
P-TDMA-SYS: A TDMA System over Commodity 802.11 

Hardware for Mobile Ad-Hoc Networks 
 

Zechen Lin, Zhizhong Ding, Qingxin Hu, and Shuai Tao  
School of Computer and Information, Hefei University of Technology, Hefei, 230009, China 

Email: {falcon_zechen_lin, 9696210, taoshuai029}@163.com; zzding@hfut.edu.cn 

 

 
Abstract—In some scenarios such as catastrophes and military 

operations, there is a need for communication without an 

infrastructure. In urgent cases, in-time and reliable channel 

access must be ensured. However, the channel access delay in 

widely used CSMA/CA (Carrier Sense Multiple Access with 

Collision Avoidance) network increases unpredictably when the 

channel is sensed busy. Therefore, TDMA (Time Division 

Multiple Access) gets more and more attention in mobile ad-hoc 

network research. This paper presents a TDMA network system 

(named as P-TDMA-SYS) that is designed to support real-time 

applications in mobile ad-hoc networks (MANETs) and 

successfully works on commodity 802.11 hardware. The key 

feature of P-TDMA-SYS is its microsecond synchronization 

and adaptive medium access policy. P-TDMA-SYS’s 

implementation contains two major modules. One is the P-

KER-MAC, a TDMA-based MAC protocol, running over 

commodity 802.11 hardware. The other is P-TCP, a cross-layer 

TCP congestion control algorithm specifically for P-KER-MAC. 

The presented TDMA-based MAC over commodity 802.11 

hardware has been tested with a detailed accounting of the 

hardware and operation system overheads. Furthermore, P-

TDMA-SYS has been compared with 802.11 CSMA/CA-based 

network in the single-hop/multi-hop scenarios. The test results 

show that our implementation achieves reliable throughput and 

low delay/jitter for supporting real-time applications.  
 
Index Terms—TDMA MAC, ad-hoc networks, IEEE 802.11 

 

I. INTRODUCTION 

There has long been a demand for jam-resistant and 
none-infrastructure communications in the scene of 
disaster rescue or military campaign. The most suitable 
network type to meet the need is mobile ad-hoc networks 
(MANETs). Currently, researches on MANETs are 
mainly based on CSMA/CA media access control (MAC) 
protocol due to the wide application of IEEE 802.11 and 
802.15.4 standards. However, CSMA/CA-based MAC 
has problems when it used in MANETs, such as packet 
collisions and unpredictable transmission delay [1]. An 
effective way to resolve the problems is to use 
synchronized TDMA-based MAC protocol [2], but there 
is no off-the-shelf TDMA wireless network card available 
in the market, to the best of our knowledge, which can be 
directly used in MANETs. 

On the other hand, 802.11 is an attractive air interface 
for wireless communication in terms of wideband 
transmission and low cost network and there are a lot of 
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commercial products on the market. For a fast prototype 
development of our MANETs product, we implemented a 
TDMA-based MAC (named as P-KER-MAC) over 
802.11 hardware and realized further a TDMA system 
(named as P-TDMA-SYS) for MANETs by integrating 
the routing protocol AODV [3] in order to support multi-
hop communications.  

There are two challenges to implement a TDMA-based 
wideband MANET: 

1) What kind of TDMA mechanism should be adopted 
in order to support ad-hoc network and to get better 
performance than that of CSMA/CA? 

Traditional TDMA is normally used in an 
infrastructure network in which the assignation of time-
slot is controlled centrally. That is, it cannot be used in 
MANETs. There are some papers in which TDMA-based 
are proposed [4]-[5], however they are not so mature to 
be implemented in a concrete development. A good 
TDMA mechanism which has been standardized by ITU 
(International Telecommunication Union) is STDMA 
(Self-organizing TDMA) [6]. STDMA is mainly designed 
for position reporting of ships and its Physical layer and 
MAC layer have to be changed or modified in order to 
support wideband MANETs of our case. Our MAC 
implementation (i.e. P-KER-MAC) is designed on the top 
of STDMA and implemented in the Linux kernel as a 
driver. 

2) How to realize a TDMA network card based on the 
hardware of a commercial 802.11 CSMA/CA network 
card?  

The 802.11 network card is obviously the first choice 
when high transmission data rate and low cost are taken 
into account. The key issue is how to get an effective 
solution to disable its CSMA/CA functions, and then 
replace it with a TDMA MAC. Some researchers have 
done a similar work [7]-[10] and these works lay a good 
foundation for our job. Detailed comparison will be 
presented in Section II. 

To implement an effective TDMA-based wideband 
MANET system by taking the above approach, there are 
still some problems which should be solved. 

1) Provide a solution of clock synchronization 
mechanism for TDMA system if there is no GPS or other 
time service. In P-TDMA-SYS, we proposed a relative 
clock synchronization algorithm to ensure reliable 
transmission. 

2) Implement a routing protocol which supports multi-
hop wireless communication. 

Although most Wi-Fi terminals have an ad-hoc mode 

now, they cannot support multi-hop transmission. Many 

researchers have proposed routing protocol for MANETs, 

but it seems that AODV used in ZigBee/802.15.4 is the 
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only one with successful application so far. Therefore, we 

integrate AODV module into P-TDMA-SYS. 

3) Modify the existed TCP congestion control 

algorithm so that it works more efficiently in a TDMA 

MANET system with support of TCP/IP. 

TCP/IP is originally designed for CSMA-based wire 

and wireless network. When it is used in a TDMA-based 

network, its performance is not satisfying in some cases. 

We develop a new TCP congestion control algorithm 

(named as P-TCP) in P-TDMA-SYS.   

The P-TDMA-SYS is tested on our testbed and its 

performance is evaluated. The test results show that our 

implementation achieves reliable throughput and low 

delay/jitter for supporting real-time applications.  

The rest of the paper is organized as follows. Section II 

compares the implementations of TDMA-based MAC 

over 802.11 hardware. Section III describes P-KER-MAC 

design. Subsequently, Section IV presents the details of 

P-TDMA-SYS’s Linux implementation over commodity 

802.11 hardware. Section V shows the construction of 

test cases and the test results of our network system. In 

the end, Section VI concludes the paper with a few points 

of discussion. 

TABLE I: COMPARISON WITH THE OTHER TDMA-BASED MACS 

MAC 
Clock Synchronization(Sync) MAC Mode Implementation 

Sync Mode Sync Precision Schedule Routing Open Source Testbed 

Soft-MAC in-band order of μs distributed 2-hop MadWiFi 802.11a 

Lit-MAC in-band order of μs centralized multi-hop MadWiFi 802.11g 

Free-MAC out-band order of ms centralized 1-hop none none 

WiLDNet in-band order of ms centralized multi-hop MadWiFi 802.11a/g/n 

P-TDMA-SYS 

(our work) 
in-band order of μs distributed multi-hop 

ath9k-htc 

firmware 
802.11g 

 

II. TDMA MAC OVER 802.11 HARDWARE 

The most important part of the TDMA network system 

is the MAC protocol. TDMA-based MAC protocols are 

aplenty, and have been previously proposed for 

commodity 802.11 networks. Table I compares prior 

TDMA-based MAC [7]-[10] implementations with our 

work synoptically, the details are as below.  

Free-MAC [9] and WiLDNet [10] are not tightly 

synchronized. Lit-MAC [7] uses out-of-band 

synchronization, it can schedule links in any pattern in 

the TDMA frame. Soft-MAC [8] synchronize after each 

transmission, so synchronization is done, in-band, 

through data transmissions. 

Lit-MAC outlines the design of a TDMA-based MAC 

protocol based on out-band clock synchronization and 

takes into account hardware bottlenecks such as clock 

drift, processing delay, the guard interval and slot 

duration, etc. 

Soft-MAC proposes a pairwise synchronization 

algorithm, and takes into account propagation delay to 

calculate clock difference between two nodes. It makes 

use of a guard band to account for processing delays 

encountered while packet transmission, and carries out 

measurements to empirically tune the value of the guard 

band.  

