
P-TDMA-SYS: A TDMA System over Commodity 802.11

Hardware for Mobile Ad-Hoc Networks

Zechen Lin, Zhizhong Ding, Qingxin Hu, and Shuai Tao
School of Computer and Information, Hefei University of Technology, Hefei, 230009, China

Email: {falcon_zechen_lin, 9696210, taoshuai029}@163.com; zzding@hfut.edu.cn

Abstract—In some scenarios such as catastrophes and military

operations, there is a need for communication without an

infrastructure. In urgent cases, in-time and reliable channel

access must be ensured. However, the channel access delay in

widely used CSMA/CA (Carrier Sense Multiple Access with

Collision Avoidance) network increases unpredictably when the

channel is sensed busy. Therefore, TDMA (Time Division

Multiple Access) gets more and more attention in mobile ad-hoc

network research. This paper presents a TDMA network system

(named as P-TDMA-SYS) that is designed to support real-time

applications in mobile ad-hoc networks (MANETs) and

successfully works on commodity 802.11 hardware. The key

feature of P-TDMA-SYS is its microsecond synchronization

and adaptive medium access policy. P-TDMA-SYS’s

implementation contains two major modules. One is the P-

KER-MAC, a TDMA-based MAC protocol, running over

commodity 802.11 hardware. The other is P-TCP, a cross-layer

TCP congestion control algorithm specifically for P-KER-MAC.

The presented TDMA-based MAC over commodity 802.11

hardware has been tested with a detailed accounting of the

hardware and operation system overheads. Furthermore, P-

TDMA-SYS has been compared with 802.11 CSMA/CA-based

network in the single-hop/multi-hop scenarios. The test results

show that our implementation achieves reliable throughput and

low delay/jitter for supporting real-time applications.

Index Terms—TDMA MAC, ad-hoc networks, IEEE 802.11

I. INTRODUCTION

There has long been a demand for jam-resistant and
none-infrastructure communications in the scene of
disaster rescue or military campaign. The most suitable
network type to meet the need is mobile ad-hoc networks
(MANETs). Currently, researches on MANETs are
mainly based on CSMA/CA media access control (MAC)
protocol due to the wide application of IEEE 802.11 and
802.15.4 standards. However, CSMA/CA-based MAC
has problems when it used in MANETs, such as packet
collisions and unpredictable transmission delay [1]. An
effective way to resolve the problems is to use
synchronized TDMA-based MAC protocol [2], but there
is no off-the-shelf TDMA wireless network card available
in the market, to the best of our knowledge, which can be
directly used in MANETs.

On the other hand, 802.11 is an attractive air interface
for wireless communication in terms of wideband
transmission and low cost network and there are a lot of

Manuscript received May 2, 2016; revised August 23, 2016.

This work is supported by Hefei University of Technology

(JZ2015QSJH0536).
Corresponding author email: zzding@hfut.edu.cn.

doi:10.12720/jcm.11.8.710-725

commercial products on the market. For a fast prototype
development of our MANETs product, we implemented a
TDMA-based MAC (named as P-KER-MAC) over
802.11 hardware and realized further a TDMA system
(named as P-TDMA-SYS) for MANETs by integrating
the routing protocol AODV [3] in order to support multi-
hop communications.

There are two challenges to implement a TDMA-based
wideband MANET:

1) What kind of TDMA mechanism should be adopted
in order to support ad-hoc network and to get better
performance than that of CSMA/CA?

Traditional TDMA is normally used in an
infrastructure network in which the assignation of time-
slot is controlled centrally. That is, it cannot be used in
MANETs. There are some papers in which TDMA-based
are proposed [4]-[5], however they are not so mature to
be implemented in a concrete development. A good
TDMA mechanism which has been standardized by ITU
(International Telecommunication Union) is STDMA
(Self-organizing TDMA) [6]. STDMA is mainly designed
for position reporting of ships and its Physical layer and
MAC layer have to be changed or modified in order to
support wideband MANETs of our case. Our MAC
implementation (i.e. P-KER-MAC) is designed on the top
of STDMA and implemented in the Linux kernel as a
driver.

2) How to realize a TDMA network card based on the
hardware of a commercial 802.11 CSMA/CA network
card?

The 802.11 network card is obviously the first choice
when high transmission data rate and low cost are taken
into account. The key issue is how to get an effective
solution to disable its CSMA/CA functions, and then
replace it with a TDMA MAC. Some researchers have
done a similar work [7]-[10] and these works lay a good
foundation for our job. Detailed comparison will be
presented in Section II.

To implement an effective TDMA-based wideband
MANET system by taking the above approach, there are
still some problems which should be solved.

1) Provide a solution of clock synchronization
mechanism for TDMA system if there is no GPS or other
time service. In P-TDMA-SYS, we proposed a relative
clock synchronization algorithm to ensure reliable
transmission.

2) Implement a routing protocol which supports multi-
hop wireless communication.

Although most Wi-Fi terminals have an ad-hoc mode

now, they cannot support multi-hop transmission. Many

researchers have proposed routing protocol for MANETs,

but it seems that AODV used in ZigBee/802.15.4 is the

710©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

only one with successful application so far. Therefore, we

integrate AODV module into P-TDMA-SYS.

3) Modify the existed TCP congestion control

algorithm so that it works more efficiently in a TDMA

MANET system with support of TCP/IP.

TCP/IP is originally designed for CSMA-based wire

and wireless network. When it is used in a TDMA-based

network, its performance is not satisfying in some cases.

We develop a new TCP congestion control algorithm

(named as P-TCP) in P-TDMA-SYS.

The P-TDMA-SYS is tested on our testbed and its

performance is evaluated. The test results show that our

implementation achieves reliable throughput and low

delay/jitter for supporting real-time applications.

The rest of the paper is organized as follows. Section II

compares the implementations of TDMA-based MAC

over 802.11 hardware. Section III describes P-KER-MAC

design. Subsequently, Section IV presents the details of

P-TDMA-SYS’s Linux implementation over commodity

802.11 hardware. Section V shows the construction of

test cases and the test results of our network system. In

the end, Section VI concludes the paper with a few points

of discussion.

TABLE I: COMPARISON WITH THE OTHER TDMA-BASED MACS

MAC
Clock Synchronization(Sync) MAC Mode Implementation

Sync Mode Sync Precision Schedule Routing Open Source Testbed

Soft-MAC in-band order of μs distributed 2-hop MadWiFi 802.11a

Lit-MAC in-band order of μs centralized multi-hop MadWiFi 802.11g

Free-MAC out-band order of ms centralized 1-hop none none

WiLDNet in-band order of ms centralized multi-hop MadWiFi 802.11a/g/n

P-TDMA-SYS

(our work)
in-band order of μs distributed multi-hop

ath9k-htc

firmware
802.11g

II. TDMA MAC OVER 802.11 HARDWARE

The most important part of the TDMA network system

is the MAC protocol. TDMA-based MAC protocols are

aplenty, and have been previously proposed for

commodity 802.11 networks. Table I compares prior

TDMA-based MAC [7]-[10] implementations with our

work synoptically, the details are as below.

Free-MAC [9] and WiLDNet [10] are not tightly

synchronized. Lit-MAC [7] uses out-of-band

synchronization, it can schedule links in any pattern in

the TDMA frame. Soft-MAC [8] synchronize after each

transmission, so synchronization is done, in-band,

through data transmissions.

