
Vision Based Lidar Segmentation for Accelerated Scan

Matching

Burtin. Gabriel
1
, Bonnin Patrick

2
, and Malartre Florent

1

1
4D-Virtualiz, Clermont-Ferrand, France

2
LISV, Velizy, France

Email: gabriel.burtin@4d-virtualiz.com; patrick.bonnin@uvsq.fr; florent.malartre@4d-virtualiz.com

Abstract—A vision based algorithm brings fast

segmentation process to a 2D lidar point cloud. Extracted

features allow us to set up a segment based scan matcher.

This matching is one of the steps for the localization.

Features also give semantic information about the

environment. The detection of a corner or a door

indicates a potential encounter with human beings. Aware

of this “danger” area, the robot will be able to adapt its

speed and define areas of focus to the vision algorithms.

Indeed, vision is known for its high computation load.

The focus provided by the lidar diminish the area in the

image to be analysed and reduce the load.

Index Terms—2D lidar segmentation, scan matching, safe

navigation, sensor fusion, indoor environment

I. INTRODUCTION

The robot of tomorrow is built to work in the factory of

the future in a cluttered, yet structured and human

environment. The robot should navigate between

locations, with a possibility of encountering humans. We

need a navigation system to be able to work fast, be

reliable and take advantage of the structured

characteristic of the environment. This navigation task

can be divided in sub-tasks: localization, mapping, path

planning, control and safety management. All these tasks

must be performed within an embedded computation unit

on the robot. This means that each task must consume

computational resources as little as possible. The robot is

moving and needs a regular update on its status. To

perform this navigation, the robot has embedded sensors

to perceive its environment and match the detected

features with a list of features previously stored. A

popular approach is the grid-based representation of the

environment in which each cell is a probability of the

presence or absence of obstacle [1]. Another approach is

the use of beacons, artificially placed beforehand [2],

largely used in early versions of the robocup soccer

(international competition of robotics,

http://www.robocup.org). These approaches do not fit our

case which is navigation in a hospital or a factory. This

environment implies that any physical modification is

denied. The environment is also large which means that

the grid would be either low resolution or high dimension.

Manuscript received December 23, 2017; revised March 20, 2018.
Corresponding author email: author@hostname.org.

doi:10.12720/jcm.13.3.139-144

First case brings the risk to be stuck and the second

requires heavy computation. To address these multiple

problems, we rely on two basics and well-known sensors:

the lidar and the camera. The first one gives a fast but

partial information about the environment: distances in a

horizontal plane section. The second gives high level

information (doors, humans...) but requires more

computation time. Using sensor fusion, we aim to guide,

by lidar information, the camera algorithm toward area of

interest. In other terms, the processing of lidar data is

going to speed up the process by focusing the camera on

a region of interest (ROI) inside the frame. These regions

can be pedestrian encounter areas and the process, a

human detection algorithm. In this paper, we focus on the

first stages of this study: feature extraction from lidar data

and defining regions of interest to cooperate with the

camera. This efficient processing leads to a fast scan

matcher which provide basic localization. It also

cooperates with other sensors by pointing out elements of

interest (corners/doors). Vision algorithms, under

development, will include robust embedded real-time

constraints [3], [4] taking advantage of multi-threading

with multi-core ARM architectures.

II. LIDAR DATA SEGMENTATION

Lidar data is a 1D depth buffer, generated by several

beams of rays. To extract substantial information, we

need to process efficiently the data. Several segmentation

methods already exist and some of them have already

been tested and compared [5]. Those methods rely on

different aspects of the point cloud or pixels. In one hand,

global methods search for features with all points at the

same time: Hough or Ransac [6]. Unfortunately, they

need an important amount of time while the result

contains too much false positive features detected. On the

other hand, local methods, applying sliding window in

the list of points, are able to extract the features

recursively [7] or iteratively [8], [9] and [10]. In image

processing, the list of points is provided by edge linking

process. These lines finding algorithms are faster and less

likely to produce false positive. In the lidar case,

distances are sequentially measured and sorted, either

clock wise or counter clock wise. The following

hypothesis can be formulated: if a ray hits a 3D plane, the

following (and preceding) rays are more likely to hit the

same surface. Considering the hypothesis and criterion,

iterative methods are the most suited and natural. They

Journal of Communications Vol. 13, No. 3, March 2018

139©2018 Journal of Communications

mailto:gabriel.burtin@4d-virtualiz.com

spare the edge linking process and benefit the organized

status of the 2D points provided by the sensor. A strong

iterative segmentation with an implementation based on a

double Kalman filter is given by [8], the use of two

Kalman filters to process the entire lidar point-cloud

introduce a heavy computation complexity and require a

lot of parameters to be tuned. We directed ourselves

toward a simpler, yet robust and known method [10].

