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Abstract—The effect of two different edge attacks on the 

robustness of random scale-free networks against cascading 

failure is investigated by establishing a cascading failure model 

for random scale-free networks. In this model, the initial load of 

an edge is defined as a nonlinear function of the product of the 

betweenness of its end nodes with an adjustable parameter, and 

the local preferential redistribution rule is applied to assign the 

broken edge’s load. An interesting conclusion is reached 

through theoretical analyses and numerical simulations: there is 

a threshold of the load parameter. When the value of the load 

parameter is larger than this threshold, attacking the edges with 

the higher load can result in larger cascading failures; while for 

the case of the parameter value smaller than the threshold, 

attacking the edges with the lower load will be more likely to 

lead to global collapse. Furthermore, the threshold value has a 

close relation with the degree exponent of the network. This 

work will be not only helpful to protect the key edges selected 

effectively to resist the cascading failure, but also useful in the 

design of high-robustness networks in order to stand against all 

kinds of attacks. 

 

Index Terms—Cascading failure, random scale-free network, 

robustness, edge attacks 

 

I. INTRODUCTION 

Large networked systems are the basic support of 

modern infrastructures, such as information 

communication networks, the Internet, power grids and 

transportation networks. In network science, all these 

real-world networks can be illustrated by complex 

networks. Evidence has demonstrated that in realistic 

complex networks, a large influence even global collapse 

can be triggered by the breakdown of a few components 

(nodes or edges) or even a single component caused by 

intentional attacks or random failures through the 

mechanism of cascading. Typical examples are 

breakdowns of the Internet [1] and several large 

blackouts of the power grid in some countries [2]. To 

keep these networks’ safe and stable running under any 

condition, cascading failures robustness of complex 
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networks under component attacks or failures becomes a 

hot topic, as known that the cascading disasters directly 

affect the quality of people’s lives and bring 

immeasurable economic loss to us. 

Up to now, a great number of works have been 

devoted to exploring the cascading phenomenon in 

complex networks, especially in scale-free networks, and 

many valuable results have been found, focusing on 

model approaches of cascading failures [3]-[7], effective 

protection and attack strategies [8]-[13], the cascade 

mechanism and control measures [14]-[20], the 

percolation in interdependent networks [21], [22], and so 

on. When modeling cascading fails, there are generally 

two ways of assigning the initial load on a component 

and the failed components’ loads, including global and 

local strategies [3], [6]. In global strategies, both the 

definition of the initial load and the redistribution of the 

failed components’ loads are according to the global 

topological information such as the betweenness. 

Applying the global methods, many studies investigated 

cascade-based attacks and showed that scale-free 

networks are robust to random failures of components, 

but, at the same time, very fragile to intentional attacks 

such as the removal of the components with the highest 

load [8]. This phenomenon is rooted in the heterogeneity 

of the load distribution originating from the network 

structure. However, calculating the global load always 

needs the global information in real time, which is not 

readily available in a large-scale network. Therefore, 

considering the simplicity of the local information such 

as degree, many researchers adopted the local strategies 

to assign loads and constructed different cascading 

models. In fact, it may be more realistic to consider the 

load dynamics of the cascading phenomenon from a 

combined view. For example, in the Internet or the power 

grids, in which the normal and steady load is formed 

from a long time evolving, the initial load should be 

treated from a global view, e.g., considering the whole 

network topology. But when cascading failures occur, the 

load redistribution should be a transient action, and 

naturally, the load passing through a failed component 

will be directly redistributed among its neighbors. From 

this combined perspective, the authors of [7] discussed 

cascading behaviors of different networks. They found 

that the networks have the best robustness if the load of 

each edge is the multiplication of the betweenness of the 
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end nodes. Their work revealed that adjusting initial load 

distribution can significantly improve the robustness of 

scale-free networks. Such “soft” protection mechanism is 

regarded to have practical application because it does not 

require the changes of network connection and capacity 

layout. However, they investigated the whole robustness 

characteristic of the networks by cutting each edge, 

without considering the effect of different edge failures 

on network vulnerability. Furthermore, most existing 

studies on cascading failure robustness of scale-free 

networks are based on Barabási and Albert (BA) model, 

but they are not conformed to the real network because 

the degree exponent of the BA model is a constant. 

In the present work, we follow the research of [7] by 

considering a new cascading model for random scale-free 

networks, wherein the cascading process is triggered by 

two different attacks on network edges, namely attacking 

the edges with the highest load and with the lowest load.  