Lit-MAC outlines the design of a TDMA-based MAC

protocol based on out-band clock synchronization and

takes into account hardware bottlenecks such as clock

drift, processing delay, the guard interval and slot

duration, etc.

Soft-MAC proposes a pairwise synchronization

algorithm, and takes into account propagation delay to

calculate clock difference between two nodes. It makes

use of a guard band to account for processing delays

encountered while packet transmission, and carries out

measurements to empirically tune the value of the guard

band.

Our methodology of modifying the open source driver

to build a TDMA network system on commodity 802.11

hardware is similar to Soft-MAC, Lit MAC. Soft-MAC

proposes a distributed mechanism for nodes to arrive at

an agreement on slot usage. The design imposes the

significant restriction that all nodes should use the same

channel in all time slots. It also assumes that interference

is limited to a 2-hop neighborhood. Lit-MAC present a

light-weight, centralized, multi-channel and connection

oriented TDMA-based MAC protocol, for operation in a

wireless multi-hop mesh network.

Soft-MAC, Lit-MAC, Free-MAC and WiLDNet all

have built TDMA based MAC protocols over commodity

802.11 hardware with the Atheros MadWiFi driver [11].

Soft-MAC implemented entirely in Linux user space, Lit-

MAC and WiLDNet implemented in Linux kernel space.

III. P-KER-MAC DESIGN

P-KER-MAC is the kernel TDMA-based MAC for P-

TDMA-SYS. It follows three main design principles.

First, tight in-band clock synchronization must be built-

into the P-KER-MAC. Second, P-KER-MAC must

maintain a dynamic, self-starting and self-organizing slot

schedule algorithm to support MANETs. Additionally,

the algorithm also should support real-time applications.

Third, P-KER-MAC should be robust to wireless

network’s common errors, such as data packet loss and

hidden node. Meanwhile, it should be simple and low

overhead for Operating System (OS).

In this section, we describe the design of P-KER-MAC,

showing its network composition, slot structure and

frame structure, network entry procedure and clock

synchronization. Furthermore, we set the P-KER-MAC’s

parameters and present an adaptive report rate algorithm

to support real-time applications. And we solve the S-

TDMA’s slot collision problem that caused by hidden

nodes.

A. Network Composition

The P-TDMA-SYS network boots up when the first

node comes online, and we call this node the “master”.

Master will broadcast the beacons to provide a rough

clock reference for the rest of the network. Then, other

node entry the network, and we call those nodes the

“slave”. Each master with some slaves establish a

network, and we call this network as a “cluster” network

(Fig. 1). In each cluster network, all nodes reuse a slot

711©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

flow to send and receive data with each other. Each

cluster network may cross the range, so they are

distinguished from each other by a unique cluster-ID.

Any node periodically transmits beacons in the cluster

network. P-TDMA-SYS’s beacon is fixed length and

transmitted in per frame duration. Since a beacon can

only carry limited information, each node broadcasts its

beacon to ensure that all neighbors are advertised for

keeping an alive list of its neighbors. We note that

“neighbor” refers to all of the nodes that the sender is

aware of, except the nodes that the sender cannot hear

from directly. Before sending the network beacon, the

node marks the current timestamp on it. Particularly, the

timestamp of the master will be used by the rough clock

synchronization algorithm.

M

M

M

S

S

S

M

S
S

Cluster-1
Cluster-2

Cluster-4

Cluster-3

M: master node

 S: slave node

Fig. 1. The network composition of P-TDMA-SYS

B. Slot Structure & Frame Structure

In P-KER-MAC, the time dimension of the channel is

divided into fixed
fN slots, whose duration

slotT is suited

to host one data packet duration ()dataT plus a necessary

guard interval ()guardT . The slot duration ()slotT can be

expressed as

 slot data guardT T T 
 (1)

Hence, P-KER-MAC views the time in terms of slots,

frameT long, and groups TDMA slots into fixed size

frames (

Fig. 2). Each frame consists of fN slots. The number

fN of available slots per frame duration frameT depends

on the frame duration and slot duration, and can be

expressed as

 /f frame slotN T T    (2)

where    is the floor function.

Tdata Tguard

Tslot
Fig. 2. P-TDMA-SYS’s frame and slot structure.

C. P-KER-MAC’s Parameters

In the P-KER-MAC, the unit of all time parameters are

set as microsecond. Table II summarizes the various

parameters in our system.

TABLE II: P-KER-MAC’S PARAMETERS

Notion Description

smt The node’s start moment.

slot smt 

The node’s slot start moment, which align the cluster

network slot boundary.

currentt The node’s current clock.

frameT One frame duration.

slotT One slot duration.

dataT The data duration in a slot duration.

guardT The guard duration in a slot duration.

slotN The number of available slots per frame.

slotL The data length of per slot.

minR The lower limit of report rate.

maxR The upper limit of report rate.

currentR The current value of report rate.

maxQ The maximum length of data queue.

currentQ The current length of data queue.

curS The current slot index.

cur excT 
 The exceed portion duration of current slot.

trigS Next index of slot trigger.

D. Network Entry Procedure

The P-KER-MAC’s medium access policy is based on

a slot reservation process: the transmitting node

autonomously reserve the slots they are going to use for

their transmissions based on other nodes’ slots

reservation information, which has to be presented in the

header of all data packets. The network entry process is

organized into 4 phases, which are sequentially

performed when a new node enters the network:

Initialization, Network Entry & Rough Synchronization,

First Frame & Precise Synchronization and Continuous

Operations.

TABLE III: SLOT STATES

Slot State Description

Free
The slot is not being reserved by any

node.

Busy
The packet has been detected in the same
slot of the previous frame but the packet

failed to be decoded successfully.

Externally allocated The slot is allocated for transmission by
another user.

Internally allocated
The slot will be used by the current node

self.

Initialization In the initialization phase, a node listens

to the channel for 2 frames duration (2 frameT) at first

and marks the slot state of all its fN slots in its slots

table. The possible states that a slot can assume in Table

III.

Network Entry & Rough Synchronization The

purpose of the network entry phase is for a node to

712©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

advertise its presence to the network. To do so, a node

transmits a one-time network entry packet in one of the

first slots sensed free in the previous phase, randomly

chosen according to a p-persistent mechanism [12]. In

this phase, the slave selects a latest master’s beacon, and

use the beacon’s timestamp as the rough relative clock

boundary.

Once any node is aware of the presence of the new

node in a cluster network, it is time for it to allocate a

sufficient number of transmission slots to satisfy its

default report rate of
minR packets per frame duration.

First Frame & Precise Synchronization Once the

node has announced its presence, the node enters the first

frame phase. The task of this phase is to announce and

reserve additional slots in order to fulfill the default

report rate. The first frame phase develops as follows (Fig.

3):

1) Set the nominal increment value ()NI to

/f reportN R   .

2) Randomly select a nominal start slot ()NSS out of

the first NI slots.

3) Derive additional (1)reportR  nominal slots ()NS

by subsequently adding NI slots to NSS .And

NS can be calculated as

 (0)reportNS NSS n NI n R     (3)

4) For the NSS and each NS :

a) Construct a selection interval ()SI by

adding (/ 2)f report SIN R p   number of

slots to the left and to the right, with
SIp

being the SI ratio, e.g. 20%.

 { (), ()}SI SISI NS p NI NS p NI     (4)

b) Compile a set of candidate slots within this

SI .

c) Randomly choose one of these candidate

slots as nominal transmission slot ()NTS .