A. Wall-Danielsson Application

This was originally introduced with vision, in

particular to simplify the extracted outline and polygonal

shapes from pictures. With only a single parameter, it

allows to drive the plasticity of segments detection. This

method, initially created to link pixels connected with

each other, is able to work even with distant points. The

main advantages of the Wall-Danielson (WD) are the

efficiency, speed and the deterministic behaviour

(contrary to Ransac). To perform this detection, it

compares the difference between a threshold and a ratio.

The ratio is between the surface of the polygon formed by

all the points and the distance between the first and the

last point. The main issue brought by this one-parameter

implementation is that a bad threshold has large

implications. A severe threshold denies any long

segments to be detected: they don’t fit the condition; only

small segments are extracted because of the sensor noise.

A soft threshold is also problematic: not detecting small

variations is good, corners take more steps to be detected

and the equation of the wall is biased by the last points of

the segment. This issue has been addressed by WD [10]

and [9]. They consider a back-stepping algorithm. A post-

process is therefore needed to remove the extra points

after the corners. Considering execution time, it is better

to get rid of this post-process. Regarding the noise, the

algorithm does not take into account its variation. The

noise associated to the segment will be computed later,

using the parameters of the extracted segment. Indeed,

the model of the noise, Gaussian distributed, can be

transmitted to the equation of the extracted segment.

B. Cascade Filter

The noise has clear consequences: if we choose the

wrong threshold, elements such as doors disappear.

Because of the small difference, an easy threshold will

smooth the surface. If doors disappear, we can’t rely on

this information to obtain longitudinal localization inside

hallways. Depending on the granularity of the elements

we want to extract, we need to adjust the threshold

parameter. This forces us either to run the algorithm

several times with different parameters or process again

the segments extracted by the very first segmentation. In

light of the complexity of each operation, re-using the

extracted segments is much faster: from a data set

containing N points, a maximum of N/3 segments is

expected. A reduced dataset means less computation and

our objective is precisely to gain time. The decision made

was to work directly with the segments. Two operations

have been implemented to filter the segment dataset. The

first operation is a fusion between segments. This means

observing two segments and deciding whether or not they

have been split by mistake regarding the criterion given.

If they have been noted as “miss-split”, they belong to the

same 3D plane, they are fused: the set of 2D points

contained in each segment’s data are gathered inside one

segment and the parameters of the new segment are

computed again. The fusion decision is motivated by a set

of rules driven by the geometrical constraint of the

environment (Fig. 1). They belong to the same 3D surface

(plane); therefore, they are: consecutive (i and i + 1),

parallel, aligned (d) and extremities are close (D).

Fig. 1. Fusion criterion

Applying fusion process to the whole dataset of

segments returns a new set with fewer but longer

segments. However, if small elements such as a bin or a

table foot is laid against the plane, the first condition

(consecutive segments) is not complete. In that case, the

two sides of the same plane, even correctly segmented

can’t be fused. Depending on the post-process, the

important element is to obtain strong and long segments.

Considering the fact that small segments are often too

unstable in terms of angle, their presence may induce too

much noise in the post-segmentation algorithms. To

eliminate the effect of those small segments, a fast

erosion filter is performed upon the remaining segments.

All these segments are deleted from the dataset with this

erosion algorithm. When all the small blocking segments

are removed, a second layer of the fusion algorithm is

applied. Depending on the case intended for the segments

dataset, the next algorithm can access the data at any

level it needs (Fig. 2). Note that the erosion algorithm

cannot be applied first: it would remove small segments

candidates to the fusion algorithm.

Fig. 2. Cascade filter process.

Journal of Communications Vol. 13, No. 3, March 2018

140©2018 Journal of Communications

III. FEATURE EXTRACTION

Several applications can be found with this

segmentation of the lidar data [11] and [12]. A faster scan

matching can be computed with two successive data sets.

Indeed, contrary to [13], [14] and [15], in our case, we are

able to use reduced amount of data. All the data is

concentrated inside the remaining segments extracted

with high level segmentation (Fig. 2). Another

application is the ability to detect semantic information:

the lidar gives us a plane cut of the scene. Using detailed

scan (i.e. low-level segmentation), we can detect the

shape of common elements (doors).

A. Segment Matching

To perform an efficient scan matching, it is necessary

to be able to match points of interest between frames.

