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Abstract—Mobility prediction is an important problem having 

numerous applications in mobile computing and pervasive 

systems. However, many mobility prediction approaches are not 

noise tolerant, do not consider collective and individual 

behavior for making predictions, and provide a low accuracy. 

This paper addresses these issues by proposing a novel 

dependency-graph based predictor for real-time route prediction, 

named MyRoute. The proposed approach represents routes as a 

graph, which is then used to accurately match road network 

architecture with real-world vehicle movements. Unlike many 

prediction models, the designed model is noise tolerant, and can 

thus provide high accuracy even with data that contains noise 

and inaccuracies such as GPS mobility data. To cope with noise 

found in trajectory data, a lookahead window is used to build 

the prediction graph. Besides, the proposed approach integrates 

two mechanisms to consider both the collective and individual 

mobility behaviors of drivers. Experiments on real and synthetic 

datasets have shown that the performance of the designed 

model is excellent when compared to two state-of-the-art 

models. 
 

Index Terms—Real-time, route prediction, dependency graph, 

mobility graph, noise tolerance.  

I.  INTRODUCTION 
Predicting movements of moving objects is a task of 

great importance, having numerous applications in 

several domains. Obtaining information about a vehicle's 

locations is key for location based routing of high-speed 

vehicular ad-hoc networks [1]. Movement prediction is 

also essential to improve the quality of ITS (Intelligent 

Transportation Systems), as it can support congestion and 

trip duration prediction. In other words, if a system can 

predict future movements of vehicles, it can also be used 

to predict traffic jams and other traffic hazards [2]. 

Besides, another important application of mobility 

prediction is the optimization of hybrid vehicle fuel 

consumption. For example, Nissan researchers have 

shown that knowing a vehicle’s route in advance can 

allow reducing fuel consumption by up to 7.8% [3]. 

Lastly, another important application of movement 

prediction is supporting Location-Based Services (LBS) 

such as delivering targeted advertisements to customers 

who are likely driving toward an area of interest [4].  
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While various types of movements can be predicted, 

this paper focuses on route prediction, which consists of 

predicting the route of a vehicle in terms of the next road 

segments that it will visit. Route prediction schemes are 

based on the assumption that routes followed by driver(s) 

show spatial and temporal regularities that can be used to 

predict a driver’s next location. Two types of mobility 

behaviors are considered in this paper. The first type, 

called global (collective) behavior, is based on the 

assumption that persons may follow similar trajectories 

and share common mobility patterns when traveling to 

the same locations. Another example of collective 

movements is groups of vehicles that follow each other 

for a long period of time (i.e. platoons) on the highway. 

The second type of behavior is personal (individual) 

behavior, which is based on the assumption that a person 

may exhibit regularities when travelling to the same 

location. For instance, a person may always follow the 

same routes to go from home to work.  

In recent years, route prediction has attracted the 

attention of many researchers especially in the 

networking community. Most route prediction 

approaches consist of applying machine learning 

techniques such as neural networks [2], [5] or statistical 

models such as Markov models [6]–[8] and probabilistic 

trees [9]. Although these models were shown to perform 

well, an important drawback is their noise sensitivity 

toward the mobility patterns that they can learn. The 

smallest deviation in trajectory data affects the prediction 

result, and thus the prediction accuracy. This problem 

becomes worse for noisy mobility datasets such as GPS 

trajectory data which are prone to many disturbances and 

inaccuracies. Additionally, some prior proposals were 

designed without regarding to any constraints on 

computational and memory limitations of mobile devices 

which make the real implementation and deployment of 

these solutions impossible as on-line applications. 

Besides, many proposals have addressed the prediction 

problem considering only one type of human mobility 

behavior and there were only few attempts to study the 

impact of both individual and collective behaviors on 

personalized and global mobility prediction.  

