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Abstract—This paper presents a performance analysis of a 

direction-of-arrival (DOA) estimation algorithm that is based on 

a modified MUSIC algorithm. We present the description, 

comparison performance and high resolution analyses of this 

algorithm. The signal estimator is based on a linear algebraic 

relation between the standard subspace model of the array 

correlation matrix and a special signal interference model. This 

algorithm is not a subspace weighted MUSIC algorithm, 

because the scaling depends on the eigen-structure of the 

estimated signal subspace. The proposed modified MUSIC 

algorithm has the advantage of simultaneously estimating the 

DOA and the power of each source. Estimates of the sampled 

channel impulse response are derived using of the channel 

symbols. The channel response samples are separately 

processed to recover the DOA of the relative paths. Through 

simulations, we compare the DOA estimator using the modified 

MUSIC algorithm, based on these representations. Numerical 

results both demonstrate the superior performance of the 

modified MUSIC algorithm relative to the traditional MUSIC 

algorithm and confirm the validity of the results. 
 
Index Terms—DoA, MUSIC algorithm, eigen value, array 

antenna, subspace, estimation 

 

I. INTRODUCTION 

In recent year, adaptive array antennas have become an 

important component in various wireless applications, 

such as radar, sonar, and mobile communication. These 

antennas lead to an increase both in the detection range of 

radar and sonar systems, and in the capacity of mobile 

communication systems. Array antennas are used as 

spatial filters for receiving desired signals coming from 

specific directions while minimizing the reception of 

unwanted signals emanating from other directions [1]. 

One of the most popular algorithms for performing 

Direction-of-Arrival (DOA) estimation is the MUSIC 

algorithm : its attractiveness is due to the fact that it 

provides good resolution while limiting the search for 

incoming signals to a single dimension. Well-known 

subspace based methods that dependent on the 

decomposition of the observation space into a signal 

subspace and a noise subspace, can provide high 

resolution DOA estimations with high estimation 

accuracy. However, traditional subspace based methods 
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such as MUSIC-type [2] methods, involve the estimation 

of the covariance matrix and its eigen decomposition. As 

a result, traditional subspace-based methods are 

computationally intensive, especially for the case in 

which the model orders in these matrices are large. In 

MUSIC vector are the mathematical description of the 

interaction between the direct and the indirect signals as 

seen by the array antenna [3]. The presence of height 

ambiguities leads us to consider the simultaneous use of 

many frequencies in the bandwidth as in the exit 

algorithm. We derivation will closely follow the approach 

of Bienvenu [4], who has derived a MUSIC estimator for 

multipath frequencies.  

We make the standard assumptions underlying the 

MUSIC algorithm, i.e., we have stationary processes, we 

have known noise covariance matrices, the number of 

sources, is less than the number of sensors, and the 

number of snapshots is greater than the number of sensors. 

In this study, we consider the case of snap shots or data 

vectors taken from an element array. The case in which 

some or all of the frequencies are the same is included as 

a special case of the model. The techniques presented are 

applicable in situations involving multiple antennas and, 

unlike traditional methods, are asymptotically optimal at 

high SNR even when multiple overlapping copies of the 

signal are received. This observation motivates the 

development of subspace-based techniques similar to 

those in [5], which provide closed-form solutions for the 

linear parameters. 

In the past, when these models were used, research 

focused on only the single signal path case. Other 

recently proposed techniques for the case of a single 

signal arrival include the wideband ambiguity function 

method and the structured covariance estimator [6]. A 

recent paper presented a de-convolution approach for 

resolving multiple delayed and Doppler shifted paths but 

only over a quantized parameter.  

The key features of the methods proposed below are 

that they provide continuous-valued estimates of the time 

delays and Doppler shifts for multiple signal arrivals, and 

that they are parametric estimators with asymptotic 

accuracy that is equivalent to that of the maximum 

likelihood approach. The outline of the remainder of the 

paper is as follows. In the next section, we present time 

and frequency domain versions of the data model used in 

this work. By interchanging the roles of the samples in 
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space and time, we show that the time delay and Doppler 

estimation problem can be formulated in the well-studied 

framework of DOA estimation.  