When announcing the allocation of a selected slot, a

random timeout value time outp  is drawn from statically

defined minimum and maximum timeout limits (e.g.

1 8time outp  ). Hence, each allocated slot gets its own

timeout value. During this phase, slaves achieve precise

synchronization by requesting clock offsets with the

master of cluster. And the round trip of synchronization is

similar to the Simple Network Time Protocol (SNTP)

[13].

SI SI SI

N
T

S

N
S

S

N
S

N
T

S

N
T

S

N
S

NI NI

Fig. 3. Slot reservation process.

Continuous Operations After the first allocation

within the first frame phase is performed, the nodes enter

continuous operation. During this phase the node

performs re-allocations whenever the internal timeout of

a slot expires. The rules for re-allocation are different

with the first frame phase. In this phase, the node uses an

adaptive report rate along with the rate of the application

layer. Surely, a node is allowed to stick to the current slot

if no candidate slot is available. Furthermore, when re-

reserving a slot, the semantics of the offset value changes.

While it normally indicates the offset to the subsequent

transmission, it then indicates the offset to the newly

selected slot in the next frame.

E. Clock Synchronization

Highly precise clock synchronization (clock-sync) is

essential for efficient TDMA system. For most TDMA

systems, they process the clock-sync for aligning the

absolute frame boundary. However, in P-KER-MAC, our

clock-sync purpose is to align the slot boundary. In a

cluster network, optionally, every cluster network’s

master is specified manually or voluntarily. Each slave

node synchronizes to its master node, defining a

master/slave synchronization relationship for all nodes in

a same cluster network. For the whole network, the

master of each cluster network has been specified the

parallel level. Each slave determines its synchronization

source by using the latest synchronization beacon of the

master node.

Rough Clock Synchronization In the network entry

phase, a slave node selects the latest master’s beacon, and

use the receiving timestamp of the beacon as the rough

relative slot boundary. As for the timestamp, it’s the

MAC’s timestamp.

Precise Clock Synchronization In the First Frame

phase, the slave node achieve precise synchronization by

sending the clock-sync requests to get clock offset with

the master of cluster network (Fig. 4).
In one exchange, the slave node sends a clock-sync

request with a timestamp
1 1()slaveT CLK t which is its

clock at time
1t to the master node. After receiving the

request at time
2t , the master node uses its timestamp,

2 2()masterT CLK t , to find the clock difference between

the clocks relative to itself
2 1offset msT T T   . After some

time, the master node sends a clock-sync response at time

3t , with the timestamp 3 3()masterT CLK t and the

previously found time difference offset msT  . After receiving

the clock-sync response, at time
4t , the slave node

calculates its relative time difference 4 3offset smT T T   ,

where 4 4()slaveT CLK t .

At the end of the exchange, the slave node calculates

the clock offset:

1

()
2

offset offset sm offset msT T T   (5)

and round-trip delay with the master node:

1

()
2

delay offset sm offset msT T T   (6)

713©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

The slave node repeats this process several times, and

collect the clock offsets to the master node. Then, the

clock-sync algorithm first filters the raw clock offsets.

The filter removes the values of clock offsets that are out

of the valid range. In the final step, the slave node is to

use the averaged clock offset of the master node to re-

synchronize its local clock.

Master

Slave

T2=CLKmaster(t2) T3=CLKmaster(t3)

T1=CLKslave(t1) T4=CLKslave(t4)

Fig. 4. Precise clock synchronization.

After the clock-sync, there must be a relative

relationship between the slave and master node,

 ()%sm master sm slave frame slott t T N T    (7)

where
sm mastert 

 is the start moment of the master node,

sm slavet 
 is the synchronized start moment of the slave

node, {0,1,2,...}N . The slot schedule algorithm has no

requirement that
sm mastert 

 is strictly equal to
sm slavet 

. We

just need they can maintain a relative relationship just (7).

F. Slot Collision Avoidance

There are two kinds of situations which can cause slot

collision. One is the direct slot collision, the other is the

hidden node slot collision.

NA

(a) (b)

NB NA NBNC

Fig. 5. Slot collisions.

In Fig. 5(a), node A (NA) and node B (NB) are within

the transmission range of one another. In this case, if NA

and NB start transmission at the same time, then packets

from both nodes will be expected to raise slot collision

event. It is the direct slot collision. In Fig. 5(b), the nodes

NA and NB are not within the transmission range of one

another, but there is a third NC that is within the

transmission range of both NA and NB. In this case, if NA

and NB start transmissions at the same moment, then NC

will be expected to receive from both NA and NB at the

same time. It is the hidden node slot collision.
When any node wants to transmit a packet, it must

broadcast the reserved slot index in advance. Hence, we

present a passive detection method to solve the slot

collision. During the transmission, if any one node finds a

slot is reserved more than 2 nodes in its slot table, it will

broadcast a slot collision message to all nodes. And the

collision message includes the relative slot index and

source address. Then, those collision nodes that have

chosen the same slot will release the slot. Through this

mechanism, the slot collision can be resolved effectively.

G. Real-time Application Support

P-KER-MAC should support the streaming media

applications that are real-time voice and video. To adapt

the parameter settings to support real-time voice, we

consider the G.723.1 codec [14] which needs 24 bytes to

be transmitted every 30ms. For the real-time video, we

use the MPEG-4 Part 10 (H.264) [15] as video coding

standard for the application, and Table IV show the

relationship between frame resolution and bit rate.

TABLE IV: H.264’S FRAME RESOLUTION WITH BIT RATE

Typical Frame

Resolution

Typical Frames per

Second

Maximum Bit Rate

(Kbps)

176×144 15 64

320×240 10 192

352×288 15 384
352×288 30 768

720×480 15 4000

1280×720 30 14000
1920×1080 30 20000

In order to support a normal quality video (352×288,

30 frames/s), the P-TDMA-SYS must provide a

bandwidth which exceeds 768 Kbps. In addition, the

G.723.1 codec require the slot interval must be limited

within 30ms. On the basis of application’s demand, we

set the packet size of each slot (
slotL) to 540 bytes with

the 54Mbps PHY rate. Then we set 1999816μsframeT  ,

310μs ()+18μs () 328μsslot trans guardT T T  . For matching

the bit rate of video application, we set 66minR  ,

475maxQ  , 475maxR  . In these parameters settings,

each node can be assigned a bandwidth which is

max(/ 2) 1024 KbpsslotR L  . The slot interval, just the

transmission interval of per packet, can be

max/ 4.21msframeT R  .

start

Qcurrent>0

Calculate current report rate

YES

NO

Release all slots

Select SI

Reserved slots exist in SI？

YES

Choose a slot to use Allocate a slot to use

NO

end

Fig. 6. Adaptive report rate scheduling process.

714©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

H. Adaptive Report Rate

Report rate is directly associated with the link

bandwidth and latency. P-KER-MAC achieve an adaptive

report rate scheduling to ensure real-time application

requirements and full use of slot resources. Fig. 6 shows

the adaptive report rate scheduling process. When the

transport layer raise a transmission request, P-KER-MAC

calculate the
currentR by

 min{ ,max{ , }}current max current minR R Q R (8)

Then, we can calculate the number of NI ()NIC by

 /NI f currentC N R (9)

Next, we choose the next free trigger slot index in the

range of

 {(/ 1) ,(/ 2) }cur NI NI cur NI NIS C C S C C    (10)

In the range of (10), we try to choose a reserved slot, if

not, we will allocate a new slot to use. This process will

continue until the data queue is empty.