Our methodology of modifying the open source driver 

to build a TDMA network system on commodity 802.11 

hardware is similar to Soft-MAC, Lit MAC. Soft-MAC 

proposes a distributed mechanism for nodes to arrive at 

an agreement on slot usage. The design imposes the 

significant restriction that all nodes should use the same 

channel in all time slots. It also assumes that interference 

is limited to a 2-hop neighborhood. Lit-MAC present a 

light-weight, centralized, multi-channel and connection 

oriented TDMA-based MAC protocol, for operation in a 

wireless multi-hop mesh network. 

Soft-MAC, Lit-MAC, Free-MAC and WiLDNet all 

have built TDMA based MAC protocols over commodity 

802.11 hardware with the Atheros MadWiFi driver [11]. 

Soft-MAC implemented entirely in Linux user space, Lit-

MAC and WiLDNet implemented in Linux kernel space. 

III. P-KER-MAC DESIGN 

P-KER-MAC is the kernel TDMA-based MAC for P-

TDMA-SYS. It follows three main design principles. 

First, tight in-band clock synchronization must be built-

into the P-KER-MAC. Second, P-KER-MAC must 

maintain a dynamic, self-starting and self-organizing slot 

schedule algorithm to support MANETs. Additionally, 

the algorithm also should support real-time applications. 

Third, P-KER-MAC should be robust to wireless 

network’s common errors, such as data packet loss and 

hidden node. Meanwhile, it should be simple and low 

overhead for Operating System (OS). 

In this section, we describe the design of P-KER-MAC, 

showing its network composition, slot structure and 

frame structure, network entry procedure and clock 

synchronization. Furthermore, we set the P-KER-MAC’s 

parameters and present an adaptive report rate algorithm 

to support real-time applications. And we solve the S-

TDMA’s slot collision problem that caused by hidden 

nodes. 

A. Network Composition 

The P-TDMA-SYS network boots up when the first 

node comes online, and we call this node the “master”. 

Master will broadcast the beacons to provide a rough 

clock reference for the rest of the network. Then, other 

node entry the network, and we call those nodes the 

“slave”. Each master with some slaves establish a 

network, and we call this network as a “cluster” network 

(Fig. 1). In each cluster network, all nodes reuse a slot 
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flow to send and receive data with each other. Each 

cluster network may cross the range, so they are 

distinguished from each other by a unique cluster-ID. 

Any node periodically transmits beacons in the cluster 

network. P-TDMA-SYS’s beacon is fixed length and 

transmitted in per frame duration. Since a beacon can 

only carry limited information, each node broadcasts its 

beacon to ensure that all neighbors are advertised for 

keeping an alive list of its neighbors. We note that 

“neighbor” refers to all of the nodes that the sender is 

aware of, except the nodes that the sender cannot hear 

from directly. Before sending the network beacon, the 

node marks the current timestamp on it. Particularly, the 

timestamp of the master will be used by the rough clock 

synchronization algorithm. 

M

M

M

S

S

S

M

S
S

Cluster-1
Cluster-2

Cluster-4

Cluster-3

M: master node

 S: slave node

 
Fig. 1. The network composition of P-TDMA-SYS 

B. Slot Structure & Frame Structure 

In P-KER-MAC, the time dimension of the channel is 

divided into fixed 
fN  slots, whose duration 

slotT  is suited 

to host one data packet duration ( )dataT  plus a necessary 

guard interval ( )guardT . The slot duration ( )slotT  can be 

expressed as  

 slot data guardT T T 
  (1) 

Hence, P-KER-MAC views the time in terms of slots, 

frameT  long, and groups TDMA slots into fixed size 

frames ( 

Fig. 2). Each frame consists of fN  slots. The number 

fN  of available slots per frame duration frameT  depends 

on the frame duration and slot duration, and can be 

expressed as  

 /f frame slotN T T      (2) 

where     is the floor function. 

Tdata Tguard

Tslot  
Fig. 2. P-TDMA-SYS’s frame and slot structure. 

C. P-KER-MAC’s Parameters 

In the P-KER-MAC, the unit of all time parameters are 

set as microsecond. Table II summarizes the various 

parameters in our system. 

TABLE II: P-KER-MAC’S PARAMETERS 

Notion Description 

smt  The node’s start moment. 

slot smt 
 

The node’s slot start moment, which align the cluster 

network slot boundary. 

currentt  The node’s current clock. 

frameT  One frame duration. 

slotT  One slot duration. 

dataT  The data duration in a slot duration. 

guardT  The guard duration in a slot duration. 

slotN  The number of available slots per frame. 

slotL  The data length of per slot. 

minR  The lower limit of report rate. 

maxR  The upper limit of report rate. 

currentR  The current value of report rate. 

maxQ  The maximum length of data queue. 

currentQ  The current length of data queue. 

curS  The current slot index. 

cur excT 
 The exceed portion duration of current slot. 

trigS  Next index of slot trigger. 

D. Network Entry Procedure 

The P-KER-MAC’s medium access policy is based on 

a slot reservation process: the transmitting node 

autonomously reserve the slots they are going to use for 

their transmissions based on other nodes’ slots 

reservation information, which has to be presented in the 

header of all data packets. The network entry process is 

organized into 4 phases, which are sequentially 

performed when a new node enters the network: 

Initialization, Network Entry & Rough Synchronization, 

First Frame & Precise Synchronization and Continuous 

Operations. 

TABLE III: SLOT STATES 

Slot State Description 

Free 
The slot is not being reserved by any 

node. 

Busy 
The packet has been detected in the same 
slot of the previous frame but the packet 

failed to be decoded successfully. 

Externally allocated The slot is allocated for transmission by 
another user. 

Internally allocated 
The slot will be used by the current node 

self. 

 
Initialization In the initialization phase, a node listens 

to the channel for 2 frames duration ( 2 frameT ) at first 

and marks the slot state of all its fN  slots in its slots 

table. The possible states that a slot can assume in Table 

III. 

Network Entry & Rough Synchronization The 

purpose of the network entry phase is for a node to 
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advertise its presence to the network. To do so, a node 

transmits a one-time network entry packet in one of the 

first slots sensed free in the previous phase, randomly 

chosen according to a p-persistent mechanism [12]. In 

this phase, the slave selects a latest master’s beacon, and 

use the beacon’s timestamp as the rough relative clock 

boundary. 

Once any node is aware of the presence of the new 

node in a cluster network, it is time for it to allocate a 

sufficient number of transmission slots to satisfy its 

default report rate of 
minR  packets per frame duration.  

First Frame & Precise Synchronization Once the 

node has announced its presence, the node enters the first 

frame phase. The task of this phase is to announce and 

reserve additional slots in order to fulfill the default 

report rate. The first frame phase develops as follows (Fig. 

3):  

1) Set the nominal increment value ( )NI  to 

/f reportN R   . 

2) Randomly select a nominal start slot ( )NSS  out of 

the first NI  slots. 

3) Derive additional ( 1)reportR   nominal slots ( )NS  

by subsequently adding NI  slots to NSS .And 

NS  can be calculated as  

 (0 )reportNS NSS n NI n R      (3) 

4) For the NSS  and each NS : 

a) Construct a selection interval ( )SI  by 

adding ( / 2 )f report SIN R p    number of 

slots to the left and to the right, with 
SIp  

being the SI  ratio, e.g. 20%. 

 { ( ), ( )}SI SISI NS p NI NS p NI       (4) 

b) Compile a set of candidate slots within this 

SI . 

c) Randomly choose one of these candidate 

slots as nominal transmission slot ( )NTS . 

When announcing the allocation of a selected slot, a 

random timeout value time outp   is drawn from statically 

defined minimum and maximum timeout limits (e.g. 

1 8time outp   ). Hence, each allocated slot gets its own 

timeout value. During this phase, slaves achieve precise 

synchronization by requesting clock offsets with the 

master of cluster. And the round trip of synchronization is 

similar to the Simple Network Time Protocol (SNTP) 

[13]. 

SI SI SI

N
T

S

N
S

S

N
S

N
T

S

N
T

S

N
S

NI NI

 
Fig. 3. Slot reservation process. 