The effect of two attacks on the network robustness 

against cascading failures in our cascading model is 

analyzed theoretically and numerically. It is found that 

there exists a threshold 
c  of model parameter   that 

controls the distribution of the initial load on each edge. 

When c  , the network preserves its robustness 

against both types of attacks; while for 
c  , as 

unexpected, attacking the edges with the lowest load can 

damage the network more severely than the other one. 

Furthermore, the value of 
c  strongly depends on the 

degree exponent of the network. This paper may have 

practical implication for developing effective 

attacking/protecting and soft designing high-robustness 

networks for future real systems. 

The rest of this paper is organized as follows: in Sec. II, 

we describe the cascading model of a random scale-free 

network in detail. In Sec. III, we discuss the effect of the 

model parameters on network robustness by the 

theoretical analysis and simulation. Finally, some 

summaries and conclusions are stated in Sec. IV. 

The model 

It has been proposed that many real-world networks 

show power-law degree distribution, and are termed as 

scale-free. There are many models which reproduce such 

scale-free features. BA model is the well-known one of 

them, in which the degree exponent   of the produced 

network is constant 3. Actually, for most real networks, 

the   is varying values, which has turned out to be 

sensitive to the detail of network structure [23]. Thus, we 

consider the random scale-free network [24] as the 

physical infrastructure in which a cascading process takes 

place. The network starts as N  nodes, which are 

indexed by an integer i  ( 1,i N= ). For each node, 

there is a weight 
ip i  , where a  is a control 

parameter in [0,1) . Then two different nodes i  and j   

are selected with probabilities equal to the normalized 

weights, i kk
p p  and j kk

p p , respectively, and 

a new edge is added between them unless one exists 

already. This process is repeated until mN  edges are 

made and N  nodes are connected completely in the 

network. The resulting network achieves power-law 

degree distribution, ( )p k k g- , where  is given by 

(1 )    . Thus, adjusting the parameter a  in 

[0,1) , various values of the degree exponent   can be 

obtained in the range 2    . In the present work, the 

total network size is fixed as 200N =  and the 

parameter is set to be 2m =  (hence the mean degree 

2 4k m< >= =  [24]). 

With the random scale-free networks at hand, let us 

define the cascading model based on edge failure. As is 

known, in real-world networks, complex networks 

generally transport load flow closely related to our daily 

life. Under normal circumstances, such flow keeps a 

balanced state as a result of a long time evolving, and the 

system maintains its normal and efficient functioning. 

However, due to either random breakdowns or intentional 

attacks, the failures of some edges may cause loads to 

redistribute among other edges in the network, which 

may trigger more edges’ failure and even entire collapse 

of the network.  

Inspired by the above consideration, we assume the 

initial load of an edge ij  before attack to be 

( )ij i jL B B                  (1) 

where 0   is an adjustable parameter and controls the 

distribution of the initial load, and iB  and jB  are the 

betweenness of nodes i  and j , respectively. The 

betweenness of a node i  is defined as follows: 

  
( )st

i
s t st

i
B





                (2) 

where st  is the number of shortest paths from the node 

s  to node t  and ( )st i  is the number of these 

shortest paths making use of node i . Compared with the 

widely-used betweenness, the definition of this 

generalized betweenness considers the two end points of 

each shortest path, and thus avoiding the possibility that 

some edges may bear no loads at all. At the same time, 

the ranking of edge betweenness centrality keeps the 

same. From (1), we can see that the load on an edge has a 

power-law dependence on the product of betweenness of 

its two end nodes. This is supported by empirical 

evidence of real networks [7]. As an example, when a 

data packet is sent from one position to another through 

scale-free networks such as the Internet, the links 

between central points of high betweenness are more 

probable to be chosen because it can be efficient to get to 

the destination along them. 

As every edge has some limited capacity determining 

the load-carrying ability which is generally constrained 
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by cost, it is reasonable to assume that the capacity iC  

of edge ij  is proportional to its initial load, that is  

            (1 )ij ijC L                (3) 

where 0   is a tolerance parameter, which guarantees 

that initially there are no overloaded edges. Obviously, 

the bigger   is, the more ability the edges possess to 

handle the extra load, but the higher building the network 

costs. Therefore, there should be explored to build the 

strong robustness network against cascading failure with 

the minimum cost.  