IV. P-TDMA-SYS’S LINUX IMPLEMENTATION

P-TDMA-SYS is fully implemented under the TCP/IP.

In the link layer, we have implemented P-KER-MAC

which is the kernel MAC of P-TDMA-SYS, a TDMA-

based MAC protocol, running over commodity 802.11

hardware. In the internet layer, AODV routing module is

added into P-TDMA-SYS to support the multi-hop

networks. In the transport layer, we have implemented an

improved TCP congestion control algorithm specifically

for P-KER-MAC. Fig. 7 shows the various modules and

their level.

P-KER-MAC provides precise control over the content

and timing of wireless transmission and reception. Its

Linux implementation has two major components (Fig. 8).

The first component is the kernel module, which resides

in the Linux kernel space and connects P-KER-MAC

with the Linux kernel network services. The second

component is the service module, which provides a slot

schedule layer (SSL) and a hardware abstraction layer

(HAL). The SSL uses the High-Resolution Timer (HRT)

to arrange transmissions. As for the SSL’s managements

module, it is a collection of modules which concludes the

packet management, slot table management, buffer

management, etc. The HAL hides the implementation of

802.11 driver to provide a communication interface.

P-TDMA-SYS

Transport Layer TCP with P-TCP/UDP

Internet Layer
AODV routing

protocol

Link Layer P-KER-MAC

Fig. 7. The composition of P-TDMA-SYS.

 Kernel

 Service

P-KER-MAC

SSL HAL

HRT Managements 802.11 PHY

Fig. 8. The composition of P-KER-MAC.

This architecture has two major purposes. First, the

kernel MAC is implemented in the Linux kernel IP

networking stack, the P-TDMA-SYS can integrate two

important modules, one is the AODV module, the other is

the TCP/UDP protocol. Second, P-TDMA-SYS is

divided into layered architecture, we can build test cases

for our system’s modules and prove its reliability.

A. Hardware & System Software Setup

We have implemented P-TDMA-SYS on the hardware

platform of Lenovo M7150 PC, which use the CORE 2

DUO processors running at 3.06Ghz and install with

Atheros wireless cards (TL-WN722N) on the AR9271

chipset. We use this 802.11 platform in the 2.4GHz

frequency and 802.11g model. Our software platform is

Ubuntu v14.04 (Linux kernel 3.18.24). In particular, we

add profiling software to the firmware (open source

ath9k-htc firmware) and make it allow us to measure

802.11 transmission duration. Most of important, we add

codes to control per-packet transmission.

B. Disabling CSMA/CA

Once the packet is inserted into the hardware queue by

the driver, it is essential that the packet is transmitted on-

air immediately. However, the majority of existing

802.11 wireless devices are confined to the built-in

CSMA/CA protocols. Hence, we had to study the

CSMA/CA mechanism, and our work was inspired

luckily by [16].

Reconfigurable NONE-CSMA/CA Transmitter The

802.11 MAC service is responsible for exchanging MAC

Protocol Data Units (MPDUs) using CSMA/CA. The

original standard offered the Distributed Coordination

Function (DCF) [17] to manage this process. The 802.11e

amendment extends DCF with Quality of Service (QoS)

enhancements [18], resulting in enhanced distributed

channel access (EDCA). With EDCA four different

Access Classes ()AC are defined, allowing the

prioritization of traffic.

The time a station must wait before it can transmit

depends on several parameters and inter frame spaces

(see Fig. 9). The shortest is the Short Interframe Space

()SIFS and is the time between successfully receiving a

frame and sending an acknowledgement (ACK). Other

frames must wait longer than SIFS , giving ACKs the

highest priority. When a station wants to transmit a data

frame of access class AC it first monitors the medium for

a period equal to

 [] []AIFS AC SIFS AIFS AC SLOT   (11)

715©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

 Sender

 Receiver

DIFS BO SIFS SIFS SIFS SIFS BO

RTS DATA

CTS ACK

CAMA/CA Cycle with RTS/CTS

Fig. 9. 802.11’s CSMA/CA mechanism.

where SLOT is the duration of one slot interval, and

with AIFSN dependent on the access class. The value of

SIFS and SLOT depend on the physical layer being

used. If sender enable the Request To Send/Clear To

Send (RTS/CTS) option, it must wait a CTS after send a

RTS in each transmission after a SIFS . If the medium is

idle during this time the station can transmit at once. In

case the medium was busy the contention window

 CW AC is set to []minCW AC and the random back-off

procedure is initiated. This procedure initializes the back-

off counter to a value uniformly distributed over the

interval [0, []]minCW AC . Once the medium has been idle

for []AIFS AC , the back-off counter is decremented for

each slot where the medium is idle. When the counter is

zero the station transmits the frame. Since AC is clear

from context it will no longer be explicitly included. The

values assigned to AIFSN ,
minCW , and

maxCW

determine the priority of an access class.

When an MPDU is transmitted, a Physical Layer

Convergence Protocol (PLCP) preamble and header is

added. The preamble allows the receiver to synchronize

to the transmission, and the header defines the

modulation used for the MPDU. We focus on 802.11g

long preamble mode, where (slightly simplified) the

overhead of the PLCP is 23μs, SIFS is 10μs and SLOT

is 9μs.

To turn a commodity 802.11 hardware into a

reconfigurable NONE-CSMA/CA transmitter, we need to

be able to carry out the following tasks:

1) Disable carrier sense.

2) Reset all 802.11 packet interframe spaces and

disable back-off.

3) Prevent the chip from waiting for an ACK.

4) Disable RTS/CTS option.

5) Control the TX/RX process.

Ath9k-htc Firmware Modifications The open source

ath9k-htc firmware runs on AR7010 and AR9271 chips,

and is sent to the device after power up. In our platform,

we choose the wireless card based on the AR9271 chip.

The AR9271 chip is controlled using memory mapped

registers. We implemented the following strategies to

disable CSMA/CA by setting the register value (Table V).

Especially, wireless radios are half-duplex and cannot

listen while transmitting. On the contrary, wireless radios

cannot transmit while receiving. For avoiding the

unnecessary delays while transmitting, we abort the

receiving the current frame by setting the register of

(WLAN_BASE_ADDRESS+AR_DLAG_SW) to the

value of ARDIAG_RX_ABORT when a transmission

request arrives PHY. We make the data packet into

802.11’s broadcast packet, hence, the traffic will not wait

for an ACK.

TABLE V: REGISTER SETTINGS FOR DISABLING CSMA/CA

Register Description Value

AR_DIAG_SW Disable carrier sense,

abort ongoing reception,
append bad FCS

CLEAR |

IGNORE |
IDLE

AR_D_GBL_IFS_SIFS SIFS 0

AR_D_GBL_IFS_SLOT SLOT 0

AR_QTXDP CWmin, CWmax and AIFSN 0

AR_Q_TXE Contains a pointer to the
transmit queue.

-

C. Transmission Control

P-KER-MAC ensures each node’s transmission embed

to a relative conflict-free slot schedule. Before running

the transmission in the network, P-KER-MAC should

determine a default and fixed slot duration. For

guaranteeing the robustness of slot duration, we calculate

the slot duration and ensure that its transmission is over

during the node’s each slot.