Specifically, we draw parallels between the array 

manifold in space that arises in DOA estimation and the 

signal manifold in time that we employ in this work. 

II. BEAMFORMAIN SIGNAL MODEL 

A representative member of the eigenvector methods is 

the MUSIC algorithm. However the presence of a highly 

correlated source, namely the target image, renders the 

conventional MUSIC in effective for low angle tracking 

over a smooth sea and air.  

We propose to extend MUSIC by replacing the 

direction of arrival search vector with the refined 

propagation model vector, here, the vector represents the 

wave front shape as sampled by the array geometry when 

specular multipath is present. In the conventional MUSIC, 

the DOA vector contains the classical exponentials 

representing the delay between the signal received by one 

sensor compared to a reference.  

We define a single observation vector, which is the 

concatenation of data snap shots observed at the array 

output at the intervals. Corresponding to this observation 

vector 𝑥𝑖, we defined a noise vector 𝑛𝑖, a signal vector 𝑠𝑖 

for the i
th 

source, i=1 to P sources, and transfer matrix 𝐺𝑖 

from the signal source to the array outputs. The 

observation vector is then written as follows[7,8] 

 

X = ∑ (𝑠𝑖𝐺𝑖
𝑃
𝑖=1 + 𝑛𝑖)                                   (1) 

 

where s  , G , and n  are single , amplitude, and noise, 

respectively. The deterministic matrix is the transfer 

matrix between the i
th

 source and the signal component of 

the array output vector. The matrix contains the 

directional information on the source positions, the phase 

delay at the l
th

 snapshot between the source and the array 

output signals. The covariance matrix is defined as follow 

R = E[{𝑛𝑖𝑛𝑖
𝐻} + ∑ 𝐸{𝐺𝑖𝑠𝑖𝑠𝑖

𝐻𝐺𝑖
𝐻}𝑃

𝑖=1 ]                 (2) 

=𝑅𝑛 + ∑ 𝐺𝑖𝑅𝑖𝐺𝑖
𝐻𝑃

𝑖=1                                         (3) 

The correlation matrix 𝑅𝑖 is Toeplitz matrix since it is 

a stationary discrete time stochastic process. The matrix 

𝑅𝑖 may be diagonal by the singular value decomposition 

where the matrix 𝑄𝑖  that is used to diagonal 𝑅𝑖 has as its 

columns an orthonormal set of eigenvectors for 𝑅𝑖. The 

resultant diagonal matrix ∇𝑖, has as its diagonal elements, 

the eigenvalues of 𝑅𝑖. We can be written 

𝑅𝑖 = 𝑄𝑖  ∇𝑖 𝑄𝑖
𝐻                                             (4) 

It is quite difficult to fine analytically the eigenvalues 

and eigenvectors of a Toeplitz matrix. To circumvent that 

difficulty we use the fundamental theorem of [9] on the 

asymptotic behavior of the eigenvalue distribution of 

Toeplitz matrices. This theorem relates the properties of 

Toeplitz matrices to those of circular matrices.  

Circular matrices are an especially tractable class of 

matrices since the eigenvalues of such matrices can easily 

be found exactly as the discrete fourier transform of their 

first row and all circular matrices have the same set of 

eigenvectors. 

The eigenvalues of 𝑅𝑖  are derived by construction an 

asymptotically equivalent circular matrix 𝐶𝑖 as described 

in [10]. This is done using two criteria the strong norm 

and the weak known. 

A. Sysytem Second order Signal Model 

If we consider source to be the source of interest, then 

the signal noise ratio model may be written as the 

following signal interference noise model as follow [11] 

y = A(𝜃𝑖)𝛼𝑖 + 𝐵(𝜃𝑖)𝛽𝑖 + 𝑛                         (5) 

where Both 𝐴(𝜃)𝑖  and B(𝜃)𝑖  are the steering vector to 

source i
th

 at angle 𝜃𝑖 , Both 𝛽𝑖  and 𝛼𝑖  are the complex 

amplitude of source and interference , respectively, and n 

is complex white noise of covariance.  