In this paper, we tackle the above challenges by 

proposing a real-time graph-based approach for route 

prediction called MyRoute, which adopts the Dependency 
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Graph (DG) predictor, previously used for web 

prefetching [10]. Graph-based approaches have been 

shown to be very efficient in a wide range of domains 

such as computer science [11], artificial intelligence [12], 

and communication [13]. Central to our approach is the 

idea that graphs can perfectly represent the structure of 

road networks, and therefore accurately model vehicle 

movements. Moreover, this work is also based on the 

idea that vehicle mobility is order dependent as a vehicle 

passes through a sequence of route segments to reach 

some location of interest, by following a specific order 

and traversing road segments in specific directions. 

To forecast the next location, MyRoute utilizes the 

current location of a vehicle and its historical data, if 

available. The proposed approach first builds a prediction 

graph, where nodes (vertices) are road segments and arcs 

(directed edges) are used to represent the traversal order 

of road segments by vehicles. Then, the prediction graph 

is used to predict the next route of a driver by attempting 

to match its current trajectory with graph paths. However, 

graph matching is difficult due to the presence of noise in 

data. To address this issue, the proposed approach creates 

graph edges not only between consecutive road segments 

(nodes) in a path but also with the following road 

segments appearing within a user-defined lookahead 

window. This method allows ignoring noise found in the 

data to increase prediction accuracy. To provide high 

prediction accuracy, the proposed model also offers great 

flexibility in terms of considering the road segments in 

trajectories when matching a current trajectory of a 

vehicle with its previous trajectories unlike some prior 

models which match GPS trajectories. Moreover, to 

model both global and personal mobility behaviors, two 

prediction mechanisms are proposed called the GMG 

(Global Mobility Graph) and PMG (Personal Mobility 

Graph), respectively. Note that although this paper 

focuses on vehicle route prediction, the proposed 

approach could be used for location prediction of other 

types of moving objects. 

II. RELATED WORK 

Due to the numerous applications of route prediction, 

many researchers have studied this problem in recent 

years. These studies can be described in terms of various 

factors such as the types of predictions that are performed 

(route and/or destination predictions), the techniques used 

for carrying out predictions, the prediction range (short or 

long term), etc. Generally, the techniques proposed in 

previous works can be classified as one of the three 

following categories: 

A. Statistical Models 

 Most statistical models rely on the Markov 

assumption that previous trajectories of a person must be 

considered to perform route prediction. For personal 

route prediction, Wang et al. [14] have used a first order 

Markov model called PPM (Prediction by Partial 

Matching). That approach builds a probability transition 

matrix containing the probabilities of moving from each 

road segment to the others. To deal with the growing 

amount of personal mobility data and provide real-time 

route predictions, data reduction algorithms have been 

applied on probability matrices. First order Markov 

model has been also proposed by Krumm [8] for short-

term upcoming road prediction. Chen et al. [15] have 

proposed three Markov models for global (GMM), 

personal (PMM) and regional (RMM) mobility 

movement predictions. GMM and PMM are used to 

model, respectively, collective and individual mobility 

behaviors of moving objects. RMM considers geographic 

similarities between trajectories by clustering similar 

trajectories of a person into clusters and then train a 

Markov model for each resulting cluster. Petróczi et al. 

[16] have proposed three prediction models: (1) a 

statistical model based on frequent itemset mining, (2) an 

n-order  Markov model where n<4, and (3) a Pattern 

Matching Model based on n-order Markov with a flexible 

number of items to consider. Xue et al. [9] have applied a 

combination of a Variable-order Markov Model (VMM) 

and Probabilistic Suffix Trees (PSTs). That approach 

utilizes multiple VMMs with different traffic conditions 

for daytime driving to mine mobility patterns from real 

GPS taxi traces. In an earlier work, Simmons et al. [17] 

have proposed to use an HMM (Hidden Markov Model) 

to simultaneously predict a driver’s intended route and 

destination. Simmons et al. have then improved their 

initial model to consider temporal factors for prediction. 

