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Abstract—In this research, we address the problem of Two-

Dimensional (2D) angle estimation for monostatic Multiple-

Input Multiple-Output (MIMO) radar. An expanded PARAFAC 

model is proposed to make full use of the Vandermonde-like 

structure of the data model, which expands the received data 

through unitary transformation and links the problem of 2D 

angle estimation to the PARAFAC model. Unlike the traditional 

estimation algorithms such as multiple signal classification 

(MUSIC) and estimation method of signal parameters via 

rotational invariance techniques (ESPRIT), the proposed 

algorithm does not require spectral peak searching nor 

eigenvalue decomposition of the received signal covariance 

matrix. Furthermore, our algorithm can achieve automatic 

pairing of 2D angles, and it has blind and robust characteristic, 

therefore the proposed algorithm has higher working efficiency. 

In addition, the proposed algorithm can detect more targets and 

has better estimation accuracy than ESPRIT algorithm and 

PARAFAC method. Extensive numerical experiments verify the 

effectiveness and improvement of our algorithm. 
 
Index Terms—multiple-input multiple-output radar, angle 

estimation, PAFAFAC decomposition 

 

I. INTRODUCTION 

There is no doubt that Multiple-Input Multiple-Output 

(MIMO) radar will be a backbone to the future war. The 

concept of MIMO radar is that the radar system 

simultaneously transmits mutually orthogonal waveforms 

with multiple antennas and receive the reflected echoes 

with multiple antennas. The information of an individual 

transmitter-to-receiver path is separated by the matched 

filter at the receiving end. The virtual transmitter-to-

receiver paths enable MIMO radar to achieve more 

degrees of freedom than the traditional phase-array radar 

[1]. Theoretical research indicates that MIMO radar has 

several built-in advantages in noise suppression, 

overcoming the fading effect, improving spatial 

resolution, enhancing parameter identifiability, etc. [2]-

[4]. 
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Direction-of-Arrival (DOA) estimation is a canonical 

problem in MIMO radar that has aroused extensive 

attention in the past decade. In [5] and [6], Capon and 

multiple signal classification (MUSIC) algorithms were 

introduced into angle estimation for MIMO radar, 

respectively, which estimate parameters via the spectral 

peak searching and suffer from high computational 

complexity. ESPRIT method, which is short for the 

estimation method of signal parameters via rotational 

invariance techniques, has been discussed in [7] and [8]. 

It utilizes the shift invariance property of the virtual array 

in MIMO radar for parameters estimation, and ESPRIT 

method does not require spectral peak searching. 

Generally speaking, the computational complexity of 

multiplying two complex numbers is much more than that 

of two real numbers. To reduce the computation load, the 

unitary transform based ESPRIT algorithm was proposed 

in [9] for target location in bistatic MIMO radar, which 

computing ESPRIT with real number and has estimation 

performance very close to that of the ESPRIT method. 

The parallel factor analysis (PARAFAC) method, 

sometimes also referred to as trilinear decomposition 

algorithm, was developed for angle estimation in [10]-

[11], which stacked up the received data into higher-

dimensional tensors model. Along with Trilinear 

Alternating Least Square (TALS) [12], the loading 

matrices could be estimated thus parameters were 

obtained. To support on-line applications, an adaptive 

PARAFAC algorithm has been presented in [13], which 

lower the complexity of the existing batch mode 

PARAFAC algorithms and has estimation performance 

very close to that of non-adaptive ones. The compressed 

PARAFAC model has been derived in [14], which fits a 

low-rank tensor model in the compressed domain and 

solves the inverse problem in the low-dimensional space. 

It has been applied in angle and Doppler frequency 

estimation for monostatic uniform linear arrays (ULA) 

configured MIMO radar [15]. The PARAFAC method 

may be considered as a generalization of the ESPRIT 

method while achieving more accurate performance [16]. 