Continuous Operations After the first allocation 

within the first frame phase is performed, the nodes enter 

continuous operation. During this phase the node 

performs re-allocations whenever the internal timeout of 

a slot expires. The rules for re-allocation are different 

with the first frame phase. In this phase, the node uses an 

adaptive report rate along with the rate of the application 

layer. Surely, a node is allowed to stick to the current slot 

if no candidate slot is available. Furthermore, when re-

reserving a slot, the semantics of the offset value changes. 

While it normally indicates the offset to the subsequent 

transmission, it then indicates the offset to the newly 

selected slot in the next frame. 

E. Clock Synchronization 

Highly precise clock synchronization (clock-sync) is 

essential for efficient TDMA system. For most TDMA 

systems, they process the clock-sync for aligning the 

absolute frame boundary. However, in P-KER-MAC, our 

clock-sync purpose is to align the slot boundary. In a 

cluster network, optionally, every cluster network’s 

master is specified manually or voluntarily. Each slave 

node synchronizes to its master node, defining a 

master/slave synchronization relationship for all nodes in 

a same cluster network. For the whole network, the 

master of each cluster network has been specified the 

parallel level. Each slave determines its synchronization 

source by using the latest synchronization beacon of the 

master node. 

Rough Clock Synchronization In the network entry 

phase, a slave node selects the latest master’s beacon, and 

use the receiving timestamp of the beacon as the rough 

relative slot boundary. As for the timestamp, it’s the 

MAC’s timestamp. 

Precise Clock Synchronization In the First Frame 

phase, the slave node achieve precise synchronization by 

sending the clock-sync requests to get clock offset with 

the master of cluster network (Fig. 4). 
In one exchange, the slave node sends a clock-sync 

request with a timestamp 
1 1( )slaveT CLK t  which is its 

clock at time 
1t  to the master node. After receiving the 

request at time 
2t , the master node uses its timestamp, 

2 2( )masterT CLK t , to find the clock difference between 

the clocks relative to itself 
2 1offset msT T T   . After some 

time, the master node sends a clock-sync response at time 

3t , with the timestamp 3 3( )masterT CLK t  and the 

previously found time difference offset msT  . After receiving 

the clock-sync response, at time 
4t , the slave node 

calculates its relative time difference 4 3offset smT T T   , 

where 4 4( )slaveT CLK t . 

At the end of the exchange, the slave node calculates 

the clock offset:  

 
1

( )
2

offset offset sm offset msT T T     (5) 

and round-trip delay with the master node: 

 
1

( )
2

delay offset sm offset msT T T     (6) 
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The slave node repeats this process several times, and 

collect the clock offsets to the master node. Then, the 

clock-sync algorithm first filters the raw clock offsets. 

The filter removes the values of clock offsets that are out 

of the valid range. In the final step, the slave node is to 

use the averaged clock offset of the master node to re-

synchronize its local clock. 

Master

Slave

T2=CLKmaster(t2) T3=CLKmaster(t3)

T1=CLKslave(t1) T4=CLKslave(t4)
 

Fig. 4. Precise clock synchronization. 

After the clock-sync, there must be a relative 

relationship between the slave and master node, 

 ( )%sm master sm slave frame slott t T N T      (7) 

where 
sm mastert 

 is the start moment of the master node, 

sm slavet 
 is the synchronized start moment of the slave 

node, {0,1,2,...}N . The slot schedule algorithm has no 

requirement that 
sm mastert 

 is strictly equal to 
sm slavet 

. We 

just need they can maintain a relative relationship just (7). 

F. Slot Collision Avoidance 

There are two kinds of situations which can cause slot 

collision. One is the direct slot collision, the other is the 

hidden node slot collision. 

NA

(a) (b)

NB NA NBNC

 
Fig. 5. Slot collisions. 

In Fig. 5(a), node A (NA) and node B (NB) are within 

the transmission range of one another. In this case, if NA 

and NB start transmission at the same time, then packets 

from both nodes will be expected to raise slot collision 

event. It is the direct slot collision. In Fig. 5(b), the nodes 

NA and NB are not within the transmission range of one 

another, but there is a third NC that is within the 

transmission range of both NA and NB. In this case, if NA 

and NB start transmissions at the same moment, then NC 

will be expected to receive from both NA and NB at the 

same time. It is the hidden node slot collision. 
When any node wants to transmit a packet, it must 

broadcast the reserved slot index in advance. Hence, we 

present a passive detection method to solve the slot 

collision. During the transmission, if any one node finds a 

slot is reserved more than 2 nodes in its slot table, it will 

broadcast a slot collision message to all nodes. And the 

collision message includes the relative slot index and 

source address. Then, those collision nodes that have 

chosen the same slot will release the slot. Through this 

mechanism, the slot collision can be resolved effectively. 

G. Real-time Application Support 

P-KER-MAC should support the streaming media 

applications that are real-time voice and video. To adapt 

the parameter settings to support real-time voice, we 

consider the G.723.1 codec [14] which needs 24 bytes to 

be transmitted every 30ms. For the real-time video, we 

use the MPEG-4 Part 10 (H.264) [15] as video coding 

standard for the application, and Table IV show the 

relationship between frame resolution and bit rate. 

TABLE IV: H.264’S FRAME RESOLUTION WITH BIT RATE 

Typical Frame 

Resolution 

Typical Frames per 

Second 

Maximum Bit Rate 

(Kbps) 

176×144 15 64 

320×240 10 192 

352×288 15 384 
352×288 30 768 

720×480 15 4000 

1280×720 30 14000 
1920×1080 30 20000 

 

In order to support a normal quality video (352×288, 

30 frames/s), the P-TDMA-SYS must provide a 

bandwidth which exceeds 768 Kbps. In addition, the 

G.723.1 codec require the slot interval must be limited 

within 30ms. On the basis of application’s demand, we 

set the packet size of each slot (
slotL ) to 540 bytes with 

the 54Mbps PHY rate. Then we set 1999816μsframeT  , 

310μs ( )+18μs ( ) 328μsslot trans guardT T T  . For matching 

the bit rate of video application, we set 66minR  , 

475maxQ  , 475maxR  . In these parameters settings, 

each node can be assigned a bandwidth which is 

max( / 2) 1024 KbpsslotR L  . The slot interval, just the 

transmission interval of per packet, can be 

max/ 4.21msframeT R  . 

start

Qcurrent>0

Calculate current report rate

YES

NO

Release all slots

Select SI

Reserved slots exist in SI？

YES

Choose a slot to use Allocate a slot to use

NO

end

 
Fig. 6. Adaptive report rate scheduling process. 
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H. Adaptive Report Rate 

Report rate is directly associated with the link 

bandwidth and latency. P-KER-MAC achieve an adaptive 

report rate scheduling to ensure real-time application 

requirements and full use of slot resources. Fig. 6 shows 

the adaptive report rate scheduling process. When the 

transport layer raise a transmission request, P-KER-MAC 

calculate the 
currentR  by  

 min{ ,max{ , }}current max current minR R Q R   (8) 

Then, we can calculate the number of NI ( )NIC by 

 /NI f currentC N R  (9) 

Next, we choose the next free trigger slot index in the 

range of  

 {( / 1) ,( / 2) }cur NI NI cur NI NIS C C S C C      (10) 

In the range of (10), we try to choose a reserved slot, if 

not, we will allocate a new slot to use. This process will 

continue until the data queue is empty. 

IV. P-TDMA-SYS’S LINUX IMPLEMENTATION  

P-TDMA-SYS is fully implemented under the TCP/IP. 

In the link layer, we have implemented P-KER-MAC 

which is the kernel MAC of P-TDMA-SYS, a TDMA-

based MAC protocol, running over commodity 802.11 

hardware. In the internet layer, AODV routing module is 

added into P-TDMA-SYS to support the multi-hop 

networks. In the transport layer, we have implemented an 

improved TCP congestion control algorithm specifically 

for P-KER-MAC. Fig. 7 shows the various modules and 

their level. 

P-KER-MAC provides precise control over the content 

and timing of wireless transmission and reception. Its 

Linux implementation has two major components (Fig. 8). 