The slot duration ()slotT for an fixed l bytes packet,

transmitted at PHY rate ()m , is bounded into the

message ()mp l , which is measured in each slot. P-KER-

MAC views wireless transmissions as consisting of the

active part of the transmission, which is directly related to

the packet size and the guard duration. The message on

transmission duration is calculated with

 ()m trans guardp l T T  (12)

where
transT is reserved for the transmission, guardT is the

duration of guard contained in a slot, ensures that the

message covers various hardware and software delays.

Packet Transmission Duration In our hardware

platform, every packet needs to go through the USB, for

transfer from radio chip to the CPU, or from the CPU to

the radio chip. So, we should take into account the

timeout in the OS. Packet transmission process duration

is

trans tx rxT T T  (13)

In (13), the sending duration (
txT) and the receiving

duration (
rxT) both depend on the OS processing capacity.

The whole process can be seen in Fig. 10.

716©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

Ttx-os

Ttx

TPLCP Tdata

Ttrans-air Ttrans-air Ttx-os

Trx

Ttrans

TX

RX

Fig. 10. Transmission process.

txT is sending process delay, which occurs from the

time of the requested timeout, to the time a packet is

generated and handed-off to the wireless card.
txT is

equal to

tx tx os PLCP dataT T T T   (14)

 802.11

data ofdm

m

l h
T T

b

 
  
 

 (15)

where l is the packet size in bytes,
802.11h is the number

of bytes of 802.11 headers, {3,4.5,6,9,12,18,24,27}mb 

is the number of bytes carried in each OFDM symbol.

{6,9,12,18,24,36,48,54}m is the modulation rate

(Table VI). The preamble allows the receiver to

synchronize to the transmission, and the header defines

the modulation used for the MPDU. We focus on 802.11g

long preamble mode, where the overhead of the PLCP

()PLCPT is 23μs.
ofdmT equals to 4μs, corresponding to

single 802.11g Orthogonal Frequency Division

Multiplexing (OFDM) symbol. According to test results,

the
tx osT 

 is equal to 112 5μs , representing the sending

process duration in the OS.

rxT is the duration from when the wireless card

receives the packet, to the time the card finishes

transmitting the packet, which includes transmission

delay (
trans airT 

) in the air.

rx trans air rx osT T T   (16)

Due to our testbed is in-door, each test node is in the

range of 20 square meters, hence, the value of
trans airT 

is

close to 0μs. In our testbed, we measure
rx osT 

 which

represents the receiving process duration in the OS, is

equal to 80 5μs .

TABLE VI: MODULATION RATE WITH PER OFDM SYMBOL

Rate (Mbps) Modulation Data bits per OFDM

symbol (NDBPS)

6 BPSK 24

9 BPSK 36

12 QPSK 48

18 QPSK 72

24 16-QAM 96

36 16-QAM 144

48 64-QAM 192

54 64-QAM 216

Packet Guard Duration The guard duration should be

longer than the delay in the air and the OS’s error in the

network. For conflict-free slot, it is sufficient that the

guard time
guardT satisfies

guard re trans air clk drift sch driftT T T T      (17)

re trans airT  
 is reserved for the possible delay in the air.

For a single cluster network, we assume that the max

diameter of communication region is less than 1000m.

Therefore, the maximum transmission delay in the air is

approximately equal to 3.3μs. So we set
re trans airT  

 to 5μs

to ensure transmission robust. The
clk driftT 

 is aiming at

the node’s clock drift after clock synchronization process.

We set the maximum clock drift as the clock guard

duration. In our platform, the
clk driftT 

 is equal to 8μs.

sch driftT 
 is the maximum timeout error of HRT, and can

support a high precision value within 5μs in our platform.

Through above analysis,
guardT can be expected as

() () (5μs 8μs 5μs 18μs)re trans air clk drift sch driftT T T      .

D. Slot Schedule

Schedule Header In each data packet, P-KER-MAC

add a schedule header for broadcasting slot reservation

information. Table VII show its structure. The htype

represent the type of source node, it can be master or

slave type. When a node receives a data packet, it can get

the schedule header, use the hoffset & htimeout to update the

slot state in its slot table, and check the packet owner by

means of hsrc & hdst. As for hid, it represents the message

type to distinguish data message and management

messages (e.g. beacon, clock-sync, etc.).

TABLE VII: SCHEDULE HEADER STRUCTURE

Header Description

htype The node type: master or slave.

hoffset The distance between current receiving slot index and

next trigger slot index.

htimeout The specific number of receiving slot index’s usage.

hsrc The source address.

hdst The destination address.

hid The message id.

hstamp The source timestamp.

Transmission Schedule In order to accurately control

packet transmission moments, so that nodes transmit only

in their reserved slots. P-KER-MAC uses a HRT to

arrange the transmission slot event. In Sec. III, we have

introduced the method of slot selection. In the following

description, we pay close attention to the schedule

question that how to arrange a transmission. The

transmission schedule process can be showed in Fig. 11.

At time 0t , P-KER-MAC get a data request from the

transport layer. First, we get the raw packet from the data

queue, then, we search the slot table to get the next

arranged slot index ()trigS for calculating the offseth by

 offset trig curh S S  (18)

717©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

 %current slot sm frame

cur

slot

t t T
S

T


 (19)

Second, after adding the schedule header for the packet,

at time
1t , we can calculate the exceed portion time of

current slot ()cur excT 
by

 %cur exc cur slotT S T  (20)

Third, we arrange the HRT to register a delay event to

send the packet. The delay value is

 ()delay trig cur slot cur excT S S T T     (21)

At time
2t , the HRT raise the elapsed event. At the

same time, the packet is put into PHY and transmitted

immediately without waiting for the medium to be free.

We use this way to schedule the arranged slot. Because

we take into account the cost of the system situation that

it takes time for any packet to be generated.

Strig - Scur

Tdelay Tslot
t0 t1

t2
Fig. 11. Single slot schedule.

E. TCP/IP Network Stack Support

The P-KER-MAC has been implemented in the Linux

kernel space as a net device driver. There is a huge

difference between P-KER-MAC and the other MACs

which are designed for CSMA/CA. Hence, we have

changed some parameters for the driver.

MTU In computer networking, the maximum

transmission unit (MTU) of a communications protocol

of a layer is the size (in bytes or octets) of the largest

protocol data unit that the layer can pass onwards. The P-

KER-MAC has no support for long packets fragmentation,

so the default MTU (1500 bytes) is obviously not suitable

for P-KER-MAC’s fixed data length of per slot. By

analyzing the features of P-KER-MAC, we can calculate

an appropriate MTU, which is

 802.11MTU slot schedule FCSl l l l l    (22)

where
slotl is fixed data length, 802.11l is 802.11 header

length,
schedulel is schedule header length,

FCSl is FCS

checksum length.

MAC Address A media access control address (MAC

address) is a unique identifier assigned to network

interfaces for communications on the physical network

segment. The original IEEE 802 MAC address comes

from the original Xerox Ethernet addressing scheme. This

48-bit address space contains potentially 2
48

 possible

MAC addresses. In P-KER-MAC’s driver, it enable the

last 2 octets as MAC-16 (16-bit address), and there is a

converter for MAC-16 and MAC-48. There are two

reason for choosing the shorter address length, one is for

saving data space, the other is P-TDMA-SYS’s network

capacity would not be great. MAC-16 that contains
162 65536 addresses is enough.

TX Queue The TX queue length is represent the

driver’s cache, and is equal to
maxQ . When TX queue is

not full, we start the TX queue to receive the packet from

the upper layer and deliver it to P-KER-MAC for

transmission. Similarly, we stop the TX queue until it has

free space.