The steering matrix isA = [𝐴(𝜃)1, ⋯ , 𝐴(𝜃)𝑃]. In this 

model, the steering matrix 𝐵(𝜃)𝑖 = [𝐵(𝜃)1, ⋯ , 𝐵(𝜃)𝑃] 
contains the (P − 1)  interfering sources. The second 

order model from equation (4) can be written 

R = E[𝑦𝑦𝐻]                                                         (6) 

= ∑ 𝑠𝑖𝐴(𝜃𝑖) 𝐴∗(𝜃𝑖)
𝑃
𝑖=1 + 𝜎2𝐼                          (7) 

= AS𝐴∗  +   𝜎2𝐼                                               (8) 

where S = diag[𝑠1, ⋯ , 𝑠𝑃]  is the diagonal matrix of 

powers for the uncorrelated source. Each term 

𝑠𝑖𝑎(𝜃)𝑖𝑎
∗(𝜃)𝑖  is a rank-1 covariance matrix for a 

radiating source. The beamforming problem can be 

formulated as follow 

𝑚𝑖𝑛
𝑊

  ∇(𝑊) = 𝐸[(𝑑(𝑡) − 𝑦(𝑡))(d(t) − y(t))𝐻] (9)          

subject to 𝑎̅𝐻 W=1 

 

where d(t)  is desired signal, y(t)  is receive signal on 

array antenna Where λ is a Largrange multiplier. r(t) =

E[d(t) − y(t)] ,R𝑟𝑟 = 𝐸[𝑟(𝑡)𝑟(𝑡)𝐻]. We can obtain the 

optimal weight vector as follow: 

W𝑝 = 𝐸[𝑋(𝑡)𝑟(𝑡)𝐻] +    

              𝑅 𝑎(𝜃)
1−{p(θ|X) a(θ)R 𝐸[𝑋(𝑡)𝑟𝐻(𝑡)]}

p(θ|X) a(θ)𝐻 p(θ|X)𝐻 R a(θ)
                     (10) 

  (10) 

 

 

The second order model can also be written to be from 

equation (4) 

R = 𝑠𝑖  𝐴(𝜃𝑖) 𝐴∗(𝜃𝑖) + 𝐻𝑖𝐵(𝜃𝑖) 𝐵∗(𝜃𝑖) +  𝜎2𝐼          (11) 

where 𝐻𝑖 = E[β 𝛽∗] is diagonal matrix of the interfering 

sources` powers. Equation(5) and (8) are model based 

representations for the measurement covariance matrix. 

Correlation matrix singular value decomposition can be 

written 

R = [𝑈1𝑈2] [
Σ1 0

0 𝜎2𝐼
] [

𝑈1

𝑈2
]

𝐻

               (12) 
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= 𝑈1Σ1
2𝑈1

∗ +  𝜎2𝐼                     (13) 

where 𝑈1 is the signal subspace, 𝑈2 is the noise subspace. 

We denote the orthogonal projection matrices into the 

signal and noise subspaces by 𝑃1  and 𝑃2 . 𝑃1  denote the 

orthogonal projection matrix with signal range space. 𝑃2 

denote the orthogonal projection matrix with noise range 

space.  

Let us consider the least squares source separation of 

the component A(𝜃𝑖)𝛼𝑖 from the measurement y 

A(𝜃𝑖) 𝛼̂𝑖 = 𝐸[A(𝜃𝑖) 𝐵(𝜃𝑖) 

= A(𝜃𝑖) (𝐴∗(𝜃𝑖) 𝑃2(𝜃𝑖) A(𝜃𝑖))
−1

 𝐴∗(𝜃𝑖) 𝑃2(𝜃𝑖) y (15) 