To cope with uncertainty in GPS data, HMM has been 

also applied in [4]. To provide more accurate location 

prediction, Markov models are often combined with other 

techniques such as semantic inference [6], [7] for 

personalized route prediction with discovering the type of 

visited locations. 

B. Data Mining 

Data mining techniques have been broadly applied to 

perform various types of predictions using techniques 

such as neural networks and sequential pattern mining. 

Two main neural network architectures have been 

employed: feed-forward [2] and recurrent bidirectional 

neural networks [5]. De Brébisson et al. [5] have 

developed a framework to predict the destination of a taxi 

based on its starting location and associated meta-

information such as departure time, driver identifier and 

client information. A recurrent bidirectional neural 

network was applied to encode each taxi’s path with its 

relevant metadata. The mean shift clustering technique 

was used to obtain clusters of destinations representing 

the training trajectories. To extract route patterns from 

historical movement data, Ye et al. [18] proposed a 

mining algorithm called CRPM (Continuous Route 

Pattern Mining) based on the well-known PrefixSpan 

sequential pattern mining algorithm [19]. The proposed 

approach performs predictions using a pattern tree built 

from extracted mobility patterns. Chen et al. [20] have 

attempted to predict simultaneously the intended 
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destination and future route of a person. Using real GPS 

data, the authors have proposed to cluster important 

places that a person may depart from or go to using the 

FBM (Forward–Backward Matching) clustering 

algorithm. Movement patterns are then extracted from 

abstracted trajectories using an extension of the CRPM 

algorithm. Merah et al. [21] have presented several 

communication schemes that could be used to collect 

historical vehicular paths. Movement patterns are then 

extracted as the most frequent traveled paths and used 

afterward to generate movement rules that could be used 

to forecast vehicle future routes. 

C. Trip Matching 

Trip matching consists of finding the most similar trip 

for a user by comparing current driver trajectory with 

his/her previous trips. To estimate measure similarity 

between pairs of trips, Hausdorff metric is used in [22], 

[23]. Helmholz et al. [23] have also extended their model 

so it considers temporal homogeneity of driving habits. 

III. BACKGROUND 

A. Problem Definition 

Definition 1 (Road segment). A road segment is an 

abstraction of a vehicle or a driver location. A road 

segment ri is a directed edge between two junctions [24]. 

For example, Fig. 1 depicts road segments rx and ry 

connecting two junctions. 

Definition 2 (mobility or movement sequence). A 

mobility sequence ms=<r1,r2,...,rn> is a sequence of road 

segments traversed by a vehicle during a trip. For 

instance, Table I depicts four sample mobility sequences 

MS:{ms1,ms2,ms3,ms4} performed by four vehicles 

V:{V1,V2,V3,V4}, representing their paths. For instance, 

the vehicle V2 has a mobility sequence ms2 which 

indicates that V2 has traversed the road segment r1 

followed successively by r4 and r2. 

 

Fig. 1. Illustration of a road segment. 

TABLE I.  A SAMPLE OF MOBILITY SEQUENCES.  

Mobility 

sequence ID 
Vehicle ID Mobility sequence 

ms1 V1 ms1= <r0, r1, r2> 

ms2 V2 ms2=<r1, r4, r2> 

ms3 V3 ms3=<r0, r1, r3, r4> 

ms4 V4 ms4=<r3, r4, r2, r5> 

Given a mobility sequence ms=<r1,r2,…,rn> of a 

vehicle Vi, the problem of route prediction consists of 

predicting the next road segment Vi that will be visited by 

vehicle Vi. 

B. Mobility Graph Model 

To address the problem of route prediction, this paper 

proposes a mobility graph model inspired by the 

dependency graph (DG) predictor. DG is a graph based 

sequence prediction model initially proposed for web-

prefetching [10], which represents order dependencies as 

edges between graph nodes. Formally, a mobility graph 

MG is a pair of sets (R, A) where R is a set of road 

segments (nodes) and A∈ R × R  is a set of directional 

arcs (edges) representing movements on road network. 