The first component is the kernel module, which resides 

in the Linux kernel space and connects P-KER-MAC 

with the Linux kernel network services. The second 

component is the service module, which provides a slot 

schedule layer (SSL) and a hardware abstraction layer 

(HAL). The SSL uses the High-Resolution Timer (HRT) 

to arrange transmissions. As for the SSL’s managements 

module, it is a collection of modules which concludes the 

packet management, slot table management, buffer 

management, etc. The HAL hides the implementation of 

802.11 driver to provide a communication interface. 

P-TDMA-SYS

Transport Layer TCP with P-TCP/UDP

Internet Layer
AODV routing

protocol

Link Layer P-KER-MAC

 
Fig. 7. The composition of P-TDMA-SYS. 

  Kernel

  Service

P-KER-MAC

SSL HAL

HRT Managements 802.11 PHY

 
Fig. 8. The composition of P-KER-MAC. 

This architecture has two major purposes. First, the 

kernel MAC is implemented in the Linux kernel IP 

networking stack, the P-TDMA-SYS can integrate two 

important modules, one is the AODV module, the other is 

the TCP/UDP protocol. Second, P-TDMA-SYS is 

divided into layered architecture, we can build test cases 

for our system’s modules and prove its reliability. 

A. Hardware & System Software Setup 

We have implemented P-TDMA-SYS on the hardware 

platform of Lenovo M7150 PC, which use the CORE 2 

DUO processors running at 3.06Ghz and install with 

Atheros wireless cards (TL-WN722N) on the AR9271 

chipset. We use this 802.11 platform in the 2.4GHz 

frequency and 802.11g model. Our software platform is 

Ubuntu v14.04 (Linux kernel 3.18.24). In particular, we 

add profiling software to the firmware (open source 

ath9k-htc firmware) and make it allow us to measure 

802.11 transmission duration. Most of important, we add 

codes to control per-packet transmission. 

B. Disabling CSMA/CA 

Once the packet is inserted into the hardware queue by 

the driver, it is essential that the packet is transmitted on-

air immediately. However, the majority of existing 

802.11 wireless devices are confined to the built-in 

CSMA/CA protocols. Hence, we had to study the 

CSMA/CA mechanism, and our work was inspired 

luckily by [16]. 

Reconfigurable NONE-CSMA/CA Transmitter The 

802.11 MAC service is responsible for exchanging MAC 

Protocol Data Units (MPDUs) using CSMA/CA. The 

original standard offered the Distributed Coordination 

Function (DCF) [17] to manage this process. The 802.11e 

amendment extends DCF with Quality of Service (QoS) 

enhancements [18], resulting in enhanced distributed 

channel access (EDCA). With EDCA four different 

Access Classes ( )AC  are defined, allowing the 

prioritization of traffic. 

The time a station must wait before it can transmit 

depends on several parameters and inter frame spaces 

(see Fig. 9). The shortest is the Short Interframe Space 

( )SIFS  and is the time between successfully receiving a 

frame and sending an acknowledgement (ACK). Other 

frames must wait longer than SIFS , giving ACKs the 

highest priority. When a station wants to transmit a data 

frame of access class AC it first monitors the medium for 

a period equal to  

 [ ] [ ]AIFS AC SIFS AIFS AC SLOT     (11) 
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Fig. 9. 802.11’s CSMA/CA mechanism. 

where SLOT  is the duration of one slot interval, and 

with AIFSN  dependent on the access class. The value of 

SIFS  and SLOT  depend on the physical layer being 

used. If sender enable the Request To Send/Clear To 

Send (RTS/CTS) option, it must wait a CTS after send a 

RTS in each transmission after a SIFS . If the medium is 

idle during this time the station can transmit at once. In 

case the medium was busy the contention window 

 CW AC  is set to [ ]minCW AC  and the random back-off 

procedure is initiated. This procedure initializes the back-

off counter to a value uniformly distributed over the 

interval [0, [ ]]minCW AC . Once the medium has been idle 

for [ ]AIFS AC , the back-off counter is decremented for 

each slot where the medium is idle. When the counter is 

zero the station transmits the frame. Since AC  is clear 

from context it will no longer be explicitly included. The 

values assigned to AIFSN , 
minCW , and 

maxCW  

determine the priority of an access class. 

When an MPDU is transmitted, a Physical Layer 

Convergence Protocol (PLCP) preamble and header is 

added. The preamble allows the receiver to synchronize 

to the transmission, and the header defines the 

modulation used for the MPDU. We focus on 802.11g 

long preamble mode, where (slightly simplified) the 

overhead of the PLCP is 23μs, SIFS  is 10μs and SLOT  

is 9μs. 

To turn a commodity 802.11 hardware into a 

reconfigurable NONE-CSMA/CA transmitter, we need to 

be able to carry out the following tasks: 

1) Disable carrier sense. 

2) Reset all 802.11 packet interframe spaces and 

disable back-off. 

3) Prevent the chip from waiting for an ACK. 

4) Disable RTS/CTS option. 

5) Control the TX/RX process. 

Ath9k-htc Firmware Modifications The open source 

ath9k-htc firmware runs on AR7010 and AR9271 chips, 

and is sent to the device after power up. In our platform, 

we choose the wireless card based on the AR9271 chip. 

The AR9271 chip is controlled using memory mapped 

registers. We implemented the following strategies to 

disable CSMA/CA by setting the register value (Table V). 

Especially, wireless radios are half-duplex and cannot 

listen while transmitting. On the contrary, wireless radios 

cannot transmit while receiving. For avoiding the 

unnecessary delays while transmitting, we abort the 

receiving the current frame by setting the register of 

(WLAN_BASE_ADDRESS+AR_DLAG_SW) to the 

value of ARDIAG_RX_ABORT when a transmission 

request arrives PHY. We make the data packet into 

802.11’s broadcast packet, hence, the traffic will not wait 

for an ACK. 

TABLE V: REGISTER SETTINGS FOR DISABLING CSMA/CA 

Register Description Value 

AR_DIAG_SW Disable carrier sense, 

abort ongoing reception, 
append bad FCS 

CLEAR | 

IGNORE | 
IDLE 

AR_D_GBL_IFS_SIFS SIFS 0 

AR_D_GBL_IFS_SLOT SLOT 0 

AR_QTXDP CWmin, CWmax and AIFSN 0  

AR_Q_TXE Contains a pointer to the 
transmit queue. 

- 

C.  Transmission Control 

P-KER-MAC ensures each node’s transmission embed 

to a relative conflict-free slot schedule. Before running 

the transmission in the network, P-KER-MAC should 

determine a default and fixed slot duration. For 

guaranteeing the robustness of slot duration, we calculate 

the slot duration and ensure that its transmission is over 

during the node’s each slot. 

The slot duration ( )slotT  for an fixed l  bytes packet, 

transmitted at PHY rate ( )m , is bounded into the 

message ( )mp l , which is measured in each slot. P-KER-

MAC views wireless transmissions as consisting of the 

active part of the transmission, which is directly related to 

the packet size and the guard duration. The message on 

transmission duration is calculated with 

 ( )m trans guardp l T T    (12) 

where 
transT  is reserved for the transmission, guardT  is the 

duration of guard contained in a slot, ensures that the 

message covers various hardware and software delays. 

Packet Transmission Duration In our hardware 

platform, every packet needs to go through the USB, for 

transfer from radio chip to the CPU, or from the CPU to 

the radio chip. So, we should take into account the 

timeout in the OS. Packet transmission process duration 

is  

 
trans tx rxT T T    (13) 

In (13), the sending duration (
txT ) and the receiving 

duration (
rxT ) both depend on the OS processing capacity. 

The whole process can be seen in Fig. 10. 
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Fig. 10. Transmission process. 

txT  is sending process delay, which occurs from the 

time of the requested timeout, to the time a packet is 

generated and handed-off to the wireless card. 
txT  is 

equal to  

 
tx tx os PLCP dataT T T T     (14) 

 802.11

data ofdm

m

l h
T T

b

 
  
 

  (15) 

where l  is the packet size in bytes, 
802.11h  is the number 

of bytes of 802.11 headers, {3,4.5,6,9,12,18,24,27}mb   

is the number of bytes carried in each OFDM symbol. 