The mean of A(𝜃𝑖) 𝛼̂𝑖  is A(𝜃𝑖)𝛼𝑖  and the second 

moment can be written 

E[A(𝜃𝑖)𝛽̂𝑖𝛽̂𝑖
∗ 𝐴∗(𝜃𝑖)] = 𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)](𝑅𝐴 +

                                            𝜎2𝐼)𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)]∗      
   
      (16) 

When the angle between the subspace A(𝜃𝑖) and B(𝜃𝑖) 

is small, then the noise gain Trace 𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)]   
𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)]∗ can be large. Equation(12) can be written 

again 

𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)(𝑅𝐴 − 𝜎2𝐼)𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)]∗ =

                                                  𝐴(𝜃𝑖)𝑠𝑖𝑎∗(𝜃𝑖)                    (17) 

The covariance for the interfering sources may be 

extracted as follow: 

𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)(𝑅𝐴 − 𝜎2𝐼)𝐸[𝐴(𝜃𝑖)𝐵(𝜃𝑖)]∗ =

                                                 𝐵(𝜃𝑖)𝐻𝑖𝐵∗(𝜃𝑖)                    (18) 

Equation(17) and (18) can be combined to write 

𝑅𝐴 = 𝐴(𝜃𝑖)𝑠𝑖𝑎∗(𝜃𝑖) +  𝐵(𝜃𝑖)𝐻𝑖𝐵∗(𝜃𝑖)                 (19) 

adaptive 
algorithm

Ant 1

Ant 2

Ant M


out

w1

w2

wM

 

Fig. 1. Direction of arrival estimation with MUSIC algorithm. 

III. ESTIMATION OF SUBSPACE 

A. Subspace Time Varing Channels 

In this section, a second order analysis is carried out. 

Finite sample effects and calibration errors are not 

considered. Thus, only the effects of angular spreading 

are studied. The perturbation of the covariance matrix 

caused by the angular spreading is first related to the 

perturbation of the estimated signal and noise subspaces. 

These results are then used to find the perturbation of the 

estimated DOAs. For the case where the local scattering 

cause no angular spreading, but only variations of the 

received signal powers, ∇𝑖= 0. The nominal covariance 

matrix of the observation, R is can be written  

R = 𝐴(𝜃𝑖)𝑠𝑖𝑎
∗(𝜃𝑖) +  𝐵(𝜃𝑖)𝐻𝑖𝐵∗(𝜃𝑖) + 𝜎2𝐼         (20) 

A basis for the nominal signal subspace may be 

defined from the eigenvalue decomposition of R 

R = 𝐸𝑠Λ𝑠  𝐸𝑠 
∗ + 𝐸𝐼Λ𝐼  𝐸𝐼 

∗ + 𝐸𝑛 𝐸𝑛 
∗                (21) 

where 𝐸𝑠 ,  𝐸𝐼 , and 𝐸𝑛  are signal, interference and noise 

subspace, respectively. The estimates calculated with this 

covariance matrix will coincide with the nominal DOAs. 

With angular spread, the sample covariance matrix can be 

written 

𝑅̅ = [𝐴 + 𝐴̅ ]Λ 𝑆 Λ∗[𝐴 + 𝐴̅ ]∗ + [𝐵 + 𝐵̅ ]Λ 𝑆 Λ∗[𝐵 +

𝐵̅ ]∗ + 𝜎2𝐼                                                 (22) 

The estimated basis for the nose subspace is defined 

from the eigenvalue decomposition ( 𝑅̅ ). The de-

correlation between long observation period to use the 

following approximation 

𝐵(𝜃𝑖) 𝐵∗(𝜃𝑖) ≅ 0                            (23) 

Note that the assumption of sequence de-correlation 

with co channel interference is basic for the derivation of 

the proposed method and that in practice this assumption 

is all the more valid if the training duration is long. Then, 

Equation(17) can be rewritten follow 

R = 𝐴(𝜃𝑖)𝑠𝑖𝑎
∗(𝜃𝑖) + 𝜎2𝐼                   (24) 