Thus, with the transformation between each point of

interest, we can compute the rigid transformation

between the two frames. Segments matching is a complex

task: few parameters can describe appropriately the

segments. These parameters can be considered only to be

two if the representation of the segment is (ρ, θ) [16]. A

common similarity weight would only consider those

parameters. This leads to many mismatches because a

structured environment has several segments with the

same parameters (ρ, θ). We chose to use the

representation (ρ, θ, COG, length). The COG is the

middle of the segment (Center Of Gravity). Keeping the

length of the segment is useful to estimate the strength

and interest in the segment. A long segment is more

likely to be very stable and be seen for a long period by

the perception system. Therefore, the new similarity

weight considers all the coefficients. The final goal is to

match segments from set of n segments in the previous

frame, with segments from a set of m segments in the

current frame. Given the set of extracted segments, we

seek every (i, j) couples of related segments. This gives

us a n by m weight matrix. The lower values of the matrix

give us the potential matches. Computation of the matrix

has to be improved: the computational cost increases as m

and n increase. Two mechanisms are implemented to

improve the efficiency. The first one is a movement

prediction: we use the previous velocity of the robot as an

input. When the robot is spinning, long range segments

tend to have a high weight due to the large changes in the

COG position. Predicting the new position gives better

weights and improves significantly the matching between

segments. This also allows us to introduce an accelerated

weight: we first compute the distance between the COG.

If this distance between the segments is bigger than a

certain threshold, then the weight is given the maximum

value without the rest of the computation. The smart

weight spares the computation cost of the other elements

of the complete weight. The second improvement

mechanism is focusing on the computation of the weights

only on a certain area of the weight matrix. The

movement prediction not only allows us to reduce the

mean value of the weight, it also gives a hint on the

position of potential matches inside the matrix. If the

robot goes straight, the matched values are concentrated

on the diagonal and around. When the robot spins clock

wise, this diagonal tends to translate to the lower triangle.

And logically, when the robot spins counter clock wise,

the matches are found in the higher triangle of the match

matrix. Then, knowing the robot previous move, we can

focus on the most important part of the match matrix.

Scan matching accelerated process from 2D lidar data are

the following steps:

1) Extract the high-level segments

2) Predict the position of previous segments

3) Compute the weight on the focused area of the

matrix

4) Determine every (i; j) couples, i.e. matrix minima

5) Compute the rigid transformation using matched

segments parameters

All those mechanisms allow us to accelerate the scan

matching with segments based features.

B. Camera Fusion

Using another level of segmentation can be interesting

to detect high level or semantic information such as doors

and corners. Indeed, a door or a corner means that a

person could suddenly appear in front of the robot

because of the limited field of view. If the robot did not

anticipate the possibility of an encounter, depending on

the speed and weight of the robot, it could lead to severe

injury. Having the ability to detect these feature is

important to adapt the robot speed and behaviour. To

perform this sort of detection, we relied on the low-level

segmentation because it contains more details about the

environment. The corner and the door were described as a

set of conditions [8], applied to the set of segments: they

allowed to detect the presence and extract the position of

these features. Detecting doors and corners to establish

encounter area is crucial for the safety task. The

awareness focusses the heavy computing process in small

area. Once the feature (door or corner) has been identified

inside the lidar frame, we need the projection in the

image generated by the camera. Equation (1) is the

projection of this 3D point in the camera frame. It

requires the camera intrinsic parameters (K) and the rigid

transformation between the lidar and the camera frame

(T). After this projection of the lidar point (P) in the

camera image (p), we can determine an ROI and focus.

This allows two things: a lower computation cost and a

higher chance of finding a pedestrian.

 (1)

IV. RESULTS

A. Set-up

Preliminary tests have been run on a professional

virtual platform, a realistic and advanced real-time

robotic simulator [19] sold by 4D-Virtualiz. This tool has

been developed by two PhD students to accelerate the

Journal of Communications Vol. 13, No. 3, March 2018

141©2018 Journal of Communications

development of their robotic applications. The simulation

offers the ability to have ground truth, repeatability and

an easy environment management with the same robot-

sensors set up. The simulated robot is a Dr. Robot Jaguar,

virtually equipped with a LMS100 SICK lidar and a

640x480 camera (pinhole model). The simulator lidar has

the same parameters than the real LMS100 (min angle,

max angle, resolution, frequency, etc.). The noise added

to the measures is Gaussian distributed with parameters

given by the factory data-sheet. We chose different values

of the seed for the random part of the noise with the

simulations. Thus, the noise varies with every simulation,

resulting in slightly different localisation outputs. The

virtual lidar also reproduce the “rolling shutter” effect

when the robot is moving. Indeed, a real lidar does not

grasp all the ranges at the same moment, a mirror rotates

and measure distances sequentially. This has also been

implemented in the simulator to output the most realistic

lidar data possible. Two environments have been used,

the first one is an artificial “maze”, a simple environment

only composed of walls; when the second one is the

virtual model of a real hospital located in the USA (Fig.

