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Abstract—A vision based algorithm brings fast 

segmentation process to a 2D lidar point cloud. Extracted 

features allow us to set up a segment based scan matcher. 

This matching is one of the steps for the localization. 

Features also give semantic information about the 

environment. The detection of a corner or a door 

indicates a potential encounter with human beings. Aware 

of this “danger” area, the robot will be able to adapt its 

speed and define areas of focus to the vision algorithms. 

Indeed, vision is known for its high computation load. 

The focus provided by the lidar diminish the area in the 

image to be analysed and reduce the load. 
 
Index Terms—2D lidar segmentation, scan matching, safe 

navigation, sensor fusion, indoor environment 

I. INTRODUCTION 

The robot of tomorrow is built to work in the factory of 

the future in a cluttered, yet structured and human 

environment. The robot should navigate between 

locations, with a possibility of encountering humans. We 

need a navigation system to be able to work fast, be 

reliable and take advantage of the structured 

characteristic of the environment. This navigation task 

can be divided in sub-tasks: localization, mapping, path 

planning, control and safety management. All these tasks 

must be performed within an embedded computation unit 

on the robot. This means that each task must consume 

computational resources as little as possible. The robot is 

moving and needs a regular update on its status. To 

perform this navigation, the robot has embedded sensors 

to perceive its environment and match the detected 

features with a list of features previously stored. A 

popular approach is the grid-based representation of the 

environment in which each cell is a probability of the 

presence or absence of obstacle [1]. Another approach is 

the use of beacons, artificially placed beforehand [2], 

largely used in early versions of the robocup soccer 

(international competition of robotics, 

http://www.robocup.org). These approaches do not fit our 

case which is navigation in a hospital or a factory. This 

environment implies that any physical modification is 

denied. The environment is also large which means that 

the grid would be either low resolution or high dimension. 
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First case brings the risk to be stuck and the second 

requires heavy computation. To address these multiple 

problems, we rely on two basics and well-known sensors: 

the lidar and the camera. The first one gives a fast but 

partial information about the environment: distances in a 

horizontal plane section. The second gives high level 

information (doors, humans...) but requires more 

computation time. Using sensor fusion, we aim to guide, 

by lidar information, the camera algorithm toward area of 

interest. In other terms, the processing of lidar data is 

going to speed up the process by focusing the camera on 

a region of interest (ROI) inside the frame. These regions 

can be pedestrian encounter areas and the process, a 

human detection algorithm. In this paper, we focus on the 

first stages of this study: feature extraction from lidar data 

and defining regions of interest to cooperate with the 

camera. This efficient processing leads to a fast scan 

matcher which provide basic localization. It also 

cooperates with other sensors by pointing out elements of 

interest (corners/doors). Vision algorithms, under 

development, will include robust embedded real-time 

constraints [3], [4] taking advantage of multi-threading 

with multi-core ARM architectures. 

II. LIDAR DATA SEGMENTATION 

Lidar data is a 1D depth buffer, generated by several 

beams of rays. To extract substantial information, we 

need to process efficiently the data. Several segmentation 

methods already exist and some of them have already 

been tested and compared [5]. Those methods rely on 

different aspects of the point cloud or pixels. In one hand, 

global methods search for features with all points at the 

same time: Hough or Ransac [6]. Unfortunately, they 

need an important amount of time while the result 

contains too much false positive features detected. On the 

other hand, local methods, applying sliding window in 

the list of points, are able to extract the features 

recursively [7] or iteratively [8], [9] and [10]. In image 

processing, the list of points is provided by edge linking 

process. These lines finding algorithms are faster and less 

likely to produce false positive. In the lidar case, 

distances are sequentially measured and sorted, either 

clock wise or counter clock wise. The following 

hypothesis can be formulated: if a ray hits a 3D plane, the 

following (and preceding) rays are more likely to hit the 

same surface. Considering the hypothesis and criterion, 

iterative methods are the most suited and natural. They 

Journal of Communications Vol. 13, No. 3, March 2018

139©2018 Journal of Communications

mailto:gabriel.burtin@4d-virtualiz.com


spare the edge linking process and benefit the organized 

status of the 2D points provided by the sensor. A strong 

iterative segmentation with an implementation based on a 

double Kalman filter is given by [8], the use of two 

Kalman filters to process the entire lidar point-cloud 

introduce a heavy computation complexity and require a 

lot of parameters to be tuned. We directed ourselves 

toward a simpler, yet robust and known method [10]. 