Here we focus on cascades triggered by a small attack, 

e.g., removal of a single edge. The load flow along the 

broken edge will be redistributed to the other edges in the 

network. Different from the load global redistribution 

rule, considering that the load redistribution is a transient 

action, the load on the failed edge must pass its 

nearest-neighbor edge. So the load local preferential 

redistribution rule is applied [6]. To be specific, the 

additional load imLD  that a neighboring edge im   

receives from the failed edge ij  is proportional to its 

capacity, i.e.,  

           

i j

im
im ij

ia jb
a b

C
L L

C C
 

 
           (4) 

where i  and j  are the sets of neighboring nodes of 

i  and j , respectively. This rule for the load 

redistribution is based on the observation in real-world 

networks like the Internet. If a line fails, it is reasonable 

to preferentially reroute traffic along those 

higher-capacity edges to avoid further congestions. 

In this scheme, for a neighbor im  of the edge ij , if  

im im imL L C               (5) 

then the edge im  will break apart, inducing further 

redistribution of its load of im imL L  according to (4) 

and potentially more edges might break. Cascading 

failure continues as long as there is an edge whose load 

exceeds its capacity. 

In previous studies, there are generally two 

cascade-based attacking strategies: random attack and 

intentional attack. The former is to attack some randomly 

chosen components. The latter is to attack the important 

components, which are usually considered to be the ones 

with the highest load. Undoubtedly, if a network is robust 

under intentional attacks, it will be capable of 

withstanding all of the attacks. Since scale-free networks 

are robust to random attack but fragile to intentional 

attack, a critical question is that how to choose the 

important components to execute the intentional attack, 

or is it always more influential for the network to attack 

its components with the higher load than the ones with 

the lower load. From this issue, two intentional attack 

strategies are considered in our cascading model. One is 

called HL strategy that attacks the edges with the highest 

load. The other is called LL strategy that attacks the 

edges with the lowest load. 

The damage caused by a cascade-based attack is 

quantified in terms of the number of broken edges after 

the cascading process is over. We use ijCF  to denote the 

avalanche size induced by removing edge  and 

calculate the consequence after every attacked edge fails. 

Since 0 1ijCF E   , we adopt the normalized 

avalanche size, i.e., /( ( 1)),attack ij Aij A
CF CF N E


   

where E  represents the total number of edges in the 

network, and A  and AN  represents the set and the 

number of edges attacked, respectively. Apparently, the 

lower the value of attackCF , the stronger the robustness of 

the network against cascading failure. 

II. ANALYSIS AND SIMULATION RESULTS 

Based on the mechanism of load redistribution in the 

cascading model, when the edge ij  fails, to avoid the 

emergence of cascading failure, the following condition 

should be satisfied: 

              im im imL L C               (6) 

According to the definitions of imL  and imLD , the 

above (6) can be rewritten as: 

 

( )
(1 )( )

( ) ( )
i j

i m
im ij i m

i a j b
a b

B B
L L B B

B B B B




 


 

  
   (7) 

In the cascading process, an edge’ load will be 

undoubtedly greater than its initial load, that is: 

( )

( ) .

im i m

ij i j

L B B

L B B

q

q

³

³
               (8) 

By inserting (8) into (7), we can get 

( )

( ) ( )
i j

i j

i a j b
a b

B B

B B B B



 


 


           (9) 

Since the relation of betweenness and degree meets the 

following equation [24]: 

( 1) /( 1)B k                   (10) 

where   and   are the power-law parameters of 

degree distribution, , and betweenness 

distribution, ( )P B B , respectively. Substituting (10) 

into (9), and let ( 1) /( 1)      , then we can get 

1
( )

( ) ( )
i j

i j

i a j b
a b

k k
k k k k



 


 


       (11) 
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According to the knowledge of degree and probability, 

we know 

max

'
min

' '( )
i

k

a i i
a k k

k k P k k k 

 

          (12) 

where mink and maxk are the minimum and the maximum 

node degrees, and 
'( )iP k k  is the conditional 

probability that a node of ik  has a neighbor of 'k . 