The ULA configured MIMO radar only have the 

ability for one-dimensional (1D) angle estimation, for 

Two-Dimensional (2D) angle estimation, 2D array 

manifold is needed. Typical 2D arrays including octagon 

array [17], cross array [18], L-shape array [19] and 

rectangular array [20]. It has been proven that an L-shape 

array has better accuracy potential than the other 
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manifolds [21]. Inspired by the expansion effect of the 

unitary transform [11], an improved PARAFAC 

algorithm is developed for 2D angle estimation in this 

study. The virtual received data is formed through unitary 

transform, 2D angle estimation is linked to the 

PARAFAC model. The expanded PARAFAC model 

increase the effective aperture of the radar system, 

therefore the proposed algorithm outperformed the 

conversional PARAFAC algorithm [18]. Furthermore, it 

does not require singular value decomposition of the 

received data and can obtain automatically paired 2D 

angle estimations in the MIMO radar. Finally, 

computation complexity is analyzed and Cramér-Rao 

Bound (CRB) for 2D angle estimation in MIMO radar is 

derived. Also, simulation results are given to illustrate the 

good estimation capability of the proposed algorithm for 

L-shape monostatic MIMO radar system. 

The paper outline is as follows. The data model for the 

L-shape monostatic MIMO radar is presented in Section 

2. The expanded PARAFAC algorithm is derived in 

Section 3. The performance and complexity of the 

proposed algorithm is discussed in Section 4. Simulation 

results are given in Section 5. We end the paper by a brief 

concluding in Section 6. 

Notation, capital letters X  and lower case x  in bold 

denote, respectively, matrices and vectors. The 

superscript ( )T
X , ( )H

X , 1( )X  and †( )X  represent the 

operations of transpose, Hermitian transpose, inverse and 

pseudo-inverse, respectively; The subscript F
X  denote 

the Frobenius norm of X ;   stands for the Kronecker 

product; The Khatri-Rao product (column-wise 

Kronecker product) is denoted by , i.e., 

     1 2 1 2 1 1 2 2, , , , , , , , ,K K K K   a a a b b b a b a b a b

; The M M  identity matrix is denoted by MI , and the 

M M  inverse permutation matrix is denoted by MII . 

Target

x
y

z

 
Fig. 1. monostatic L-shape MIMO radar 

II. DATA MODEL 

We modeled a colocated MIMO radar system with L-

shape configuration, as shown in Fig. 1. Suppose that 

there is an M -element transmitter located in the x -axis 

and an N -element receiver located in the y -axis, both 

of them are ULA with half-wavelength spacing, and the 

phase reference point of the transmitter and receiver are 

overlapped in the origin. Assume that K  non-coherent 

targets appearing in the far-field of the antennas with the 

k -th target at azimuth angle k  and elevation angle k . 

Additional assumptions are that the transmit antennas 

transmit narrowband orthogonal waveforms with the 

same carrier frequency. The echoes are collected at each 

receive antenna and passed through a set of matched 

filters for information extraction. The output of the 

matched filters in the n -th receiver takes the form [22] 

       
1

, ,
K

n

n r k k t k k k

k

t a s t   


r a         (1) 

where 

   1 1( , ) , , , ,
T

N N

r k k r k k r k ka a         a  

   1 1( , ) , , , ,
T

M M

t k k t k k t k ka a         a  

Respectively, denote the receive steering vector and 

the transmit steering vector for the k -th target, with the 

element     , exp j 1 sin cosn

r k k k ka n        

 1,2, ,n N , and the element  ,m

t k ka     

  exp j 1 sin sink km     1,2, ,m M . 

   exp 2 /k k k ss t j f t f   is the product of the radar 

cross section (RCS) k  and the Doppler frequency shift 

/k sf f of the k -th target, kf is the Doppler frequency, sf  

is the pulse repeat frequency. Arrange  t x  

     1 2, , ,
T

Nt t t  r r r , we have 

     

     

1 1 1 1, , , ,

, ,

r t

r K K t K K

t

t

   

   

  

 

x a a

a a s
        (2) 

where      1 , ,
T

Kt s t s t   s is a column vector. Let 

the transmit direction matrix 

   1 1, , , M K

T t t K K       A a a , the receive 

direction matrix    1 1, , , N K

R r r K K       A a a . 

Define the coefficient matrix as    1 , ,
T

L   S s s  

L KC  . Suppose that the directions of targets and the 

RCS coefficients are consist during L  snapshots, hence 

the coefficient matrix has a Vandermonde-like structure 

without considering the RCSs: 

   

   

   

1 1

1 1

1 1

exp 2 / exp 2 /

exp 4 / exp 4 /

exp 2 / exp 2 /

s K K s

s K K s

s K K s

j f f j f f

j f f j f f

j Lf f j f L f

   

   

   

 
 
 
 
 
  

S

 

Neglecting the receive noise, the received data 

     1 , 2 , , L   X x x x  can be expressed as 
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   

   

 

1 1 1 1, , , ,

, ,

r t

T

r K K t K K

T T

R T

   

   

  

 

 

X

S

A A S AS

a a

a a           (3) 

Here the direction matrix 

   1 1, , ,K K      A a a  MN K , where the k th 

column      , , ,k k r k k t k k      a a a , which is 

known as the virtual array steering vector. The expression 

in (3) could be regarded as PARAFAC decomposition in 

matrix format, as a result, 2D angle estimation could be 

linked to the traditional PARAFAC model [11], [18]. 