{6,9,12,18,24,36,48,54}m  is the modulation rate 

(Table VI). The preamble allows the receiver to 

synchronize to the transmission, and the header defines 

the modulation used for the MPDU. We focus on 802.11g 

long preamble mode, where the overhead of the PLCP 

( )PLCPT  is 23μs. 
ofdmT  equals to 4μs, corresponding to 

single 802.11g Orthogonal Frequency Division 

Multiplexing (OFDM) symbol. According to test results, 

the 
tx osT 

 is equal to 112 5μs , representing the sending 

process duration in the OS. 

rxT  is the duration from when the wireless card 

receives the packet, to the time the card finishes 

transmitting the packet, which includes transmission 

delay (
trans airT 

) in the air. 

 
rx trans air rx osT T T     (16) 

Due to our testbed is in-door, each test node is in the 

range of 20 square meters, hence, the value of 
trans airT 

is 

close to 0μs. In our testbed, we measure 
rx osT 

 which 

represents the receiving process duration in the OS, is 

equal to 80 5μs . 

TABLE VI: MODULATION RATE WITH PER OFDM SYMBOL 

Rate (Mbps) Modulation Data bits per OFDM 

symbol (NDBPS) 

6 BPSK 24 

9 BPSK 36 

12 QPSK 48 

18 QPSK 72 

24 16-QAM 96 

36 16-QAM 144 

48 64-QAM 192 

54 64-QAM 216 

Packet Guard Duration The guard duration should be 

longer than the delay in the air and the OS’s error in the 

network. For conflict-free slot, it is sufficient that the 

guard time 
guardT  satisfies 

 
guard re trans air clk drift sch driftT T T T        (17) 

re trans airT  
 is reserved for the possible delay in the air. 

For a single cluster network, we assume that the max 

diameter of communication region is less than 1000m. 

Therefore, the maximum transmission delay in the air is 

approximately equal to 3.3μs. So we set 
re trans airT  

 to 5μs 

to ensure transmission robust. The 
clk driftT 

 is aiming at 

the node’s clock drift after clock synchronization process. 

We set the maximum clock drift as the clock guard 

duration. In our platform, the 
clk driftT 

 is equal to 8μs. 

sch driftT 
 is the maximum timeout error of HRT, and can 

support a high precision value within 5μs in our platform. 

Through above analysis,
guardT  can be expected as 

( ) ( ) (5μs 8μs 5μs 18μs)re trans air clk drift sch driftT T T      . 

D. Slot Schedule 

Schedule Header In each data packet, P-KER-MAC 

add a schedule header for broadcasting slot reservation 

information. Table VII show its structure. The htype 

represent the type of source node, it can be master or 

slave type. When a node receives a data packet, it can get 

the schedule header, use the hoffset & htimeout to update the 

slot state in its slot table, and check the packet owner by 

means of hsrc & hdst. As for hid, it represents the message 

type to distinguish data message and management 

messages (e.g. beacon, clock-sync, etc.). 

TABLE VII: SCHEDULE HEADER STRUCTURE 

Header Description 

htype The node type: master or slave. 

hoffset The distance between current receiving slot index and 

next trigger slot index. 

htimeout The specific number of receiving slot index’s usage. 

hsrc The source address. 

hdst The destination address. 

hid The message id. 

hstamp The source timestamp. 

 
Transmission Schedule In order to accurately control 

packet transmission moments, so that nodes transmit only 

in their reserved slots. P-KER-MAC uses a HRT to 

arrange the transmission slot event. In Sec. III, we have 

introduced the method of slot selection. In the following 

description, we pay close attention to the schedule 

question that how to arrange a transmission. The 

transmission schedule process can be showed in Fig. 11. 

At time 0t , P-KER-MAC get a data request from the 

transport layer. First, we get the raw packet from the data 

queue, then, we search the slot table to get the next 

arranged slot index ( )trigS  for calculating the offseth  by 

 offset trig curh S S     (18) 
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Second, after adding the schedule header for the packet, 

at time 
1t , we can calculate the exceed portion time of 

current slot ( )cur excT 
by 

 %cur exc cur slotT S T    (20) 

Third, we arrange the HRT to register a delay event to 

send the packet. The delay value is 

 ( )delay trig cur slot cur excT S S T T       (21) 

At time 
2t , the HRT raise the elapsed event. At the 

same time, the packet is put into PHY and transmitted 

immediately without waiting for the medium to be free. 

We use this way to schedule the arranged slot. Because 

we take into account the cost of the system situation that 

it takes time for any packet to be generated. 

Strig - Scur

Tdelay Tslot
t0 t1

t2  
Fig. 11. Single slot schedule. 

E. TCP/IP Network Stack Support 

The P-KER-MAC has been implemented in the Linux 

kernel space as a net device driver. There is a huge 

difference between P-KER-MAC and the other MACs 

which are designed for CSMA/CA. Hence, we have 

changed some parameters for the driver. 

MTU In computer networking, the maximum 

transmission unit (MTU) of a communications protocol 

of a layer is the size (in bytes or octets) of the largest 

protocol data unit that the layer can pass onwards. The P-

KER-MAC has no support for long packets fragmentation, 

so the default MTU (1500 bytes) is obviously not suitable 

for P-KER-MAC’s fixed data length of per slot. By 

analyzing the features of P-KER-MAC, we can calculate 

an appropriate MTU, which is 

 802.11MTU slot schedule FCSl l l l l      (22) 

where 
slotl  is fixed data length, 802.11l  is 802.11 header 

length, 
schedulel  is schedule header length, 

FCSl  is FCS 

checksum length. 

MAC Address A media access control address (MAC 

address) is a unique identifier assigned to network 

interfaces for communications on the physical network 

segment. The original IEEE 802 MAC address comes 

from the original Xerox Ethernet addressing scheme. This 

48-bit address space contains potentially 2
48

 possible 

MAC addresses. In P-KER-MAC’s driver, it enable the 

last 2 octets as MAC-16 (16-bit address), and there is a 

converter for MAC-16 and MAC-48. There are two 

reason for choosing the shorter address length, one is for 

saving data space, the other is P-TDMA-SYS’s network 

capacity would not be great. MAC-16 that contains 
162 65536  addresses is enough. 

TX Queue The TX queue length is represent the 

driver’s cache, and is equal to 
maxQ . When TX queue is 

not full, we start the TX queue to receive the packet from 

the upper layer and deliver it to P-KER-MAC for 

transmission. Similarly, we stop the TX queue until it has 

free space. 

F. Multi-hop Networks Support  

P-KER-MAC is designed for 1-hop network. If two 

nodes are not within their wireless transmission range, 

they cannot exchange messages with each other. In order 

to support the multi-hop networks, we add the aodv-uu-

0.9.6 [19] into P-TDMA-SYS. The aodv-uu-0.9.6 snoops 

all incoming and outgoing packets by utilizing a Netfilter 

[20] hook to maintain the routing table. Moreover, the 

AODV’s routing table can be mapped into kernel IP 

routing table. By completing these tasks, each node has 

the ability to forward IP packets. For a more detailed 

implementation about AODV, we invite the reader to 

refer to [3]. In short, P-TMDA-SYS incorporates AODV 

routing protocol, so it can support the multi-hop networks. 

G. TCP Improvement 

Traditional TCP is developed for terrestrial wire-line 

networks, and it can work well over a variety of Internet 

paths, but there is still a fundamental bottleneck of 

traditional TCP performance in P-KER-MAC. 

With traditional TCP, the network throughput is 

closely related to the round-trip delay time ( )RTT . 

However, when the P-KER-MAC initialize transmission, 

the default report rate ( )minR  is small, and it lead to a big 

RTT  value. Hence, the TCP always cannot keep the 

pipeline full, because TCP do not make full use of the 

report rate. In our testbed, we found that the utilization of 

report rate which in per frame is low by using the 

traditional TCP.  

In order to improve the TCP throughput in our system, 

we develop P-TCP, that is a new TCP congestion control 

algorithm to adapt the P-KER-MAC’s transmission 

features. 