An arc a(rx ry)∈ 𝐴 connects two road segments rx and ry 

in MG. The road from which the movement a starts is 

called the source of a, and is denoted as Source(a)=rx, 

whereas the other node ry is called the destination of a, 

and is denoted as Dest(a)= ry. An arc a(rx ry) is created in 

MG if and only if ry appears within w movements after rx 

in a mobility sequence, where w is a user-defined 

parameter called the lookahead window size. Moreover, a 

weight value (w(a)) is associated to each arc a in MG, 

which indicates the number of times that Dest(a) was 

traversed by drivers after Source(a).  

In the context of mobility prediction, a MG allows 

representing order dependencies among traversed roads 

in mobility sequences by drivers where the source of a 

given arc 𝑎𝑖 ∈ 𝐴 must appears before its destination. The 

mobility prediction graph is built by gradually inserting 

mobility sequences in the graph, where each mobility 

sequence is represented as a path comprising the set of 

roads that it contains.  In the case where sequences share 

common roads, the weights of the shared arcs are 

incremented rather than creating new arcs.  Consequently, 

significant space reduction can be achieved using the MG 

representation. For instance, Fig. 2 depicts the mobility 

graph constructed using the mobility sequences of Table I 

with a lookahead window defined by w=2. 

 

Fig. 2. A mobility graph. 

IV. MY ROUTE MODEL 

Having introduced the mobility graph representation, 

this section first illustrates the architecture of the 

proposed prediction approach, and then described the 

prediction models that regard human mobility behaviors.  

A. System Architecture 

The MyRoute framework is designed to perform real-

time route prediction by adopting a client-server 

Junction 
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r
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architecture where the client is the vehicle whereas the 

server is an authority infrastructure such as a RSU 

(roadside unit). MyRoute comprises three main modules 

as depicted in Fig. 3. 

1. Data preparation. The first module periodically 

collects driver location data (GPS records) and sends it to 

a server site. During collection, location data is split into 

trips by defining stay points. A stay point is a geographic 

area expressed as a set of consecutive GPS records where 

the distance from the first and last GPS records exceeds a 

distance threshold Dthre and the driver spent more time 

than a threshold Tthr. The resulting trips are then 

converted into mobility sequences by map-matching GPS 

trajectories using a cloud map-matching based API [25]. 

2. Graph construction. After obtaining mobility 

sequences, the server incrementally updates its mobility 

graph. The mobility graph is initially built and then 

extended by inserting new road segments as graph nodes, 

whereas vehicle movements between pair of road 

segment within the lookahead window size are 

represented by arcs. The weight of each new arc is set to 

1. In the case where a road segment appears on newly 

collected mobility sequences, the weight of the 

corresponding arc is incremented accordingly. Note that, 

in some situations where movement sequences are highly 

heterogonous and do not overlap (have no common road 

segments), the mobility graph is a disconnected graph. In 

this paper, we assume that the mobility graph is 

connected, comprises a least two nodes, and has no 

isolated nodes. These assumptions hold in real-life for 

representing the mobility of vehicles in active urban areas.  

 

Fig. 3. The overall architecture of MyRoute.

3. Prediction. Once a mobility graph has been built, 

predictions can be performed using it. To predict the next 

route segment that will be visited by a driver D, its 

current trajectory, denoted as CT (Current Trajectory), is 

required. It contains the current road segment where D is 

located in addition to its previous locations for the same 

trip, if available. Formally, let RS={r1,r2,…,rn} be the set 

of all road segments in a road network RN. 

CT={pj,pj+1,..,pc} is a sequence of road segments 

traversed by D where pc is the current road segment of D. 

Having a trajectory CT, the prediction of the next route 

segment is performed in two steps. 