However, the Vandermonde-like structure of the source 

matrix S  is always ignored. Our aim is to increased 

estimation accuracy with the existing hardware 

architecture. For this purpose, a unitary transform based 

PARAFAC model is proposed in this research, which will 

be discussed in detail in the next section.  

III. IMPROVED PARAFAC ALGORITHM 

A. Data Expansion Using Unitary Transformation  

Employing the center of the ULA as the phase 

reference, the array manifold is conjugate 

centrosymmetric [23]. Given the receive array as an 

example, the central symmetry can be stated 

as
*( , ) ( , )N r k k r k k   Π a a . Define a simple unitary 

matrix 

2 2

2

1

2

d d d d

d

d d

j

j





 
 

 

I I
Q

Π Π
            (4) 

if d  is even, or 

   2 1 2 1

2 1

0
1

0 2 0
2

0

d d

d d

d

d d

j

  



 
 

  
 
 

I I

Q

Π Π

      (5) 

when d  is odd. 
H

NQ  is a sparse unitary matrix which 

maps ( , )t k k a  onto an real-valued manifold. For 

example, if N  is odd, we have 

 
 

   

1 1
( ) 2 exp cos ,

2 2

1 1
,cos , ,sin , sin

22

Q H

r k N r k k k

T

k k k

N N

N

   

  

        
       

     

   
   
   

Qa a

 

where sin cosk k k   . Obviously, the column vector 

 Q

r ka can be expressed as the product of a complex 

value and a real-valued vector. Let N M Q Q I , we 

therefore have 

 ( ) ( ) ( ) ( ) ( )H H Q

k N r k t k r k t k       Q Qa a a a a   (6) 

Define the transformed direction matrix QA  as 
H

Q A Q A . According to(6), we obtain 
Q

Q R TA A A  

with
Q H

R N RA Q A . The uncorrupted signals in(3) can be 

transformed into 

 
H H T T

Q Q  X Q X Q AS A S                 (7) 

On the other hand, due to the Vandermonde-like 

structure on S , we have
H T

L S Π ΛS , where 

 1 2, , , Kdiag   Λ  is a diagonal matrix with the 

elements   exp 2 1 /k k sj f L f    ,  1, ,k K . 

Notice that the source matrix S  has a similar central 

symmetry to RA , another data matrix can be built 

 
* * T T

L Q L Q L  X X Π A ΛS A S                   (8) 

one can easily find that  L R T
A A Α with

Q

R R

 A A Λ . 

Without additive noise, the expanded data matrix is 

formed as following 

 
Q

Q T TR T

E E T

L R T

  
    

   

X A A
X S A A S

X A Α
      (9) 

where 
2

Q

N KR

E

R


 

  
 

A
A

A
. The expression in (9) could 

also be counted as expanded PARAFAC decomposition 

in matrix format, which can be expressed in detail 

 

 

 

1 1

2 2

2 2

[ ]

T E

T ET T

E E T

N T N E

D

D

D

  
  
    
  
  
    

X A A

X A A
X A A S S

X A A

  (10) 

where ( )n RD A  denotes the operations of rearranging the 

n -th row of 
E

RA into a diagonal matrix. The n -th slice 

nX  of EX  is given by  E T

n T n RDX A A S  

 1,2, ,2n N . Equation (10) shows that expanded 

PARAFAC model essentially doubles the number of 

available measurements from MN  to 2MN . 

Consequently, increased estimation accuracy can be 

achieved by the expanded PARAFAC model. PARAFAC 

decomposition could be also expressed in scalar format 

, ,

1

( , ) ( , ) ( , )

( 1,2, , ; 1,2, ,2 ; 1,2, , )

K
E

m n l T R

k

x m k n k l k

m M n N l L





  

A A S
    (11) 

The model in (11), which rearranged the data from the 

array antennas into a cube, can be regarded as the trilinear 

slice model. It depicts the echo form the perspective of 

three different diversities, as shown in Fig. 2. The matrix 

nX  can be deem as slicing the cube data into successions 

of slices along the receive antenna direction. Due to the 
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symmetry of the parallel factor model, two more matrices 

can be constructed 

 

 

 

 

1 1

2 2

T

T T T

E T E

M M T

D

D

D

  
  
    
  
  
    

Y S A

Y S A
Y A A S A

Y S A

     (12) 

and 

 

 

 

 

1 1

2 2
.