The TCP congestion-avoidance algorithm is the 

primary basis for congestion control in the Internet. Slow-

start is the default algorithms that TCP uses to control 

congestion inside the network in the Linux. It is also 

known as the exponential growth phase. Slow-start 

begins initially with a congestion window size ( )cwnd  of 

1, 2 or 10. The value of the congestion window will be 

increased with each acknowledgement (ACK) received, 

effectively doubling the window size each RTT . The 

transmission rate will be increased with slow-start 

algorithm until either a loss is detected, or the receiver’s 

advertised window ( )rwnd  is the limiting factor, or the 

slow start threshold ( )ssthresh  is reached. If a loss event 

occurs, TCP assumes that it is due to network congestion 

and takes steps to reduce the offered load on the network. 

These measurements depend on the used TCP congestion 

avoidance algorithm. Once ssthresh  is reached, TCP 
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changes from slow-start algorithm to the linear growth 

(congestion avoidance) algorithm. At this point, the 

window is increased by 1 segment for each RTT. 

In P-TCP, the network congestion is only determined 

depending on the 
maxR  & 

currentQ , rather than the value of 

ssthresh  & RTT . In the beginning of a slow start, 

cwnd  is set to 
slotL . In each RTT , the current cwnd  

will be set as below. 

 ( )max current slotcwnd R Q L     (23) 

The transmission rate will be increased with slow-start 

algorithm until the 
currentR  reach 

maxR , or the data queue 

is empty, or the receiver’s advertised window is the 

limiting factor. At this point, we reduce the cwnd  by 1 

segment for each RTT until 
currentR  is stable. We don’t 

worry that P-TCP sets too large cwnd  to cause the link 

conflict due to P-KER-MAC is a TDMA-based MAC to 

support a none-conflict access control. 

V. TESTBED RESULTS 

In this section, we summarize hundreds of hours of 

evaluating P-TDMA-SYS on our in-door 10 node testbed 

(Fig. 12). These test nodes are numbered, from N0 to N10, 

and they all in a 1-Hop range. Sec. H has introduced the 

detail configuration of hardware & system software for 

each test node. We configure the Linux firewall to build 

multi-hop environment by using iptables [21]. We set up 

the firewall on the node, make it only receive IP packets 

from some specific nodes. In all experiments, we set 

system clock (or system time) [22] as a statistical base of 

nanosecond clock. We measure the throughput & jitter 

for UDP and TCP by using iperf v2.0.4 tool [23]. 

 
Fig. 12. Test nodes topology. 

A. High Resolution Timer Accuracy 

High Resolution Timer (HRT) provides a high-

precision framework for timer’s management. In P-

TDMA-SYS, the HRT provide a precise delay to arrange 

transmissions. 

We setup an experiment on the testbed to measure the 

HRT accuracy. The experiment design was inspired by a 

stack overflow question [24]. At time sys startt  , we arrange 

different delay ( )t delayT   to HRT, then we calculate the 

clock offset ( t offsetT  ) between the estimated and actual 

timeout when the timer expires exp( )sys iret  .  

 exp( )t offset sys ire sys start t delayT t t T        (24) 

We repeat this task several times (≥100,000) in our 

platforms. In the end, we count the average of these clock 

offsets as the HRT’s accuracy. 

 
Fig. 13. Timer offset and jitter in different delay. 

In Fig. 13, it showed the average offset and jitter of the 

timer. The result indicates that, with the change of delay, 

there was no significant change in offset and jitter. The 

t offsetT 
 can be controlled within 5μs. The jitter of timer 

offset was always less than 2μs. The offset is referenced 

to a parameter of 
guardT  in 

slotT . According to the test 

results, we set the value of 
sch driftT 

 is equal to 5μs in (17). 

B. Packet Transmission Evaluation 

In order to measure the elapsed time of a packet 

transmission, we perform series of experiments where a 

node transmits 10,000 packets at 5ms intervals. We 

repeat this experiment for different packet length and 

modulation rates. We use our modifications of the ath9k-

htc firmware to record the time between the start time and 

the hardware interrupt indicating that the card finished 

sending the packet. 

Fig. 14 shows the 802.11 hardware transmission 

duration ( )dataT  and the sending & receiving process 

duration (  & )tx os rx osT T 
 for 540 bytes packets 

transmitted at the different modulation rate. This 

experiment corresponds to the fixed slot duration 

transmissions ( )transT . We note that 
transT  is almost 

constant with a negligible amount of variability (less than 

a few microseconds). Disabling the CSMA/CA features 

of the ath9k-htc firmware also ensures that 
transT is almost 

constant. 

 
Fig. 14. Transmission duration in different PHY rate. 
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Table VIII shows the details about the 
tx osT 

 & 
rx osT 

 

in different packet length. Observing the data, we find the 

tx osT 
 & 

rx osT 
 is relatively stable. Unfortunately, we are 

unable to establish an accurate relationship between the 

packet length ( )packetl  and 
tx osT 

 & 
rx osT 

. We only found 

the fluctuation range of 
tx osT 

 & 
rx osT 

. In our testbed, 

112 5μstx osT    , 80 5μsrx osT    . 

TABLE VIII: PACKET LENGTH WITH SYSTEM OVERHEAD DURATION 

lpacket(bytes) Ttx-os(μs) Trx-os (μs) 

128 107 77 
256 109 78 

512 110 80 

640 113 82 
896 114 83 

1024 116 87 

 

Table IX shows more details about the measurement of 

actual hardware transmission duration ( )data actualT 
. 

Meanwhile, we compare the 
data actualT 

and the expected 

transmission duration ( )data expectT 
. We find that 

data actualT 
 

is always slightly larger than 
data expectT 

, hence, we 

measure the 
ofdmT  by using 

 
/

data actual PLCP

ofdm

packet m

T T
T

l b

 
   (25) 

where 
data actualT 

 is the average transmission duration of 

the 540 bytes of a packet, {3,4.5,6,9,12,18,24,27}mb   

is the number of bytes carried in each OFDM symbol. 

{6,9,12,18,24,36,48,54}m  is the modulation rate. In 

the 802.11g’s standard, 
ofdmT  should be equal to 4μs. 

However, in our testbed, 4.16 0.04μsofdmT   . 

Using our measurements over various packet sizes, we 

can precisely calculate the 
transT . In particular, we use the 

upper limit of the measured parameters for the final 
transT , 

 802.11

trans PLCP ofdm tx os rx os

m

l h
T T T T T

b
 

 
     

 
  (26) 

In (26), 23μsPLCPT  , 4.2μsofdmT  , 117μstx osT   , 

85μsrx osT   , {3,4.5,6,9,12,18,24,27}mb   is the 

number of bytes carried in each OFDM symbol. 

{6,9,12,18,24,36,48,54}m  is the modulation rate. 

TABLE IX: P  

Modulation 

Rate (Mbps) 

Tdata-actual 

(μs) 

Tdata-expect 

(μs) 

Tofdm 

(μs) 

6 779 743 4.17 

9 527 503 4.18 
12 401 383 4.20 

18 275 263 4.12 

24 212 203 4.18 

36 149 143 4.17 

48 118 113 4.15 

54 107 103 4.16 

C. Disabling CSMA/CA Evaluation 

It is essential to quantify how accurately the packet 

transmission duration can be controlled with disabling 

CSMA/CA. We complete this experiment by measuring 

the 
transT  in a 2-node topology. Similar to packet 

transmission experiment, we still measure the packet 

transmission duration ( )transT . In different ways, we carry 

out this experiment for the two cases of CSMA/CA 

enabled and disabled. 

 
Fig. 15. CSMA/CA disabled vs. CSMA/CA enabled. 

Fig. 15 (a) shows the packet transmission duration for 

the case of CSMA/CA disabled, while Fig. 15 (b) shows 

the packet transmission duration for the case of 

CSMA/CA enabled. For the case of CSMA/CA disabled, 

as can be seen from Fig. 15 (a), 100% packet 

transmission duration can be stably controlled in 

299 10μs . However, for the case of CSMA/CA enabled, 

the transmission duration of each packet presents a 

stochastic state, and its range varies from 299-1258μs. 

Thus, above results indicate that with CSMA/CA 

disabled it is possible to precisely control packet 

transmission duration over commodity 802.11 hardware. 

