21A, April 2010.

[11] J. Whitty, “Real time distributed simulations using

SIMSAT 4.3,” in Proc. Simulation and EGSE facilities

for Space Programmes, September 2010.

[12] F. Cordero, J. Mendes, B. Kuppusamy, T. Dathe, M.

Irvine, and A. Williams, “A cost-effective software

development and validation environment and approach for

LEON based satellite & payload subsystems,” in Proc.

5th International Conference on Recent Advances in

Space Technologie - RAST2011, Istanbul, 2011, pp. 511-

516.

[13] European Space Agency, SMP 2.0 Handbook Issue 1

Revision 2, EGOS-SIM-GEN-TN-0099, October 2005.

[14] A. M. Law, “Simulation modeling and analysis,” in

Industrial Engineering and Management Science,

McGraw-Hill Education, 2015.

[15] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P.

Charrue, “Middleware trends and market leaders 2011,” in

Proc. 13th International Conference on Accelerator and

Large Experimental Physics Control Systems, France, pp.

1334, October 2011.

[16] F. Akgul, “ZeroMQ,” Packt Publishing Ltd., 2013.

[17] L. Magnoni, “Modern messaging for distributed sytems,”

Journal of Physics: Conference Series, vol. 608, no. 1,

May 2015, pp. 012038.

[18] S. Celar, E. Mudnic and Z. Seremet, “State-of-the-Art of

messaging for distributed computing systems,” in Proc.

27th International DAAAM Symposium, Jan. 2016, pp.

0298-0307.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-oriented Software,

Boston, MA: Pearson Education, 1994.

[20] R. M. Fujimoto, “Parallel discrete event simulation,”

Communication of the ACM, vol. 33, no. 10, pp. 30-53,

October 1990.

[21] C. G. Cassandras and S. Lafortune, Introduction to

Discrete Event Systems, 2nd ed., New York: Springer

Science & Business Media, 2009.

[22] F. Dannemann and F. Greif, “Software Platform of the

DLR Compact Satellite Series,” in Proc. of the 2004 4S

Symposium, Mai 2014.

[23] A. Ofenloch and F. Greif, “Design and Implementation of

a Discrete Event-oriented Simulation in a Distributed

System for Automated Testing of On-board Software,” in

Proc. Workshop on Simulation and EGSE for Space

Programs, Netherlands, March 2017.

Mrs. Annika Ofenloch is a scientist in the German Aerospace

Center (DLR) Institute of Space Systems. She pursued a

professional education through a dual study program at DLR

and has been engaged at DLR for more than 6 years. She

received the B.S. degree from the Baden-Wuerttemberg

Cooperative State University Mannheim, in 2014 and the M.S.

degree from the University of Bremen, in 2017, both in

Computer Science. She has a strong background in practical

software design, development and testing for embedded systems.

Mr. Fabian Greif is the head of the Avionics Software Group

in the German Aerospace Center (DLR) Institute of Space

Systems. He is an expert for embedded system design and

operating systems and is well experienced in electrical and

software engineering. He holds a Dipl.-Ing. in Computer

Engineering from the RWTH Aachen University. During his

work at the DLR he has lead the software development for

various Space Projects like the Eu:CROPIS satellite.

337©2018 Journal of Communications

Journal of Communications Vol. 13, No. 6, June 2018