A. Wall-Danielsson Application 

This was originally introduced with vision, in 

particular to simplify the extracted outline and polygonal 

shapes from pictures. With only a single parameter, it 

allows to drive the plasticity of segments detection. This 

method, initially created to link pixels connected with 

each other, is able to work even with distant points. The 

main advantages of the Wall-Danielson (WD) are the 

efficiency, speed and the deterministic behaviour 

(contrary to Ransac). To perform this detection, it 

compares the difference between a threshold and a ratio. 

The ratio is between the surface of the polygon formed by 

all the points and the distance between the first and the 

last point. The main issue brought by this one-parameter 

implementation is that a bad threshold has large 

implications. A severe threshold denies any long 

segments to be detected: they don’t fit the condition; only 

small segments are extracted because of the sensor noise. 

A soft threshold is also problematic: not detecting small 

variations is good, corners take more steps to be detected 

and the equation of the wall is biased by the last points of 

the segment. This issue has been addressed by WD [10] 

and [9]. They consider a back-stepping algorithm. A post-

process is therefore needed to remove the extra points 

after the corners. Considering execution time, it is better 

to get rid of this post-process. Regarding the noise, the 

algorithm does not take into account its variation. The 

noise associated to the segment will be computed later, 

using the parameters of the extracted segment. Indeed, 

the model of the noise, Gaussian distributed, can be 

transmitted to the equation of the extracted segment. 

B. Cascade Filter 

The noise has clear consequences: if we choose the 

wrong threshold, elements such as doors disappear. 

Because of the small difference, an easy threshold will 

smooth the surface. If doors disappear, we can’t rely on 

this information to obtain longitudinal localization inside 

hallways. Depending on the granularity of the elements 

we want to extract, we need to adjust the threshold 

parameter. This forces us either to run the algorithm 

several times with different parameters or process again 

the segments extracted by the very first segmentation. In 

light of the complexity of each operation, re-using the 

extracted segments is much faster: from a data set 

containing N points, a maximum of N/3 segments is 

expected. A reduced dataset means less computation and 

our objective is precisely to gain time. The decision made 

was to work directly with the segments. Two operations 

have been implemented to filter the segment dataset. The 

first operation is a fusion between segments. This means 

observing two segments and deciding whether or not they 

have been split by mistake regarding the criterion given. 

If they have been noted as “miss-split”, they belong to the 

same 3D plane, they are fused: the set of 2D points 

contained in each segment’s data are gathered inside one 

segment and the parameters of the new segment are 

computed again. The fusion decision is motivated by a set 

of rules driven by the geometrical constraint of the 

environment (Fig. 1). They belong to the same 3D surface 

(plane); therefore, they are: consecutive (i and i + 1), 

parallel, aligned (d) and extremities are close (D). 

 
Fig. 1. Fusion criterion 

Applying fusion process to the whole dataset of 

segments returns a new set with fewer but longer 

segments. However, if small elements such as a bin or a 

table foot is laid against the plane, the first condition 

(consecutive segments) is not complete. In that case, the 

two sides of the same plane, even correctly segmented 

can’t be fused. Depending on the post-process, the 

important element is to obtain strong and long segments. 

Considering the fact that small segments are often too 

unstable in terms of angle, their presence may induce too 

much noise in the post-segmentation algorithms. To 

eliminate the effect of those small segments, a fast 

erosion filter is performed upon the remaining segments. 

All these segments are deleted from the dataset with this 

erosion algorithm. When all the small blocking segments 

are removed, a second layer of the fusion algorithm is 

applied. Depending on the case intended for the segments 

dataset, the next algorithm can access the data at any 

level it needs (Fig. 2). Note that the erosion algorithm 

cannot be applied first: it would remove small segments 

candidates to the fusion algorithm. 

 
Fig. 2. Cascade filter process. 
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III.  FEATURE EXTRACTION 

Several applications can be found with this 

segmentation of the lidar data [11] and [12]. A faster scan 

matching can be computed with two successive data sets. 

Indeed, contrary to [13], [14] and [15], in our case, we are 

able to use reduced amount of data. All the data is 

concentrated inside the remaining segments extracted 

with high level segmentation (Fig. 2). Another 

application is the ability to detect semantic information: 

the lidar gives us a plane cut of the scene. Using detailed 

scan (i.e. low-level segmentation), we can detect the 

shape of common elements (doors). 

A. Segment Matching 

To perform an efficient scan matching, it is necessary 

to be able to match points of interest between frames. 