3.1. Graph matching. The first step consists of finding 

a path SP={si,si+1,…,sm} in the mobility graph that 

matches with CT where si ∈ RS. We say that SP matches 

CT if and only if each road segment in SP appears in the 

same order in CT, that is ∀𝑖, 𝑠𝑖 = 𝑝𝑖 and 𝑚 =c. Note that 

graph matching is noise sensitive. Finding the path that 

exactly matches a trajectory CT can be challenging since 

erroneous positions may appear in location data. Using 

MG, built according to lookahead window, more 

flexibility to handle noisy data could be obtained. The 

MG allows creating arcs not only between consecutive 

road segments (which may be noise) but also to the 

following road segments within the lookahead window. 

In other words, if the first road segment Ne that comes 

after a given node Nx in a mobility sequence s is 

considered as noise, another arc will be created that skips 

Ne and go directly to next road segment, given that w≥2. 

Unlike other Markov-based predictors such as PPM, the 

noise tolerance strategy achieved by using MG permits 

MyRoute to forecast the future route of CT that have not 

been previously seen in mobility sequences.  

3.2. Next road extraction. The second step is to find 

the next road segment that a driver will visit following SP, 

denoted as Nr. This road segment is predicted as the 

destination of the arc having the highest weight 

emanating from the last road segment in SP. More 

formally, let E={a1,a2,…,an} be the set of outgoing arcs 

for the last node of SP(sm). Then, Nr is defined as: 

Nr=Dest(ak) such that W(ak)≥W(a) for a∈E and Ʉak∈E 

and source(ak)=sm. For example, consider that the current 
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trajectory of a driver is CT={r0,r3,r4}. Based on the 

mobility graph of Fig. 2, two candidate arcs are 

considered, which are a1(r4 r2) and a2(r4 r5). These arcs 

have weights of 2 and 1, respectively. Therefore, the next 

route segment is predicted to be Nr=r2 (the destination of 

a1). In case where candidates segments have equal 

weights, many selection criterions could be employed 

such as retaining the road with highest frequency in 

mobility data. 

B. Prediction Models 

Having presented the proposed prediction scheme for 

the designed mobility graph structure, this subsection 

explains how the mobility graph is adapted to consider 

both global (collective) and personal (individual) 

movement behaviors of drivers. Two models are 

proposed: 

1. Global MG (GMG). This model is used to represent 

global mobility behavior of a set of persons. The 

prediction graph is constructed from mobility data of all 

drivers. The GMG model is employed to perform 

predictions for a driver when no prior knowledge about 

his mobility pattern could be found such that drivers 

newly seen in prediction framework.  

2. Personal model (PMG).This model consists of 

creating a mobility graph for each driver comprising his 

previous trajectories. Since each PMG only considers a 

single driver, the prediction graph is only trained with his 

mobility sequences rather than the data of all drivers. A 

PMG is a sub-graph of the GMG. Therefore, a PMG can 

be considerably smaller than a GMG.  

By default, to forecast the next location of a given 

driver, the GMG model is used unless matching personal 

data is found in the PMG of the driver. In such situation, 

the driver’s PMG is used for prediction.  

V. EXPERIMENTAL EVALUATION 

To evaluate the proposed MyRoute framework, an 

extensive experimental evaluation was carried out. This 

section first describes the datasets and experimental 

settings, followed by the evaluation metrics to measure 

MyRoute’s performance. Finally, this section presents the 

conducted experiments and the corresponding results.  

A. Datasets 

Two vehicular mobility datasets have been used: 

SanFransisco cabs [26], and Lust [27]. SanFransisco 

cabs contains GPS mobility traces of 500 taxi cabs 

collected during one month in SanFransisco, USA 

whereas Lust is a dataset generated using SUMO [24] to 

simulate driving based on traffic data of Luxembourg. 

Both datasets are prepared and then divided into training 

and testing sets. Experiments were carried using a 10-fold 

cross-validation. 

B. Experimental Setting  

Experiments were performed on a computer equipped 

with a dual Core Intel CPU, 3GB of RAM and 250GB of 

Hard Disk. The proposed approach was implemented in 

Java by using the DG implementation available in the 

SPMF open-source data mining library [28]. 