F. Multi-hop Networks Support

P-KER-MAC is designed for 1-hop network. If two

nodes are not within their wireless transmission range,

they cannot exchange messages with each other. In order

to support the multi-hop networks, we add the aodv-uu-

0.9.6 [19] into P-TDMA-SYS. The aodv-uu-0.9.6 snoops

all incoming and outgoing packets by utilizing a Netfilter

[20] hook to maintain the routing table. Moreover, the

AODV’s routing table can be mapped into kernel IP

routing table. By completing these tasks, each node has

the ability to forward IP packets. For a more detailed

implementation about AODV, we invite the reader to

refer to [3]. In short, P-TMDA-SYS incorporates AODV

routing protocol, so it can support the multi-hop networks.

G. TCP Improvement

Traditional TCP is developed for terrestrial wire-line

networks, and it can work well over a variety of Internet

paths, but there is still a fundamental bottleneck of

traditional TCP performance in P-KER-MAC.

With traditional TCP, the network throughput is

closely related to the round-trip delay time ()RTT .

However, when the P-KER-MAC initialize transmission,

the default report rate ()minR is small, and it lead to a big

RTT value. Hence, the TCP always cannot keep the

pipeline full, because TCP do not make full use of the

report rate. In our testbed, we found that the utilization of

report rate which in per frame is low by using the

traditional TCP.

In order to improve the TCP throughput in our system,

we develop P-TCP, that is a new TCP congestion control

algorithm to adapt the P-KER-MAC’s transmission

features.

The TCP congestion-avoidance algorithm is the

primary basis for congestion control in the Internet. Slow-

start is the default algorithms that TCP uses to control

congestion inside the network in the Linux. It is also

known as the exponential growth phase. Slow-start

begins initially with a congestion window size ()cwnd of

1, 2 or 10. The value of the congestion window will be

increased with each acknowledgement (ACK) received,

effectively doubling the window size each RTT . The

transmission rate will be increased with slow-start

algorithm until either a loss is detected, or the receiver’s

advertised window ()rwnd is the limiting factor, or the

slow start threshold ()ssthresh is reached. If a loss event

occurs, TCP assumes that it is due to network congestion

and takes steps to reduce the offered load on the network.

These measurements depend on the used TCP congestion

avoidance algorithm. Once ssthresh is reached, TCP

718©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

changes from slow-start algorithm to the linear growth

(congestion avoidance) algorithm. At this point, the

window is increased by 1 segment for each RTT.

In P-TCP, the network congestion is only determined

depending on the
maxR &

currentQ , rather than the value of

ssthresh & RTT . In the beginning of a slow start,

cwnd is set to
slotL . In each RTT , the current cwnd

will be set as below.

 ()max current slotcwnd R Q L   (23)

The transmission rate will be increased with slow-start

algorithm until the
currentR reach

maxR , or the data queue

is empty, or the receiver’s advertised window is the

limiting factor. At this point, we reduce the cwnd by 1

segment for each RTT until
currentR is stable. We don’t

worry that P-TCP sets too large cwnd to cause the link

conflict due to P-KER-MAC is a TDMA-based MAC to

support a none-conflict access control.

V. TESTBED RESULTS

In this section, we summarize hundreds of hours of

evaluating P-TDMA-SYS on our in-door 10 node testbed

(Fig. 12). These test nodes are numbered, from N0 to N10,

and they all in a 1-Hop range. Sec. H has introduced the

detail configuration of hardware & system software for

each test node. We configure the Linux firewall to build

multi-hop environment by using iptables [21]. We set up

the firewall on the node, make it only receive IP packets

from some specific nodes. In all experiments, we set

system clock (or system time) [22] as a statistical base of

nanosecond clock. We measure the throughput & jitter

for UDP and TCP by using iperf v2.0.4 tool [23].

Fig. 12. Test nodes topology.

A. High Resolution Timer Accuracy

High Resolution Timer (HRT) provides a high-

precision framework for timer’s management. In P-

TDMA-SYS, the HRT provide a precise delay to arrange

transmissions.

We setup an experiment on the testbed to measure the

HRT accuracy. The experiment design was inspired by a

stack overflow question [24]. At time sys startt  , we arrange

different delay ()t delayT  to HRT, then we calculate the

clock offset (t offsetT ) between the estimated and actual

timeout when the timer expires exp()sys iret  .

 exp()t offset sys ire sys start t delayT t t T      (24)

We repeat this task several times (≥100,000) in our

platforms. In the end, we count the average of these clock

offsets as the HRT’s accuracy.

Fig. 13. Timer offset and jitter in different delay.

In Fig. 13, it showed the average offset and jitter of the

timer. The result indicates that, with the change of delay,

there was no significant change in offset and jitter. The

t offsetT 
 can be controlled within 5μs. The jitter of timer

offset was always less than 2μs. The offset is referenced

to a parameter of
guardT in

slotT . According to the test

results, we set the value of
sch driftT 

 is equal to 5μs in (17).

B. Packet Transmission Evaluation

In order to measure the elapsed time of a packet

transmission, we perform series of experiments where a

node transmits 10,000 packets at 5ms intervals. We

repeat this experiment for different packet length and

modulation rates. We use our modifications of the ath9k-

htc firmware to record the time between the start time and

the hardware interrupt indicating that the card finished

sending the packet.

Fig. 14 shows the 802.11 hardware transmission

duration ()dataT and the sending & receiving process

duration (&)tx os rx osT T 
 for 540 bytes packets

transmitted at the different modulation rate. This

experiment corresponds to the fixed slot duration

transmissions ()transT . We note that
transT is almost

constant with a negligible amount of variability (less than

a few microseconds). Disabling the CSMA/CA features

of the ath9k-htc firmware also ensures that
transT is almost

constant.

Fig. 14. Transmission duration in different PHY rate.

719©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

Table VIII shows the details about the
tx osT 

 &
rx osT 

in different packet length. Observing the data, we find the

tx osT 
 &

rx osT 
 is relatively stable. Unfortunately, we are

unable to establish an accurate relationship between the

packet length ()packetl and
tx osT 

 &
rx osT 

. We only found

the fluctuation range of
tx osT 

 &
rx osT 

. In our testbed,

112 5μstx osT    , 80 5μsrx osT    .

TABLE VIII: PACKET LENGTH WITH SYSTEM OVERHEAD DURATION

lpacket(bytes) Ttx-os(μs) Trx-os (μs)

128 107 77
256 109 78

512 110 80

640 113 82
896 114 83

1024 116 87

Table IX shows more details about the measurement of

actual hardware transmission duration ()data actualT 
.

Meanwhile, we compare the
data actualT 

and the expected

transmission duration ()data expectT 
. We find that

data actualT 

is always slightly larger than
data expectT 

, hence, we

measure the
ofdmT by using

/

data actual PLCP

ofdm

packet m

T T
T

l b

 
 (25)

where
data actualT 

 is the average transmission duration of

the 540 bytes of a packet, {3,4.5,6,9,12,18,24,27}mb 

is the number of bytes carried in each OFDM symbol.

{6,9,12,18,24,36,48,54}m is the modulation rate. In

the 802.11g’s standard,
ofdmT should be equal to 4μs.

However, in our testbed, 4.16 0.04μsofdmT   .