Thus, with the transformation between each point of 

interest, we can compute the rigid transformation 

between the two frames. Segments matching is a complex 

task: few parameters can describe appropriately the 

segments. These parameters can be considered only to be 

two if the representation of the segment is (ρ, θ) [16]. A 

common similarity weight would only consider those 

parameters. This leads to many mismatches because a 

structured environment has several segments with the 

same parameters (ρ, θ). We chose to use the 

representation (ρ, θ, COG, length). The COG is the 

middle of the segment (Center Of Gravity). Keeping the 

length of the segment is useful to estimate the strength 

and interest in the segment. A long segment is more 

likely to be very stable and be seen for a long period by 

the perception system. Therefore, the new similarity 

weight considers all the coefficients. The final goal is to 

match segments from set of n segments in the previous 

frame, with segments from a set of m segments in the 

current frame. Given the set of extracted segments, we 

seek every (i, j) couples of related segments. This gives 

us a n by m weight matrix. The lower values of the matrix 

give us the potential matches. Computation of the matrix 

has to be improved: the computational cost increases as m 

and n increase. Two mechanisms are implemented to 

improve the efficiency. The first one is a movement 

prediction: we use the previous velocity of the robot as an 

input. When the robot is spinning, long range segments 

tend to have a high weight due to the large changes in the 

COG position. Predicting the new position gives better 

weights and improves significantly the matching between 

segments. This also allows us to introduce an accelerated 

weight: we first compute the distance between the COG. 

If this distance between the segments is bigger than a 

certain threshold, then the weight is given the maximum 

value without the rest of the computation. The smart 

weight spares the computation cost of the other elements 

of the complete weight. The second improvement 

mechanism is focusing on the computation of the weights 

only on a certain area of the weight matrix. The 

movement prediction not only allows us to reduce the 

mean value of the weight, it also gives a hint on the 

position of potential matches inside the matrix. If the 

robot goes straight, the matched values are concentrated 

on the diagonal and around. When the robot spins clock 

wise, this diagonal tends to translate to the lower triangle. 

And logically, when the robot spins counter clock wise, 

the matches are found in the higher triangle of the match 

matrix. Then, knowing the robot previous move, we can 

focus on the most important part of the match matrix. 

Scan matching accelerated process from 2D lidar data are 

the following steps:  

1) Extract the high-level segments  

2) Predict the position of previous segments 

3) Compute the weight on the focused area of the 

matrix 

4) Determine every (i; j) couples, i.e. matrix minima  

5) Compute the rigid transformation using matched 

segments parameters 

All those mechanisms allow us to accelerate the scan 

matching with segments based features. 

B. Camera Fusion 

Using another level of segmentation can be interesting 

to detect high level or semantic information such as doors 

and corners. Indeed, a door or a corner means that a 

person could suddenly appear in front of the robot 

because of the limited field of view. If the robot did not 

anticipate the possibility of an encounter, depending on 

the speed and weight of the robot, it could lead to severe 

injury. Having the ability to detect these feature is 

important to adapt the robot speed and behaviour. To 

perform this sort of detection, we relied on the low-level 

segmentation because it contains more details about the 

environment. The corner and the door were described as a 

set of conditions [8], applied to the set of segments: they 

allowed to detect the presence and extract the position of 

these features. Detecting doors and corners to establish 

encounter area is crucial for the safety task. The 

awareness focusses the heavy computing process in small 

area. Once the feature (door or corner) has been identified 

inside the lidar frame, we need the projection in the 

image generated by the camera. Equation (1) is the 

projection of this 3D point in the camera frame. It 

requires the camera intrinsic parameters (K) and the rigid 

transformation between the lidar and the camera frame 

(T). After this projection of the lidar point (P) in the 

camera image (p), we can determine an ROI and focus. 

This allows two things: a lower computation cost and a 

higher chance of finding a pedestrian. 

      (1) 

IV. RESULTS 

A. Set-up 

Preliminary tests have been run on a professional 

virtual platform, a realistic and advanced real-time 

robotic simulator [19] sold by 4D-Virtualiz. This tool has 

been developed by two PhD students to accelerate the 
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development of their robotic applications. The simulation 

offers the ability to have ground truth, repeatability and 

an easy environment management with the same robot-

sensors set up. The simulated robot is a Dr. Robot Jaguar, 

virtually equipped with a LMS100 SICK lidar and a 

640x480 camera (pinhole model). The simulator lidar has 

the same parameters than the real LMS100 (min angle, 

max angle, resolution, frequency, etc.). The noise added 

to the measures is Gaussian distributed with parameters 

given by the factory data-sheet. We chose different values 

of the seed for the random part of the noise with the 

simulations. Thus, the noise varies with every simulation, 

resulting in slightly different localisation outputs. The 

virtual lidar also reproduce the “rolling shutter” effect 

when the robot is moving. Indeed, a real lidar does not 

grasp all the ranges at the same moment, a mirror rotates 

and measure distances sequentially. This has also been 

implemented in the simulator to output the most realistic 

lidar data possible. Two environments have been used, 

the first one is an artificial “maze”, a simple environment 

only composed of walls; when the second one is the 

virtual model of a real hospital located in the USA (Fig. 