Since most scale-free networks such as random scale-free 

networks in the present work have no degree-degree 

correlation, ' ' '( ) ( ) /iP k k k P k k   . So we can get 

max

'
min

1' ' '( )

i

k
i

a i
a k k

k kk P k k
k k

k k






 

 
 

   
     (13) 

max

'
min

1' ' '( )

j

k
j

b j
b k k

k kk P k k
k k

k k






 

 
 

   
     (14) 

Based on (13) and (14), (11) can be expressed by: 

1

1

ji

j i

k

kkk

k k



 




 


 


           (15)

 

Since  

1

2

2

( )

ji

j i

i j

kk

k k
k k

  
 

           (16) 

from (15), we can get 

1

2

1

( )

2

i jk k k

k










 


 

            (17) 

According to (10), for scale-free networks, 
( 1)/( 1)k B d g- - , then (17) is rewritten as: 

1 1 1
( )

2 1 1

1
( )

1

( )

2

i jB B B

B

 


 








 


 






 


 

       (18) 

In order to prevent large-scale cascading failures, (18) 

must be satisfied. According to [24] and [25], the 

parameter 
1

1








 is a positive value. From (18), we can 

see that the behavior of network will be mainly 

determined by the expression 
1

1










. For detail, when 

1
0

1







 


, namely 

1

1










, it is easier for the larger 

i jB B  to dissatisfy (18), thus the removal of edges with 

the larger betweenness or the higher initial load has a 

more important impact on the network. While for 

1
0

1







 


, namely 

1

1










, in turn it is easier for 

the smaller i jB B  to dissatisfy (18), thus the removal of 

edges with the smaller betweenness or the lower initial 

load has a more important impact on the network. 

Similarly, when 
1

0
1







 


, namely 

1

1










, 

attacking the edges with the higher initial load or the 

lower initial load makes no difference, so the threshold is 

1

1
c










. 

As to the value of   for different scale-free networks 

with the degree parameter  , [24] and [25] indicated 

that 2.2   is a universal value in the range of 

2 3  ; while for 3  ,   depends on g  in a way 

that it increases as g  increases. As an example, when 

3  , which corresponds to the degree exponent of the 

classic BA model. Adopting 2.2  , 
1

0.6
1

c







 


. 

Moreover, although we do not obtain theoretical values 

of   for approximating the values of c  for 3  , 

we can estimate the c  values for 3   numerically. 

Next, for better understanding the cascading 

phenomenon and verifying the above analytic results, 

extensive simulation tests are performed using 

MATLAB. 

According to our cascading model, different random 

scale-free networks with total size 200N =  and 

average degree 4k< >=  can be constructed. Then, the 

effect of   and  on the robustness of random 

scale-free networks under the HL and the LL attacking 

strategies is investigated. For each strategy, 8 edges are 

chosen as the attacked objects. Considering the effect of 

the difference of the network topologies generated by the 

random scale-free model on simulation results, every 

curve in the following is obtained by averaging over 

experiments on 20 independent networks. In the 

cascading model, for a given value of g , the bigger the 

value  , the higher the heterogeneity of the load 

distribution. Therefore, first fixing 3  , we focus on 

the effect of the load parameter   on the robustness 

against cascading failure.  

Fig. 1 shows the normalized avalanche size attackCF  

under the HL strategy and the LL strategy as a function 

of the tolerance parameter   for 0.2   and 0.4  . 

It is originally expected the HL strategy may be prone to 

trigger large-scale cascading failures than the LL. 

However, we can find that when 0.2   or 0.4  , 

their LL curves locate in the right of their corresponding 

HL curves, which indicates that given a value of b , the 

values of the corresponding attackCF  of the LL curves 

are not smaller. Thus, large-scale cascading failures can 

be more likely to be triggered by attacking the edges with 

the lower load in the case of 0.2   or 0.4  . 
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It also can be found from Fig. 1 that a phase transition 

occurs at a critical threshold c  of   for each curve, 

where for c  , no cascading failure arises and the 

network maintains its normal and efficient functioning. 

On the other hand, for c  , cascading failure 

suddenly emerges, causing the whole or part of the 

network to stop working. So the lower the value of c , 

the stronger the robustness of the network. When 

0.2   or 0.4  , the values of c  under the LL 

strategies are larger than the ones under the strategies. 

This reproves that in the case of 0.2   or 0.4  , 

attacking the lower load edge is a more efficient strategy.  

 

Fig. 1. Comparison between two attack strategies when 0.2   and 

0.4  . 

 

Fig. 2. Comparison between two attack strategies when 0.8   and   

1  . 