3). The algorithms were also tested in a real world, inside

a building located in Clermont-Ferrand, France. The

robot used for the test was the real Jaguar robot, with a

Hokuyo UTM-30-LX lidar.

Fig. 3. Virtual realistic environment / lidar beam

B. Lidar Segmentation, Cascade Filter and Scan

Matching

The cascade process is visible: as the level goes higher,

there are fewer and longer segments (Fig. 4). Segments 8

and 6 have been deleted from one level to another. At the

end, we have a smoothed view of the environment. Using

only the scan matching between frames, we were able to

perform basic localization. The robot was sent in the

“maze” to do a defined trajectory, starting at a [0;0]

position and come back. The data given by the lidar was

then processed by both our algorithm and the Canonical

Scan Matcher (CSM) [20] provided by the ROS

community [21] with the same parameters. Odometry and

IMU improvement are deactivated, we only use lidar data

and constant speed assumption. The goal is not to

compare complete localisation methods, but rather the

ability to perform scan matching between two frames.

Therefore, there is no feature recording over time,

occupancy grid, nor loop closing. We were able to run

autonomously the algorithm 50 times and output the

trajectory, execution timeIn International Journal of

Automation and Computing and errors in scan matching

(Table I). edx (edy), is the mean error in displacement

toward x (y). edθ, is the mean angular change error. The

computer used is a XPS-9550 Dell laptop with a i5-

6300HQ 2.3GHz processor (mono-thread execution). In

the end, our localization algorithm is the closest to the

initial point. The total trajectory length is 110m. Our

average final error is 0.8m and CSM has a 1.4m error

(Fig. 5). Only 12 trajectories are shown.

Fig. 4. Two levels of observation, left low level, right high level

Fig. 5. Benchmark trajectories and zoom on the final error

TABLE I: BENCHMARK RESULTS

Comparison CSM W-D matcher

t (ms) 10.8655 0.2473

σ t (ms) 4.3691 0.0396

edx (m) 0.0898 0.0073

σ edx (m) 0.1785 0.0113

edy (m) 0.0026 0.0113

σ edy (m) 0.0739 0.0087

edθ (rad) 0.0088 0.0100

σ edθ (rad) 0.1260 0.0122

C. Fusion with Camera

Fig. 6. Corner and doors detection

We observe an effective detection of doors and corners

inside the lidar frame (Fig. 6). On the left, the raw lidar

data, on the right, the features extracted (segments, doors

and corners). The robot is the red cross, doors are the red

circles and corners are the green circles. Then we can

visualise the projection of these features in the camera

image (Fig. 7). We can define a box around the detected

feature (corner and sides of the doors). They can become

Journal of Communications Vol. 13, No. 3, March 2018

142©2018 Journal of Communications

SLAM features or area of interest. In this use/case, the

image had already been processed by a region

segmentation. The lidar work together with the camera

and gives the information on the location of the area of

focus. This combined work gives the boxes to process in

the vision algorithm, saving time and CPU/GPU

resources.

Fig. 7. Projection of the features in the camera image and segmentation

V. CONCLUSIONS

In this paper, we presented our approach to use an

algorithm from another robotic field and adapt it. One

goal was to exploit the structure of the environment to be

able to quickly and efficiently perform scan matching for

the robot navigation. The execution time of our scan

matcher is significantly lower than the one of the other

scan matcher, including the segmentation process. The

computed localization with our scan matching was also

more accurate. However, this requires a structured

environment, which is not a requirement for every scan

matcher. The other goal was to extract semantic

information of this structured environment. The door and

corner detector works fine with this segmentation method.

The method is able to pinpoint the features in the camera

image, but it does not detect doors with small shift and

doors with too small angles with the lidar. These features

will be included in any SLAM algorithm as new features

to track and localize with. Therefore, this features

detection can help on several aspects of robot navigation:

robot safety and localization. They bring localisation

information for the SLAM and semantic information for

the human detection.