3). The algorithms were also tested in a real world, inside 

a building located in Clermont-Ferrand, France. The 

robot used for the test was the real Jaguar robot, with a 

Hokuyo UTM-30-LX lidar. 

 
Fig. 3. Virtual realistic environment / lidar beam 

B. Lidar Segmentation, Cascade Filter and Scan 

Matching 

The cascade process is visible: as the level goes higher, 

there are fewer and longer segments (Fig. 4). Segments 8 

and 6 have been deleted from one level to another. At the 

end, we have a smoothed view of the environment. Using 

only the scan matching between frames, we were able to 

perform basic localization. The robot was sent in the 

“maze” to do a defined trajectory, starting at a [0;0] 

position and come back. The data given by the lidar was 

then processed by both our algorithm and the Canonical 

Scan Matcher (CSM) [20] provided by the ROS 

community [21] with the same parameters. Odometry and 

IMU improvement are deactivated, we only use lidar data 

and constant speed assumption. The goal is not to 

compare complete localisation methods, but rather the 

ability to perform scan matching between two frames. 

Therefore, there is no feature recording over time, 

occupancy grid, nor loop closing. We were able to run 

autonomously the algorithm 50 times and output the 

trajectory, execution timeIn International Journal of 

Automation and Computing and errors in scan matching 

(Table I). edx (edy), is the mean error in displacement 

toward x (y). edθ, is the mean angular change error. The 

computer used is a XPS-9550 Dell laptop with a i5-

6300HQ 2.3GHz processor (mono-thread execution). In 

the end, our localization algorithm is the closest to the 

initial point. The total trajectory length is 110m. Our 

average final error is 0.8m and CSM has a 1.4m error 

(Fig. 5). Only 12 trajectories are shown. 

 
Fig. 4. Two levels of observation, left low level, right high level 

 
Fig. 5. Benchmark trajectories and zoom on the final error 

TABLE I: BENCHMARK RESULTS  

Comparison CSM W-D matcher 

t (ms) 10.8655 0.2473 

σ t (ms) 4.3691 0.0396 

edx (m) 0.0898 0.0073 

σ edx (m) 0.1785 0.0113 

edy (m) 0.0026 0.0113 

σ edy (m) 0.0739 0.0087 

edθ (rad) 0.0088 0.0100 

σ edθ (rad) 0.1260 0.0122 

C. Fusion with Camera 

 
Fig. 6. Corner and doors detection 

We observe an effective detection of doors and corners 

inside the lidar frame (Fig. 6). On the left, the raw lidar 

data, on the right, the features extracted (segments, doors 

and corners). The robot is the red cross, doors are the red 

circles and corners are the green circles. Then we can 

visualise the projection of these features in the camera 

image (Fig. 7). We can define a box around the detected 

feature (corner and sides of the doors). They can become 
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SLAM features or area of interest. In this use/case, the 

image had already been processed by a region 

segmentation. The lidar work together with the camera 

and gives the information on the location of the area of 

focus. This combined work gives the boxes to process in 

the vision algorithm, saving time and CPU/GPU 

resources. 

 
Fig. 7. Projection of the features in the camera image and segmentation 

V. CONCLUSIONS 

In this paper, we presented our approach to use an 

algorithm from another robotic field and adapt it. One 

goal was to exploit the structure of the environment to be 

able to quickly and efficiently perform scan matching for 

the robot navigation. The execution time of our scan 

matcher is significantly lower than the one of the other 

scan matcher, including the segmentation process. The 

computed localization with our scan matching was also 

more accurate. However, this requires a structured 

environment, which is not a requirement for every scan 

matcher. The other goal was to extract semantic 

information of this structured environment. The door and 

corner detector works fine with this segmentation method. 

The method is able to pinpoint the features in the camera 

image, but it does not detect doors with small shift and 

doors with too small angles with the lidar. These features 

will be included in any SLAM algorithm as new features 

to track and localize with. Therefore, this features 

detection can help on several aspects of robot navigation: 

robot safety and localization. They bring localisation 

information for the SLAM and semantic information for 

the human detection.  

VI. FUTURE WORK 

Our work will focus on pedestrian anticipation, 

detection and tracking. Using the area of focus given by 

the lidar, it should improve the computation complexity 

and assure a real-time detection simultaneously with the 

localization algorithm 
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