C. Parameter Settings 

To generate trips from GPS taxi trace, both Tthre and 

Dthre were set to 20 which indicates that a stay point is 

detected if and only if a vehicle remains stationary (or 

exhibits a slow mobility) within a geographic area of 20 

meters for 20 minutes. Among the generated trips, only 

those containing at least two road segments were 

considered. For mobility graph construction, a lookahead 

window set to 2 was used. 

D. Evaluation Metrics 

To measure the performance of MyRoute, the two 

following metrics were computed. 

Overall Accuracy. It is defined as the number of 

successfully predicted routes, divided by the total number 

of test mobility sequences. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 test 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
 

Coverage. It is the number of test mobility sequences 

where a matching path was found for each current 

trajectory of a driver divided by the total number of test 

sequences. 

Coverage = (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
) 

E. Experimental Evaluation 

Two experiments have been carried to assess the 

performance of MyRoute and to compare its performance 

with the state-of-the-art PPM Markov model widely used 

in the literature for this type of prediction problem [8], 

[12], [13] and LZ prediction model used for the task of 

location prediction in [29]. LZ is similar to k-order 

Markov predictor except that the k is a parameter that can 

grow to infinity. 

Experiment 1: Global and personal prediction 

The goal of the first experiment is to compare the 

performance of MyRoute with PPM and LZ. Besides, this 

experiment also considered individual and collective 

mobility behaviors of persons using the PMG and GMG 

prediction models on the SanFransisco dataset. For 

personalized prediction, PMG was tested with trajectories 

of two taxi drivers denoted as Driver1 and Driver2. For 

GMG, the mobility graph was constructed using the 

mobility sequences of 10 taxi cabs. 

Results 

For PMG, obtained results are shown in Fig. 4 and Fig. 

5. They indicate that the overall accuracy generally 

increases as the number of mobility sequences is 

increased. This could be ascribed to the fact that as more 

trips are considered the more individual driver's trips are 

repeated and therefore intra-trips similarity is increased. 
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Fig. 4. Performance evaluation of Driver 1. 

 
 

 
Fig. 5. Performance evaluation of Driver2. 

From the results in Fig. 6, it can be observed that 
GMG achieves an overall accuracy of about 83.5%, even 
outperforming PMG.   

 

 

Fig. 6. Performance evaluation of GMG. 

It is important to mention that taxi destinations and 

trajectories are client dependent. Thus, the collective 

mobility behavior of drivers is confirmed. The spatial 

regularity captured is ascribed to the fact that multiple 

cabs may share common driving paths covering specific 

geographic areas and traveling to them to wait for new 

clients such as airports, hotels, touristic locations, and 

therefore a high degree of similarity could be found in 

their movement exhibiting predictable mobility patterns. 

Results have also shown that MyRoute outperforms the 

PPM Markov model and LZ for both PMG and GMG. 

This may be ascribed to the fact that the Markov model 

requires a full match of a driver trajectory with the 

prediction model. However, real-life trajectory data such 

as GPS trajectories often contain location errors or miss 

data points, which may result in performing incorrect 

predictions. In contrast, the proposed mobility graph 

structure, used in MyRoute is more resistant to noise. 

Incomplete or noisy trajectories are handled by creating 

transitions to several upcoming road segments, using a 

looakhead window, which allow skipping erroneous or 

missing data. 

How noise is handled in MyRoute also explain the high 

coverage obtained by MyRoute, compared to other 

models. The reason for the high coverage of the proposed 

approach is that lookahead transitions allow creating 

additional links between road segments, which often 

permits performing predictions by skipping segments 

when otherwise no prediction could be done. This, 

considerably increase the coverage. It is also observed, in 

this experiment, that the number of trips is relatively 

small. This is because taxi driving is characterized by 

active mobility with few stationary states that exceed the 

stay point detection thresholds. Note that prediction times 

are not reported in this experiment as they were 

negligible for all models.  