E

E T T

R E T

L E L

D

D

D

  
  
    
  
  
    

Z A S

Z A S
Z A S A A

Z A S

       (13) 

where the slices   T

m m T EDY S A A  1,2, ,m M  and 

  T

l E l TDZ A S A 1,2, ,l L . The data matrices Y  

and Z can be interpreted as slicing the cube along the 

transmit antenna array direction the snapshot direction, 

respectively.  

Xn

n

2N

Ym m
L

M

Zl

l

 

Fig. 2. Trilinear model 

B. Trilinear Alternate Least Squares (TALS) 

TALS is an effective algorithm to solve the 

PARAFAC model. The essence of TALS can be 

described as the following steps: (a) Fitting one of the 

slicing matrices X , Y  or Z  using Least Squares (LS) 

method, where the remaining two matrices are previously 

obtained, (b) Fitting the other two matrices in a similar 

way, and (c) Repeat (a) and (b) until LS cost function 

convergence. The details of solving the expanded 

PARAFAC model with TALS algorithm is described as 

follows. 

Consider the situation where noise is present, 

according to(10), the LS fitting of EX  is  

  
, ,

min
T

E T

T

E T F
f  

X
A B A

X A A S             (14) 

where X  represents the noisy EX . Therefore, the LS 

estimation for S  is 

 
†

ˆ ˆ ˆT

E T
 
 

S A A X             (15) 

with ˆ
EA and ˆ

TA  denote the estimated EA  and TA  in the 

last iteration. Similarly, the LS fitting of Y  is 

 
, ,

min
T

E T

T

T E F
f  

Y
A B A

Y A S A where Y  denotes the 

noisy Y . The LS update for EA  is 

 
†

ˆ ˆ ˆT

E T
 
 

A A S Y                (16) 

where ˆ
TA and Ŝ  are previously obtained. Finally, the LS 

fitting of Z  is  
, ,

min
T

R T

T

E TZ F
f  

A S A

Z S A A and the LS 

update for TA  is 

 
†

ˆ ˆ ˆT

T E
 
 

A S A Z               (17) 

where Ŝ  and ˆ
EA  represent the previously estimated Ŝ  

and EA , respectively. 

C. Angle Estimation 

The uniqueness property under mild conditions is a 

key feature of PARAFAC decomposition. Theorem 1 [24] 

gives the identifiablitity of the expanded PARAFAC 

model. 

Theorem 1:   T

n T n EDX A A S ,  1,2, ,2n N , 

where
M K

T

A , 
2N K

E

A , L KS . Consider that 

all the matrices are full k -rank [25], if the parameter 

identifiability satisfies 

2 2
T E

k k Kk  
A A S                   (18) 

then TA , EA and S are unique up to permutation and 

scaling of columns, where 
T

k
A ,

E
k

A and k
S denote the k -

rank of TA , EA and S , respectively. The estimated 

matrices ˆ
TA , ˆ

EA and Ŝ satisfy 1 1
ˆ

T T A A ΠΔ N , 

2 2
ˆ

E E A A ΠΔ N and 3 3
ˆ  S SΠΔ N , where Π  is a 

permutation matrix, 1N , 2N and 3N represent the 

corresponding estimation error, and 1Δ , 2Δ and 3Δ stand for 

the diagonal scaling matrices satisfying 1 2 3 KΔ Δ Δ I . 