D. Clock Synchronization Evaluation 

We setup an experiment on the testbed to measure the 

clock synchronization error, between the nodes in the 

network. To measure the clock synchronization error, we 

use 10 nodes to set up a cluster network (each node in a 

1-hop range), and set one of the nodes to be master node 

( )masterN . The system clock of masterN  is set the global 

clock ( )globalt . As each slave node is synchronized with 

the master node, the master node sends packets with an 

increasing sequence number and timestamp at 200ms 

intervals. Each slave node receives the packet at the same 

time and records the sequence number & timestamp by 

using  

 ( ) ( )seq ori seq transt t T    (27) 
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where seq  is the sequence number, 
transT  is the 

transmission duration of the packet, 
( )ori seqt  is the original 

the sequence number & timestamp which is marked when 

the packet was received. We run the experiment for an 

hour and record the average synchronization errors for all 

nodes. 

 
Fig. 16. The avg. clock synchronization error of each node. 

In Fig. 16, as can be seen the average synchronization 

error of each node is basically stable at 7.5 0.5μs . Table 

X show more detailed statistics for all nodes. Out of the 

90,000 collected errors, the maximum synchronization 

error of 88μs just occurred only 3 times. We note that 

almost all of the errors (99%) are within 8μs. 

TABLE X: MORE DETAILS OF CLOCK SYNCHRONIZATION 

Nodes Count 9 (except for master node) 

Avg. Synchronization Error 7.8μs 

Max Synchronization Error 88μs 

Min Synchronization Error -7μs 

Std. Dev. Synchronization Error 0.5μs 

 

We conclude that the clock synchronization algorithm 

works well for tight synchronization. With high 

confidence, it synchronizes all nodes of a cluster network 

to within 8μs. Meanwhile, we set 8μsclk driftT   , where 

clk driftT   is a part of slot guard duration. 

E. TDMA Mechanism Evaluation 

Packet Transmission in Fixed Slots In P-TDMA-SYS, 

the kernel MAC use the fixed slot to transmit packet. 

Hence, we must prove that each packet transmission can 

be tucked into the slot correctly. 

After the slave node have been synchronous, any node 

can measure each packet transmission duration in each 

slot. When a packet was received by a node, it would be 

marked the receiving timestamp ( )currentt . And then, we 

can use (20) to calculate the 
cur excT 

. It represents the 

actual transmission time in the receiving slot. If the 

packet transmission is tucked into the slot correctly, the 

cur excT   must satisfy the following relationship, 

 trans cur exc slotT T T    (28) 

We setup 2 nodes for this experiment, and they send 

the maximum length packets ( 540)slotL   with each 

other by using the 475maxR  . The whole process lasts 

30 minutes, and in the final we count the numbers of 
correct transmission which was fit for (28). 

TABLE XI: TRANSMISSION DURATION IN SLOT DURATION STATISTICS 

Packet Num. Correct Num. Error Num. Avg. Trans 

duration  

40,000 39,998 2 320μs 
 
Table XI show the results of this experiment. As we 

can see, 99.9% of the transmission can satisfy the 

(28)(26), and the average transmission duration accounts 

for 320 / 328 97.5%  of slot duration. We conclude that 

each packet transmission can be tucked into the slot 

correctly.  

Packet Transmission by Slot Schedule On the basis of 

previous experiment, we also can test packet transmission 

scheduling process. Likewise, when a packet is received 

by a node, the hoffset which is in the common header of the 

packet notices the next reserved slot index that would be 

used. In Sec. H, the hoffset has been described in detail. 

Now, we record the all used and reserved slots into a 

table for a node. The record format is as 

follows:<Node_Id, Scur, hoffset>. 

If the slot scheduling is correct, there must be a 

following relationship for a fixed Node_Id, 

 ( ) ( 1) ( 1)cur cur offsetS r S r h r      (29) 

where r  is the row number of the table. 

We setup 5 nodes for this experiment, they send 

packets with each other by using the 475maxR  . The 

whole process lasts 30 minutes, and then we gather the 

record tables from each node. 

TABLE XII: SLOT SCHEDULING STATISTICS 

Node  Records Num. Correct Num. Correct Rate(%) 

0 1,691,323 1,681,533 99.42 

1 1,692,211 1,624,712 96.01 

2 1,694,154 1,660,423 98.01 
3 1,694,310 1,643,480 96.99 

4 1,689,131 1,628,322 96.39 
 
According to the Table XII, we found the 97.42% 

process could meet the (29). However, some packet 

transmission process cannot meet the (29). There are two 

main reasons, one is the decoding failure, the other is the 

slot collision. 

Slot Collision Each slot can only belong to one node in 

a moment. If a slot is used or reserved more than 2 nodes, 

we believe it is a slot collision event. We setup 10 nodes 

for this experiment, and count the numbers of packet 

transmission ( )transc  and slot collision event ( )collc  for all 

nodes.  

TABLE XIII: SLOT COLLISION STATISTICS 

Nodes Count ctrans ccoll ccoll / ctrans(%) 

2 10,000 201 2.01 

4 20,000 516 2.58 

6 30,000 1442 4.80 
8 40,000 2083 5.21 

10 50,000 2778 5.55 
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As the number of nodes increases in in the network, 

the slot collision frequency /( )transcoll cc  also increases. 

However, the /( )transcoll cc  is low. Hence, the vast 

majority of transmission can be guaranteed to perform 

correctly. 

Through the above three experiments, in conclusion, 

we believe the P-MAC-KER implements the TDMA 

mechanism. 

F. 1-Hop Transmission Performance  

1-Hop UDP Performance In order to test each node 

can reach the design bandwidth (1000 Kbps). We setup 

10 nodes in 1-hop range and make them send data to each 

other in pairs with continuous backlogged UDP traffic. 

We run the experiment for 1 minutes and repeat it 30 

times. 

TABLE XIV: PAIRS TRANSMISSION ON HEAVY UDP TRAFFIC 

Pair Avg. Rate (→, Kbps) Avg. Rate (←, Kbps) 

N0-N1 1011 1008 

N2-N3 1011 998 

N4-N5 1001 1012 
N6-N7 999 1002 

N8-N9 1006 997 
 
In Table XIV, “→” & “←” represent the data 

transmission direction. By analyzing the test results, we 

found the bandwidth of each link is stable and reach the 

design bandwidth. Furthermore, we found each node used 

the maximum report rate ( )maxR  in the heavy traffic. 

1-Hop TCP Performance The purpose for testing 1-

hop TCP performance is to evaluate the P-TCP which is 

the specialized TCP congestion control algorithm for P-

KER-MAC. In this experiment, we only setup 2 nodes to 

test the link rate. And, we put P-TCP and other classic 

TCP congestion control algorithm together for 

comparison under the same external condition. In each 

algorithm test, we run the link rate test for 1 minutes and 

this procedure is repeated 30 times to get the average of 

rates.  

In Table XV, we found the most classic TCP 

congestion control algorithm cannot enhance the potential 

for P-KER-MAC, because these algorithms rely mainly 

on the RTT to estimate the bandwidth, however, the P-

KER-MAC’s initial report rate is low. These algorithms 

mistakenly believe that a very narrow bandwidth in the 

MAC. Hence, they use the short congestion window to 

send packet and cannot fully occupy the bandwidth. 

However, in P-TCP, it can know exactly available 

bandwidth and increase the congestion window until the 

report rate reach the maximum value. From Table XV, 

the increase in TCP throughput is lesser than that for 

UDP throughput. This is since for TCP we transmit both 

the TCP data packet as well as the TCP ACK at the same 

time.  

TABLE XV: COMPARISON WITH OTHER TCP ALGORITHM 

Algorithm Avg. Rate (Kbps) Avg. Report Rate 

High Speed  131.2 36 

Westwood  96.7 42 

Cubic 153.6 58 

Vegas 142.3 44 

Reno 122.3 47 

Scalable 46.7 30 

P-TCP 676.7 420 

G. P-TDMA-SYS vs. CSMA/CA 

In order to compare the performance between P-

TDMA-SYS and CSMA/CA, we setup fair scenarios to 

run the test cases. 