B. DoA Estimation 

The DOA are obtained as peaks in the following 

spectrum 

𝑃𝑖(𝜃) =
𝐴(𝜃)𝐴(𝜃)𝐻

𝐴(𝜃)  (𝐼−𝑉𝑖𝑉𝑖
𝐻) 𝐴(𝜃)𝐻                    (25) 

where (𝐼 − 𝑉𝑖𝑉𝑖
𝐻) denotes the orthogonal projector on the 

noise subspace relative to the i
th

 sample of the channel 

response. In the case of uniform linear array, this search 

can be avoided by polynomial rooting. Here 𝑉𝑖𝑉𝑖
𝐻 is the 

orthogonal projector on the source subspace and 𝑉𝑖  is 

obtained as the dominant eigenvector of R. 

IV. COMPUTER SIMULATION 

We employ N = 6  uniform linear sensor array 

antennas with equal power signals arriving in the half 

wavelength space. Output form these beams are based on 
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50 snapshots. We assume both that there are uncorrelated 

signal sources arriving from all direction and that there 

are equal power interferers in all directions.  

 
Fig. 2. Received channel signal. 

In Fig. 2, we see the response of the source, 

interference, and noise signal. In Fig. 3, we see the 

filtered signal at the linear array antennas. In Fig. 4, the 

graph shows the general MUSIC algorithm used to 

estimate the desired signal. Fig. 4 shows the estimation of 

three signals, and which does not correctly estimate the 

desired. Fig. 5 shows the application of the modified 

MUSIC algorithm proposed in this paper. Fig. 5 correctly 

estimates the desired signal, and both interference and 

noise signal. 

 
Fig. 3. Sampling signal. 

The proposed modified MUSIC algorithm shows 

superior estimation of the desired signal relative to the 

general MUSIC algorithm.   

We increased the number of sources to five; these 

sources are located at -35
o
, -25

o
, 0

o
, 5

o
, and 15

o
. Fig. 6 

shows the five directions of arrival, i.e., -35
o
, -25

o
, 0

o
, 5

o
, 

and 15
o
, for the method proposed in this paper. This 

method correctly estimates the five DOAs.  

Fig. 7 shows a graph of DOA estimation as the MUSIC: 

it shows errors of roughly 2
o
. The proposed method can 

estimate the target direction based on reference signal and 

a phase shift in the case of adding more array antenna 

element than the signal sample number. This method is 

able to find the DOA in a wireless channel. Fig. 7 shows 

the estimated DOA for the conventional MUSIC 

algorithm at -5
o
, 0

o
, and 5

o
.  

 

Fig. 4. General MUSIC algorithm. 

 

Fig. 5. Modified MUSIC signal 

 

Fig. 6. DoA estimation of general MUSIC algorithm. 
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Fig. 7. DoA estimation of proposed MUSIC alogorithm. 

 
Fig. 8. DoA estimation of general MUSIC algorithm 

 

Fig. 9. DoA estimation of proposed MUSIC algorithm. 

In Fig. 8, we saw that for [0
o
], the signal amplitude 

peak decreased. Fig. 8 shows that the conventional 

method estimates two number signals, because it cannot 

estimate a 0
o
 signal when the threshold amplitude is 

below -5dB.   

Fig. 9 shows the estimated direction of arrival with the 

algorithm proposed in this paper. Fig. 9 shows correct 

estimation DOA for three signals at -5
o
, 0

o
, and 5

o
. 

V. HELPFUL HINTS 

In this paper, we proposed a modified MUSIC 

algorithm to estimate the desired signal in a wireless 

channel. The proposed algorithm removes interference 

and noise signals in the time impulse channel. The 

proposed algorithm uses an acquisition covariance matrix, 

before removing noise and interference signals, to find 

the desired signal. We must find the covariance matrix to 

divide the subspace so as to determine the desired signal. 

The subspace is divided in to a signal subspace and a 

noise subspace. It is necessary to detect the number of 

sources before estimating the DOA. The results of 

computer simulation showed that our modified MUSIC 

algorithm has better performance than the general 

MUSIC method when finding desired signals and 

removing interference and noise signal in wireless 

communication 
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