Using our measurements over various packet sizes, we

can precisely calculate the
transT . In particular, we use the

upper limit of the measured parameters for the final
transT ,

 802.11

trans PLCP ofdm tx os rx os

m

l h
T T T T T

b
 

 
     

 
 (26)

In (26), 23μsPLCPT  , 4.2μsofdmT  , 117μstx osT   ,

85μsrx osT   , {3,4.5,6,9,12,18,24,27}mb  is the

number of bytes carried in each OFDM symbol.

{6,9,12,18,24,36,48,54}m is the modulation rate.

TABLE IX: P

Modulation

Rate (Mbps)

Tdata-actual

(μs)

Tdata-expect

(μs)

Tofdm

(μs)

6 779 743 4.17

9 527 503 4.18
12 401 383 4.20

18 275 263 4.12

24 212 203 4.18

36 149 143 4.17

48 118 113 4.15

54 107 103 4.16

C. Disabling CSMA/CA Evaluation

It is essential to quantify how accurately the packet

transmission duration can be controlled with disabling

CSMA/CA. We complete this experiment by measuring

the
transT in a 2-node topology. Similar to packet

transmission experiment, we still measure the packet

transmission duration ()transT . In different ways, we carry

out this experiment for the two cases of CSMA/CA

enabled and disabled.

Fig. 15. CSMA/CA disabled vs. CSMA/CA enabled.

Fig. 15 (a) shows the packet transmission duration for

the case of CSMA/CA disabled, while Fig. 15 (b) shows

the packet transmission duration for the case of

CSMA/CA enabled. For the case of CSMA/CA disabled,

as can be seen from Fig. 15 (a), 100% packet

transmission duration can be stably controlled in

299 10μs . However, for the case of CSMA/CA enabled,

the transmission duration of each packet presents a

stochastic state, and its range varies from 299-1258μs.

Thus, above results indicate that with CSMA/CA

disabled it is possible to precisely control packet

transmission duration over commodity 802.11 hardware.

D. Clock Synchronization Evaluation

We setup an experiment on the testbed to measure the

clock synchronization error, between the nodes in the

network. To measure the clock synchronization error, we

use 10 nodes to set up a cluster network (each node in a

1-hop range), and set one of the nodes to be master node

()masterN . The system clock of masterN is set the global

clock ()globalt . As each slave node is synchronized with

the master node, the master node sends packets with an

increasing sequence number and timestamp at 200ms

intervals. Each slave node receives the packet at the same

time and records the sequence number & timestamp by

using

 () ()seq ori seq transt t T  (27)

720©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

ACKET RANSMISSION URATIONT D

where seq is the sequence number,
transT is the

transmission duration of the packet,
()ori seqt is the original

the sequence number & timestamp which is marked when

the packet was received. We run the experiment for an

hour and record the average synchronization errors for all

nodes.

Fig. 16. The avg. clock synchronization error of each node.

In Fig. 16, as can be seen the average synchronization

error of each node is basically stable at 7.5 0.5μs . Table

X show more detailed statistics for all nodes. Out of the

90,000 collected errors, the maximum synchronization

error of 88μs just occurred only 3 times. We note that

almost all of the errors (99%) are within 8μs.

TABLE X: MORE DETAILS OF CLOCK SYNCHRONIZATION

Nodes Count 9 (except for master node)

Avg. Synchronization Error 7.8μs

Max Synchronization Error 88μs

Min Synchronization Error -7μs

Std. Dev. Synchronization Error 0.5μs

We conclude that the clock synchronization algorithm

works well for tight synchronization. With high

confidence, it synchronizes all nodes of a cluster network

to within 8μs. Meanwhile, we set 8μsclk driftT   , where

clk driftT  is a part of slot guard duration.

E. TDMA Mechanism Evaluation

Packet Transmission in Fixed Slots In P-TDMA-SYS,

the kernel MAC use the fixed slot to transmit packet.

Hence, we must prove that each packet transmission can

be tucked into the slot correctly.

After the slave node have been synchronous, any node

can measure each packet transmission duration in each

slot. When a packet was received by a node, it would be

marked the receiving timestamp ()currentt . And then, we

can use (20) to calculate the
cur excT 

. It represents the

actual transmission time in the receiving slot. If the

packet transmission is tucked into the slot correctly, the

cur excT  must satisfy the following relationship,

 trans cur exc slotT T T  (28)

We setup 2 nodes for this experiment, and they send

the maximum length packets (540)slotL  with each

other by using the 475maxR  . The whole process lasts

30 minutes, and in the final we count the numbers of
correct transmission which was fit for (28).

TABLE XI: TRANSMISSION DURATION IN SLOT DURATION STATISTICS

Packet Num. Correct Num. Error Num. Avg. Trans

duration

40,000 39,998 2 320μs

Table XI show the results of this experiment. As we

can see, 99.9% of the transmission can satisfy the

(28)(26), and the average transmission duration accounts

for 320 / 328 97.5% of slot duration. We conclude that

each packet transmission can be tucked into the slot

correctly.

Packet Transmission by Slot Schedule On the basis of

previous experiment, we also can test packet transmission

scheduling process. Likewise, when a packet is received

by a node, the hoffset which is in the common header of the

packet notices the next reserved slot index that would be

used. In Sec. H, the hoffset has been described in detail.

Now, we record the all used and reserved slots into a

table for a node. The record format is as

follows:<Node_Id, Scur, hoffset>.

If the slot scheduling is correct, there must be a

following relationship for a fixed Node_Id,

 () (1) (1)cur cur offsetS r S r h r    (29)

where r is the row number of the table.

We setup 5 nodes for this experiment, they send

packets with each other by using the 475maxR  . The

whole process lasts 30 minutes, and then we gather the

record tables from each node.

TABLE XII: SLOT SCHEDULING STATISTICS

Node Records Num. Correct Num. Correct Rate(%)

0 1,691,323 1,681,533 99.42

1 1,692,211 1,624,712 96.01

2 1,694,154 1,660,423 98.01
3 1,694,310 1,643,480 96.99

4 1,689,131 1,628,322 96.39

According to the Table XII, we found the 97.42%

process could meet the (29). However, some packet

transmission process cannot meet the (29). There are two

main reasons, one is the decoding failure, the other is the

slot collision.

Slot Collision Each slot can only belong to one node in

a moment. If a slot is used or reserved more than 2 nodes,

we believe it is a slot collision event. We setup 10 nodes

for this experiment, and count the numbers of packet

transmission ()transc and slot collision event ()collc for all

nodes.

TABLE XIII: SLOT COLLISION STATISTICS

Nodes Count ctrans ccoll ccoll / ctrans(%)

2 10,000 201 2.01

4 20,000 516 2.58

6 30,000 1442 4.80
8 40,000 2083 5.21

10 50,000 2778 5.55

721©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

As the number of nodes increases in in the network,

the slot collision frequency /()transcoll cc also increases.

However, the /()transcoll cc is low. Hence, the vast

majority of transmission can be guaranteed to perform

correctly.

Through the above three experiments, in conclusion,

we believe the P-MAC-KER implements the TDMA

mechanism.

F. 1-Hop Transmission Performance

1-Hop UDP Performance In order to test each node

can reach the design bandwidth (1000 Kbps). We setup

10 nodes in 1-hop range and make them send data to each

other in pairs with continuous backlogged UDP traffic.

We run the experiment for 1 minutes and repeat it 30

times.