VI. FUTURE WORK

Our work will focus on pedestrian anticipation,

detection and tracking. Using the area of focus given by

the lidar, it should improve the computation complexity

and assure a real-time detection simultaneously with the

localization algorithm

ACKNOWLEDGMENT

This research was performed within the framework of

a CIFRE grant (ANRT 2016/0316) for the doctoral work

of G. Burtin at 4D-Virtualiz and LISV

REFERENCES

[1] O. El Hamzaoui, “Simultaneous localization and mapping

for a mobile robot with a laser scanner: CoreSLAM,”

theses, Ecole Nationale Supérieure des Mines de Paris,

September 2012.

[2] C. F. Chang, C. C. Tsai, J. C. Hsu, S. C. Lin, and C. C. Lin,

“Laser self-localization for a mobile robot using retro-

reflector landmarks,” 2003.

[3] A de Cabrol, T Garcia, P. Bonnin, and M. Chetto. “A

concept of dynamically reconfigurable real time vision

system for autonomous mobile robots,” International

Journal of Automation and Computing, vol. 5, no. 2, pp.

174-184, April 5, 2008.

[4] A. de Cabrol, P. Bonnin, T. Costis, V. Hugel, and P.

Blazevic, “A new video rate region colour segmentation

and classification for sony legged robot application,”

Lecture Notes in Computer Science, 2005, pp. 436-443.

[5] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A

comparison of line extraction algorithms using 2d laser

rangefinder for indoor mobile robotics,” in Proc. IEEE/RSJ

International Conference on Intelligent Robots and

Systems, 2005, pp. 1929–1934.

[6] K. Bayer, “Wall following for autonomous navigation,”

SUNFEST, University of Pennsylvania, 2012.

[7] T Pavlidis, Algorithms for Graphics ANS Image

Processing, Springer Verlag, 1982.

[8] S. I. Roumeliotis and G. A. Bekey, “Segments: A layered,

dual-Kalman filter algorithm for indoor feature extraction,”

in Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2000, vol. 1, pp. 454–461.

[9] R. A. Nachar, “Vers un efficace détecteur de trait: Les

coins de contour et ses applications,” PhD thesis,

Versailles-St Quentin en Yvelines, 2014.

[10] K. Wall and P. E. Danielsson. “A fast-sequential method

for polygonal approximation of digitized curves,”

Computer Vision, Graphics, and Image Processing, vol. 28,

no. 2, pp. 220–227, 1984.

[11] F. Vincent, “Modelisation de l’environnement et

localisation pour un véhicule,” Master’s thesis, L’Institut

National Polytechnique de Grenoble, 1997.

[12] I. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation

by a mobile robot with obstacle avoidance using single-

camera vision and ultrasonic sensing,” IEEE Transactions

on Robotics and Automation, vol. 14, no. 6, pp. 969–978,

1998.

[13] Y. Hieida, T. Suenaga, K. Takemura, J. Takamatsu, and T.

Ogasawara, “Real-time scan-matching using l0-norm

minimization under dynamic crowded environments,” in

Proc. Fourth Workshop Planning, Perception &

Navigation for Intelligent Vehicles, 2012, pp. 257–26.

[14] E. B Olson, “Real-time correlative scan matching,” in Proc.

IEEE International Conference on Robotics and

Automation, 2009, pp. 4387–4393.

[15] P. Vath and B. Ummenhofer, “2d multi-resolution

correlative scan matching using a polygon-based similarity

measurement,” Ais. Informatik. Uni., 2013.

[16] C. Berger, “Toward rich geometric map for slam: Online

detection of planes in 2d lidar,” Journal of Automation

Mobile Robotics and Intelligent Systems, vol. 7, 2013.

[17] A. Censi, “On achievable accuracy for range-finder

localization,” in Proc. IEEE International Conference on

Journal of Communications Vol. 13, No. 3, March 2018

143©2018 Journal of Communications

Robotics and Automation, Roma, Italy, pp. 4170–4175,

2007.

[18] M. Alshawa, “lcl: Iterative closest line a novel point cloud

registration algorithm based on linear features,” Ekscentar,

vol. 10, pp. 53–59, 2007.

[19] G. Burtin, F. Malartre, and R. Chapuis, “Reducing the

implementation uncertainty using an advanced robotic

simulator,” in Machine, Control and Guidance, 2016.

[20] A. Censi, “An ICP variant using a point-to-line metric,” in

Proc. IEEE International Conference on Robotics and

Automation, Pasadena, CA, May 2008.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, et

al., “ROS: An open-source robot operating system,” in

Proc. ICRA Workshop on Open Source Software, 2009.

Journal of Communications Vol. 13, No. 3, March 2018

144©2018 Journal of Communications