Experiment Scenarios Design For CSMA/CA, we set 

the wireless card into 802.11’s “ ad-hoc model” [25]. The 

802.11’s  ad-hoc model was implemented in Linux kernel 

under mac80211 [26], so we can set the wireless card 

model directly. For P-TDMA-SYS, we use the same 

settings that have been mentioned above. We use UDP & 

TCP to simulate the real-time application, and put the 

throughput, jitter and packet loss as the main evaluation 

criteria. In particular, we set P-TCP as P-TDMA-SYS’s 

TCP congestion control algorithm, and set the Cubic 

algorithm [27] for CSMA/CA. Meanwhile, we add the 

AODV module into our OS as routing for both of them. 

1-Hop CBR Performance We setup 10 nodes in 1-hop 

range and make them send data to each other in pairs with 

constant bit rate (CBR) UDP & TCP flows of 1000Kbps 

& 100Kbps source rate. We run the experiment for 1 min 

and repeat it for 30 times. The CBR UDP & TCP flows of 

1000Kbps can simulate the real-time video transmission, 

and the CBR UDP & TCP flows of 100Kbps can simulate 

the real-time audio transmission. 

Table XVI shows the transmission details of all pair 

nodes. Observing the data, we found that P-TDMA-SYS 

could provide a more stable transmission environment, 

but CSMA/CA not.  

TABLE XVI: P-TDMA-SYS VS. CSMA/CA IN 1-HOP SCENARIO 

 

Pair 

Avg. UDP Avg. TCP 

Rate 

(←,Kbps) 

Rate 

(→,Kbps) 

Jitter 

(←,ms) 

Jitter 

(→,ms) 

Rate 

(←,Kbps) 

Rate 

(→,Kbps) 

Jitter 

(←,ms) 

Jitter 

(→,ms) 

P-TDMA-SYS N0-N1 977 987 4.4 3.8 651 640 6.4 7.2 

N2-N3 988 975 4.1 3.6 581 633 6.8 6.6 

N4-N5 984 971 3.7 3.2 642 627 6.7 6.8 
N6-N7 942 956 4.6 4.1 631 642 6.9 7.7 

N8-N9 956 985 4.4 3.2 661 637 6.1 7.0 

CSMA/CA N0-N1 998 960 4.1 4.2 851 922 4.3 3.8 
N2-N3 981 968 21.2 14.3 742 688 7.2 6.4 

N4-N5 991 720 15.6 44.1 238 417 51.3 32.4 

N6-N7 936 514 36.8 32.8 172 642 22.3 51.2 
N8-N9 712 654 51.2 61.2 238 172 88.4 67.2 
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TABLE XVII: P-TDMA-SYS VS. CSMA/CA IN TRANSMISSION JITTER 

 UDP （Std. Dev.） TCP （Std. Dev.） 

Jitter 

(←,ms) 

Jitter 

(→,ms) 

Jitter 

(←,ms) 

Jitter 

(→,ms) 

P-TDMA-SYS 0.31 0.35 0.29 0.37 

CSMA/CA 16.51 20.41 31.60 24.73 
 

 
Fig. 17. P-TDMA-SYS vs. CSMA/CA in avg. transmission jitter. 

 
Fig. 18. P-TDMA-SYS vs. CSMA/CA in avg. transmission rate. 

Fig. 17 shows the average of UDP & TCP jitter of all 

nodes with P-TDMA-SYS & CSMA/CA. We found that 

P-TDMA-SYS performed smoothly in the bidirectional 

transmission, but CSMA/CA performs unsteadily. 

Furthermore, in Table XVII, we calculate the standard 

deviation of transmission jitter of P-TDMA-SYS & 

CSMA/CA. The P-TDMA-SYS’s standard deviation of 

jitter is much lower than CSMA/CA’s standard deviation 

of jitter. 

In Fig. 18, we find that P-TDMA-SYS can provide all 

nodes a relatively stable bandwidth in the bidirectional 

transmission. However, the CSMA/CA only can provide 

some of the nodes with abundant bandwidth (e.g. N0-N1, 

N2-N3), but the bandwidth of some nodes is very low (e.g. 

N8-N9). Especially, the N8-N9 pair always performed pool, 

because they were always the last to enter the rate test, 

and we believed that the congested channel causing them 

to low rate. 

According to the test results, we conclude that P-

TDMA-SYS can support better than CSMA/CA for real-

time application. 

Multi-Hop CBR Performance We also evaluate P-

TDMA-SYS & CSMA/CA multi-hop performance in our 

testbed. In this experiment, we construct a linear multi-

hop environment (N0→N1→…→N9). Fig. 19 show the 

topology of nodes in this experiment. And we set the 

transmission rate of N0 which is the CBR UDP & TCP 

flows of 1000Kbps. 

9-hop

2-hop

1-hop

 
Fig. 19. The multi-hop topology for experiment. 

 
Fig. 20. P-TDMA-SYS vs. CSMA/CA in multi-hop avg. transmission 

rate. 

TABLE XVIII: P-TDMA-SYS VS. CSMA/CA IN PACKET LOSS 

Hops P-TDMA-SYS’s packet 

loss rate (%) 

CSMA/CA’s packet loss 

rate (%) 

1 2.8 0.1 

2 3.7 0.8 

3 3.9 1.8 
4 4.4 2.4 

5 4.4 3.2 

6 3.8 2.8 
7 3.7 2.3 

8 4.4 2.1 

9 5.4 2.6 

 

In Fig. 20, we found that P-TDMA-SYS & CSMA/CA 

both could not guarantee rate in the multi-hop 

transmission. With the increase of hop, transmission rate 

is reduced. The main reason is the loss of data forwarding 

in each hop. However, in Table XVIII, for multi-hop 

transmission, the test results showed that P-TDMA-
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SYS’s packet loss rate was higher than CSMA/CA, 

because P-KER-MAC is unable to guarantee reliable 

transmission, if P-KER-MAC loss a packet, it would 

directly feedback to application layer. By contrast, the 

CSMA/CA try to ensure reliable transmission, if 

CSMA/CA loss a packet, it would retransmit the packet. 

Hence, in the application, the P-TDMA-SYS’s packet 

loss rate was higher than CSMA/CA. Even in the 1-hop 

transmission, there still was a lost packet phenomenon in 

P-TDMA-SYS transmission. 

Due to the limitation of experimental conditions, we 

cannot guarantee that all wireless card have a “clean” 

channel. All of the wireless card worked at 2.4GHz with 

other wireless devices, so a certain amount of interference 

is inevitable. 

Based on P-TDMA-SYS and CSMA/CSMA 

comparative experiments, P-TDMA-SYS can provide 

lower delay jitter and rated bandwidth. Hence, we 

conclude that P-TDMA-SYS can provide a more reliable 

transmission than CSMA/CA in 1-hop CBR transmission. 

However, in the multi-hop transmission, because P-KER-

MAC do not have a retransmission mechanism, its 

performance is slightly inferior to the CSMA/CA in 

packet loss control. 

VI. CONCLUSIONS  

In this paper, we design and implement P-TDMA-SYS 

over commodity 802.11 hardware for MANETs. P-

TDMA-SYS is an integrated TDMA network system 

based Linux kernel TCP/IP network stack and it can 

support real-time applications in mobile multi-hop ad-hoc 

networks. 

In P-TDMA-SYS, the kernel TDMA-based MAC is P-

KER-MAC. It contains a tight microsecond clock 

synchronization to enable high TDMA efficiency. What’s 

more, P-KER-MAC inherits the S-TDMA MAC and 

provides an adaptive report rate algorithm to support real-

time applications. On the basis of P-KER-MAC, we 

present a modified TCP congestion control algorithm to 

fully utilize the bandwidth resources. 

In the testbed, we put forward a complete and feasible 

solution of disabling the wireless card’s CSMA/CA 

functions. By measuring the delay of hardware and 

software, we summarize the transmission function of 

wireless cards. Furthermore, we evaluate the P-KER-

MAC’s TDMA mechanism in detail to prove its high 

transmission efficiency. For evaluating the P-TDMA-

SYS, we compared the performance between P-TDMA-

SYS and CSMA/CA in 1-hop/multi-hop scenarios. In the 

final, we conclude that P-TDMA-SYS indeed can provide 

a reliable throughput and low delay/jitter transmission for 

real-time applications in MANETs. 
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