When 0.8  and 1.0  , Fig. 2 shows the 

relationship between the tolerance parameter   and the 

normalized avalanche size attackCF  under two attack 

strategies. We can observe that different from Fig. 1, the 

HL curves move to the right of the LL curves, and the 

c  values of the HL curves become larger than the LL 

ones. So when 0.8   and 1.0  , attacking the 

edges with the higher load is more prone to large-scale 

cascading failures, which is mainly originated from that 

as the value   increases to 0.8   or 1.0  , the 

strength of the heterogeneity of the distribution of the 

load makes the edges with the higher load more 

important. These are consistent with previous studies that 

attacking the components with the highest load can bring 

the most serious damage to the network [3], [4], [8], [17], 

which is a special case of our model. 

In addition, as the value   increases, another 

interesting observation is that the HL curves and the LL 

curves have the trend of getting closer in Fig. 1, while 

they have the trend of getting apart from each other in Fig. 

2. Thus a natural question arises: is there a value c   

between 0.4   and 0.8   at which the effect of 

two attacks is almost identical?  

To address this problem, the relationship between the 

tolerance parameter   and the normalized avalanche 

size attackCF  is investigated when 0.6  . From Fig. 3, 

it is easy to find that in the case of 0.6  , the HL curve 

and the LL curve are very close to each other, and the 

c  values originating from the two curves are almost the 

same. The c  values of two attack strategies for 

0.6   are also compared with ones for the other values 

of   between 0.4   and 0.8  . As shown in 

Table I, when 0.6  , for the HL and the LL attacks 

0.09c  , and 0.6   leads to their smallest 

difference of c . So for the scale-free network with 

3  , it surely exists a threshold c  around 0.6, which 

corresponds to the theoretical estimate obtained. At this 

threshold, the effect on the network is almost the same 

for the HL and the LL attacks, in other words, the 

network preserves its robustness against the HL and the 

LL attacks.  

 

Fig. 3. Comparison between two attack strategies when 0.6  .  

TABLE I: THE TOLERANCE THRESHOLDS c  OF TWO ATTACK 

STRATEGIES BETWEEN 0.4   AND 0.8   

Attack 

strategies 
0.4q =  0.5q =  0.6q =  0.7q =  0.8q =  

    HL 

    LL 

0.032 

0.117 

0.068 

0.102 

0.091 

0.093 

0.104 

0.081 

0.111 

0.072 

 

We also take the case of 3   into account. The 

same thing that there exist the critical thresholds c  

happens in scale-free networks with different values of 
 . The relationship between the degree exponent  

and the critical threshold  is portrayed in Fig. 4. 

Integrating with above simulation analysis, we can draw 

a conclusion that for the random scale-free network 
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whose degree exponent is adjusted, there is a threshold 

c . When c  , the HL strategy is more likely to lead 

to large-scale cascading failures than the LL strategy; 

while, on the contrary in the case of c  . Meanwhile, 

our theoretical results are verified. 

Moreover, from Fig. 4, it is obvious that the critical 

threshold c  is increasing with the increase of the 

degree exponent   when 4  , and c  presents 

ascendant trend after dropping first with the increase of 

g  when 4   and 5  . Anyhow, c  ( 3  ) is 

greater than c  ( 3  ), which indicates that the degree 

exponent   has an important influence on the value of 

c . And the results shown in Fig. 4 give each class of 

networks with the different value   a threshold c , 

which can make little difference to attack the edges with 

the lower load or with the higher load. 

 

Fig. 4. The relation between the degree exponen and the critical 

threshold . 

III.  CONCLUSIONS 

Cascading failures triggered by a small initial attack 

can do great harms to complex networks, especially to 

the infrastructure networks. Protecting the network 

against cascading failure under all kinds of attacks is 

particularly important. In this article, the factors affecting 

robustness of random scale-free networks against 

cascading failure under edge-based initial attacks are 

studied. A model of the random scale-free network for 

cascading failure is constructed based on a function of the 

betweenness and control parameter  . According to the 

random scale-free network whose degree exponent is 

adjusted, the network robustness for cascading failure is 

investigated. The analytic results and the numerical 

simulations both show that: there exists a threshold c . 

On the one hand, when c  , attacking the edges with 

the highest load certainly works more efficient. On the 

other hand, when c  , as unexpected, attacking the 

edges with the lowest load is more harmful. Moreover, 

the degree exponent of the network significantly affects 

the value of c . Such interesting and enlightening 

phenomenon indicates that the load and degree 

distributions must be taken into account to determine the 

“critical” edges in order to protect them to prevent 

large-scale cascading failures. Our studies also provide a 

basis to design high robustness random scale-free 

network by the reasonably distributing loads among the 

network according to the node betweenness, which can 

effectively resist all kinds of edge attacks in future. 
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