Once TALS is accomplished, the estimated direction 

matrices EA  and TA  could be obtained. Since the phase 

of the columns in EA  and TA  have linear characteristics, 

so the LS method is reused for 2D angle estimation. The 

estimated transmit vector  ,t k k a  was firstly 

normalized to the reference phase center. Let 

  ,1
ˆ ,k t k kangle   h a                        (19) 

where the operation   ˆ ,t k kangle  a is to get the phase 

of  ˆ ,t k k a . We construct the following matrix and 

vector  

 
,12

1

,2

1 1 1
,

0 1

T

kM

k

k

u

uM 


  
    

   
P u =  (20) 
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Furthermore, the LS solution to ku is 

 
†

1 ,1k k Pu h                 (21) 

One can easily find that ,2ku  is the LS estimation 

to sin cosk k  . Similarity, define 

   ,2
ˆ ,k e k kangle   h a   (22) 

and construct 

   
,1

2

,2

0 0 1 1
,

0 1 0 - 1

k

k

k

v

vN N  

  
   

     
P v =  (23) 

Next, we got the LS solution to kv  

†

2 ,2k k Pv h                                  (24) 

One can easily find that ,2kv  is the LS estimation 

to sin sink k  . The azimuth angle and elevation angle for 

the k -th target can be paired automatically through the 

following formula 

 

 ,2 ,2

,2

,2

arcsin

arctan

k k k

k
k

k

u v

v
u





  

  

  
 

  (25) 

IV. ALGORITHM ANALYSIS 

A. Identifiablitity  

The formulation in(18) provides an upper bound on the 

identifiablitity of the proposed PARAFAC algorithm. 

Generally, we have
T

k M
A , 2

E
k N

A and  min ,k K L
S  

in the trilinear model established in this study. 

When K L , the inequality in (18) can be rewritten 

as 2 2M N K   , which implies the maximum number of 

targets that the proposed algorithm can identify 

is 2 2M N  , while the maximum number of targets that 

the traditional PARAFAC algorithm can detect is 

2M N  [10]. Under the condition of K L , the 

proposed algorithm is effective when 

 2 2 / 2K M N L    , while the conditional PARAFAC 

algorithm is effective when  2 / 2K M N L    , 

therefore, the proposed algorithm could achieve better 

estimation accuracy under the same conditions. 

B. Computation Complexity 

Traditional Capon and MUSIC algorithm requires 2D 

peak searching in a higher dimensional space, which 

brings very heavy complexity. The computation 

complexity of the traditional ESPRIT algorithm 

is  2 2 3 3 3M N L M N K    , complexity in each 

TALS iteration of the traditional PARAFAC algorithm 

is  3MNLK K  , and the proposed MCS algorithm 

needs  32MNLK K   calculations per TALS iteration, 

and algorithm convergence with only a few iterations. It 

is obvious that the computation complexity of the 

proposed algorithm is between the ESPRIT method and 

traditional PARAFAC algorithm. 

C. Cramér-Rao Bound (CRB) 

In this subsection, we derive CRB of 2D angle 

estimation in a monostatic MIMO radar. In particular, it 

provides an asymptotic lower bound on the 2D angle 

estimators. We assume that the signal  ts  and the noise 

variance 2  are deterministic, and then estimation 

parameter vector is expressed as 

  1 1, , , ,
T

K k   ζ      (26) 

Collect L snapshots and form the data 

matrix (1) , (2) , , ( )T T TL   X x x x .The mean μ  and 

the covariance matrix Γ  of X are 

 

 

2

2

1 0

,

0

MN

MNL





  
  

    
  

   

A I

Γ

A I

s

μ

s

       (27) 

From [26], we know that the  ,i j  element of the 

CRB matrix ( crP ) can be expressed as 

1 1 1 12Re H

cr i j i jij
tr                 P Γ Γ Γ Γ Γμ μ   (28) 

where i
Γ  and 

i
μ  are the derivative of Γ and μ  on the 

ith element of ζ , respectively. Since the covariance 

matrix is just related to 2 , the first part of (28) can be 

ignored. Then 

 
1 12Re H

cr i jij

        P Γμ μ   (29) 

Define , ,( ) ( )k k kr tk k   a a a , and we have 

 

 

 

1
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k

k

k

k

k k

k

k

k

k

s

k K

s L
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

 
 
 
    
 
 
  

μ
s d
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  (30) 
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k

k

k

k

k k
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k

k

k

s

k K

s L







 
 
 
    
 
 
  

μ
s f

a

a

  (31) 

where 
k

k

k





d
a

, 
k

k

k





f
a

.    1 , ,
T

k k ks s L   s  

with  ks l  1, ,l L  denotes the kth element of  ls . 

Define the following matrix 
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 1 1 1 1, , , , ,K K K K   Δ s d s d s f s f   (32) 

Therefore we have T





Δ

ζ

μ
, and  

  
*

1

2

2
2Re Re H

T 

  
 

  
Γ Δ Δ

ζ ζ

μ μ
  (33) 

Thus the CRB for the 2D angle estimation error in 

MIMO radar is 

   
2

1

Re
2

HCRB
 

 D D      (34) 

where  ,  D D S F S , among which  ,...,D
1 K

= d d , 

 ,...,F
1 K

= f f .  