Experiment 2: Model size and prediction time 

The second experiment consisted of studying and 

comparing the scalability of MyRoute against the PPM 

Markov model in terms of model size and prediction time 

by increasing the number of trips. This experiment is 

important since MyRoute is designed to be deployed in an 

online manner using mobile devices with low processing 

and storage capacities. Therefore, measuring the 

prediction time and the occupied storage space was done. 
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To study scalability, the Lust dataset, characterized by its 

large number of mobility sequences was employed.  

Results: Concerning model size, results shown in Fig. 

7 indicate that MyRoute requires more storage space than 

the PPM Markov model. This is understandable since the 

number of nodes in both models is the same. However, 

more space is required in MyRoute due to the additional 

lookahead-transitions created and stored with their 

associated weights in mobility graph. Even though 

MyRoute is the largest model, the mobility graph size 

remains small and suitable for real-life use as many 

mobile devices are currently equipped with several 

gigabytes of memory. Moreover, results also demonstrate 

that the number of trips does not have a great impact on 

model size. This is explained by the fact that as more 

trips are added to a mobility graph, many of them overlap 

and thus no additional edges need to be added. In other 

words, novel arcs are added to a mobility graph only if 

they represent movements between road segments that 

were not previously seen. Otherwise, only weights are 

updated, thus preserving the size of the mobility graph.  

Concerning the processing time, Fig. 8 shows that 

MyRoute requires less time to perform a prediction 

compared to PPM, and that prediction time for both 

models takes only a few milliseconds. This experimental 

finding confirms the feasibility of deploying MyRoute for 

real-time prediction. These results can be explained by 

the fast incremental graph construction process that 

permits reusing the same graph components and only 

inserting novel connections and updating weights for 

movements in the lookahead window. This accelerates 

and facilitates the matching process 

Discussion. Based on the experiments, it can be 

concluded that the proposed MyRoute framework has 

good performance and scalability comparing to PPM and 

LZ predictors. In particular, it outperforms PPM Markov 

model in terms of accuracy, coverage, prediction time, 

and scalability, but not in terms of model size. This is 

however understandable as PPM is not noise tolerant, 

whereas MyRoute stores additional arcs based on its 

lookahead window to provide noise tolerance. Note that 

several experiments have been carried to evaluate the 

impact of the lookahead on performance. It was found 

that using a lookahead window of two segments provided 

the best results. Detailed results of those experiments are 

not presented in this paper due to space limitation. 

 

Fig. 7. Model storage space. 

 
Fig. 8. Prediction time estimation. 

VI. CONCLUSION 

In this paper, we have proposed MyRoute, a novel 

framework for real-time route prediction. The central 

idea behind MyRoute is the assumption that human 

mobility exhibits regularity and periodicity. The 

framework utilizes a graph representation of mobility 

sequences where nodes are road segments and each arc 

represents an ordering of two road segments. A 

distinctive characteristic of the proposed mobility graph 

structure is the creation of additional links to upcoming 

road segments using a lookahead parameter. This 

provides noise tolerance for route prediction. Moreover, 

MyRoute implements two prediction schemes called 

GMG and PMG to model both collective and individual 

human mobility behaviors, respectively. An extensive 

experimental evaluation has demonstrated that MyRoute 

outperforms the state-of-the-art PPM Markov model and 

LZ, and achieves an accuracy of 76% for PMG and 83.5 

for GMG with 100% coverage. For future work, several 

improvements will be considered such as extending the 

proposed mobility graph to regard temporal regularities 

of human movements and road conditions by considering 

temporal factors such as time-of-day and day-of-week 

and other contextual factors (i.e. weather, traffic 

congestion level, etc). Therefore, it will become possible 

to distinguish between trips relying not only on spatial 

data but also time and other contextual data. Finally, we 

intend to predict not only the next route (short term 

prediction) but also other upcoming routes (long-term 

prediction) in addition to the person's final destination. 
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