V. SIMULATION RESULTS 

To evaluate the performance of the proposed 2D angle 

estimation algorithm, 1000 Monte Carlo trials are taken. 

The signal-to-noise in the simulation is defined by 
22

10SNR 10log E EF F
 X X X [dB]. The root mean 

squared error (RMSE) is used for performance 

assessment, which is defined as follows 

    
2 21000

1 1

1 1 ˆ ˆ
1000

K

i,k k i,k kk i
RMSE

K
   

 
      

where ˆ
i,k  and ˆ

i,k  denote the estimation of elevation and 

azimuth angle of the  -th target in the i -th Monte Carlo 

trial. In the simulation, M , N and L denote the number of 

the transmit elements, receive elements and snapshots. 

We consider that there are 3K   targets located at 

angles    1 1, 10 ,15   ,    2 2, 20 ,25    and 

   3 3, 30 ,35   . 

Fig. 3 present the 2D-DOA estimation results of our 

algorithm with SNR = 5dB. Parameters are set to 

8M N  and 40L  , respectively. As seen in this 

figure, our algorithm is able to estimate azimuth angle 

and elevation angle for monostatic L-shape MIMO radar. 
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Fig. 3. Scatter results with SNR=5dB. 

Fig. 4 depicts the performance comparison of our 

algorithm, the conventional ESPRIT algorithm, the 

Unitary-ESPRIT algorithm, the traditional PARAFAC 

algorithm and the CRB with 8M N  and 40L  . 

According to Fig. 4, the Unitary-ESPRIT algorithm has 

estimation performance very close to that of the ESPRIT 

method. Besides, all algorithms would achieve better 

RMSE performance with the growing SNR, and our 

algorithm outperform the other algorithms with the same 

SNR, especially in the condition of low SNR. Fig. 5 

illustrate that the RMSE comparison of the above 

algorithms with different snapshots number 

with 8M N  and SNR=0dB. All algorithms exhibit an 

increasing RMSE trend with the increase in the number 

of snapshots, and it is obvious that our algorithm has 

much better 2D angle estimation than ESPRIT and the 

traditional PARAFAC algorithm.  
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Fig. 4. RMSE comparison with different SNR 
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Fig. 5. RMSE comparison with different L. 
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Fig. 6. RMSE performance with different M  

The RMSE performance of our algorithm under the 

condition of different transmit elements number M and 

different receive antennas number N are investigated 

separately in the simulation, as shown in Fig. 6 and Fig. 7. 

8N  , 50L  and 8M  , 50L  are considered in Fig. 6 
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and Fig. 7, respectively. By comparing the above results, 

one can clearly see that the 2D angle estimation 

performance of our algorithm is gradually improving with 

the increasing antenna number. This is commensurate 

with MIMO systems, as estimation performance can be 

improved with multiple antennas because of diversity 

gain. 
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Fig. 7. RMSE performance with different N . 

Fig. 8 shows the RMSE performance of our algorithm 

versus the number of target K , whit 8M  , 

7N  and 100L  . One can see that 2D angle estimation 

performance of our MCS algorithm degrades with 

snapshot number L  increasing. Fig. 9 presents the RMSE 

performance of our algorithm with the number of 

snapshots, with 8M  , 7N  . It is clearly shown that 2D 

angle estimation performance improved in collaboration 

with L increasing, while our algorithm is effective with 

small snapshots. 
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Fig. 8. RMSE performance with different K 
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Fig. 9. RMSE performance with different L. 

 

VI. CONCLUSION 

An expanded PARAFAC algorithm is developed for 

2D angle estimation in monostatic L shape MIMO radar. 

The virtual aperture of the proposed algorithm is expand 

with unitary transform, and 2D angle estimation problem 

in our work was linked to the PARAFAC model. Our 

algorithm is attractive from the perspective estimation 

accuracy. It achieves better angle estimation performance 

to the traditional ESPRIT method and PARAFAC 

algorithm. Our algorithm doesn’t require singular value 

decomposition of the received data while automatically 

paired the estimated angles, which means it have blind 

and robust characteristic. Also, simulation results showed 

that improvement of the proposed algorithm. 
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