TABLE XIV: PAIRS TRANSMISSION ON HEAVY UDP TRAFFIC

Pair Avg. Rate (→, Kbps) Avg. Rate (←, Kbps)

N0-N1 1011 1008

N2-N3 1011 998

N4-N5 1001 1012
N6-N7 999 1002

N8-N9 1006 997

In Table XIV, “→” & “←” represent the data

transmission direction. By analyzing the test results, we

found the bandwidth of each link is stable and reach the

design bandwidth. Furthermore, we found each node used

the maximum report rate ()maxR in the heavy traffic.

1-Hop TCP Performance The purpose for testing 1-

hop TCP performance is to evaluate the P-TCP which is

the specialized TCP congestion control algorithm for P-

KER-MAC. In this experiment, we only setup 2 nodes to

test the link rate. And, we put P-TCP and other classic

TCP congestion control algorithm together for

comparison under the same external condition. In each

algorithm test, we run the link rate test for 1 minutes and

this procedure is repeated 30 times to get the average of

rates.

In Table XV, we found the most classic TCP

congestion control algorithm cannot enhance the potential

for P-KER-MAC, because these algorithms rely mainly

on the RTT to estimate the bandwidth, however, the P-

KER-MAC’s initial report rate is low. These algorithms

mistakenly believe that a very narrow bandwidth in the

MAC. Hence, they use the short congestion window to

send packet and cannot fully occupy the bandwidth.

However, in P-TCP, it can know exactly available

bandwidth and increase the congestion window until the

report rate reach the maximum value. From Table XV,

the increase in TCP throughput is lesser than that for

UDP throughput. This is since for TCP we transmit both

the TCP data packet as well as the TCP ACK at the same

time.

TABLE XV: COMPARISON WITH OTHER TCP ALGORITHM

Algorithm Avg. Rate (Kbps) Avg. Report Rate

High Speed 131.2 36

Westwood 96.7 42

Cubic 153.6 58

Vegas 142.3 44

Reno 122.3 47

Scalable 46.7 30

P-TCP 676.7 420

G. P-TDMA-SYS vs. CSMA/CA

In order to compare the performance between P-

TDMA-SYS and CSMA/CA, we setup fair scenarios to

run the test cases.

Experiment Scenarios Design For CSMA/CA, we set

the wireless card into 802.11’s “ ad-hoc model” [25]. The

802.11’s ad-hoc model was implemented in Linux kernel

under mac80211 [26], so we can set the wireless card

model directly. For P-TDMA-SYS, we use the same

settings that have been mentioned above. We use UDP &

TCP to simulate the real-time application, and put the

throughput, jitter and packet loss as the main evaluation

criteria. In particular, we set P-TCP as P-TDMA-SYS’s

TCP congestion control algorithm, and set the Cubic

algorithm [27] for CSMA/CA. Meanwhile, we add the

AODV module into our OS as routing for both of them.

1-Hop CBR Performance We setup 10 nodes in 1-hop

range and make them send data to each other in pairs with

constant bit rate (CBR) UDP & TCP flows of 1000Kbps

& 100Kbps source rate. We run the experiment for 1 min

and repeat it for 30 times. The CBR UDP & TCP flows of

1000Kbps can simulate the real-time video transmission,

and the CBR UDP & TCP flows of 100Kbps can simulate

the real-time audio transmission.

Table XVI shows the transmission details of all pair

nodes. Observing the data, we found that P-TDMA-SYS

could provide a more stable transmission environment,

but CSMA/CA not.

TABLE XVI: P-TDMA-SYS VS. CSMA/CA IN 1-HOP SCENARIO

Pair

Avg. UDP Avg. TCP

Rate

(←,Kbps)

Rate

(→,Kbps)

Jitter

(←,ms)

Jitter

(→,ms)

Rate

(←,Kbps)

Rate

(→,Kbps)

Jitter

(←,ms)

Jitter

(→,ms)

P-TDMA-SYS N0-N1 977 987 4.4 3.8 651 640 6.4 7.2

N2-N3 988 975 4.1 3.6 581 633 6.8 6.6

N4-N5 984 971 3.7 3.2 642 627 6.7 6.8
N6-N7 942 956 4.6 4.1 631 642 6.9 7.7

N8-N9 956 985 4.4 3.2 661 637 6.1 7.0

CSMA/CA N0-N1 998 960 4.1 4.2 851 922 4.3 3.8
N2-N3 981 968 21.2 14.3 742 688 7.2 6.4

N4-N5 991 720 15.6 44.1 238 417 51.3 32.4

N6-N7 936 514 36.8 32.8 172 642 22.3 51.2
N8-N9 712 654 51.2 61.2 238 172 88.4 67.2

722©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

TABLE XVII: P-TDMA-SYS VS. CSMA/CA IN TRANSMISSION JITTER

 UDP （Std. Dev.） TCP （Std. Dev.）

Jitter

(←,ms)

Jitter

(→,ms)

Jitter

(←,ms)

Jitter

(→,ms)

P-TDMA-SYS 0.31 0.35 0.29 0.37

CSMA/CA 16.51 20.41 31.60 24.73

Fig. 17. P-TDMA-SYS vs. CSMA/CA in avg. transmission jitter.

Fig. 18. P-TDMA-SYS vs. CSMA/CA in avg. transmission rate.

Fig. 17 shows the average of UDP & TCP jitter of all

nodes with P-TDMA-SYS & CSMA/CA. We found that

P-TDMA-SYS performed smoothly in the bidirectional

transmission, but CSMA/CA performs unsteadily.

Furthermore, in Table XVII, we calculate the standard

deviation of transmission jitter of P-TDMA-SYS &

CSMA/CA. The P-TDMA-SYS’s standard deviation of

jitter is much lower than CSMA/CA’s standard deviation

of jitter.

In Fig. 18, we find that P-TDMA-SYS can provide all

nodes a relatively stable bandwidth in the bidirectional

transmission. However, the CSMA/CA only can provide

some of the nodes with abundant bandwidth (e.g. N0-N1,

N2-N3), but the bandwidth of some nodes is very low (e.g.

N8-N9). Especially, the N8-N9 pair always performed pool,

because they were always the last to enter the rate test,

and we believed that the congested channel causing them

to low rate.

According to the test results, we conclude that P-

TDMA-SYS can support better than CSMA/CA for real-

time application.

Multi-Hop CBR Performance We also evaluate P-

TDMA-SYS & CSMA/CA multi-hop performance in our

testbed. In this experiment, we construct a linear multi-

hop environment (N0→N1→…→N9). Fig. 19 show the

topology of nodes in this experiment. And we set the

transmission rate of N0 which is the CBR UDP & TCP

flows of 1000Kbps.

9-hop

2-hop

1-hop

Fig. 19. The multi-hop topology for experiment.

Fig. 20. P-TDMA-SYS vs. CSMA/CA in multi-hop avg. transmission

rate.

TABLE XVIII: P-TDMA-SYS VS. CSMA/CA IN PACKET LOSS

Hops P-TDMA-SYS’s packet

loss rate (%)

CSMA/CA’s packet loss

rate (%)

1 2.8 0.1

2 3.7 0.8

3 3.9 1.8
4 4.4 2.4

5 4.4 3.2

6 3.8 2.8
7 3.7 2.3

8 4.4 2.1

9 5.4 2.6

In Fig. 20, we found that P-TDMA-SYS & CSMA/CA

both could not guarantee rate in the multi-hop

transmission. With the increase of hop, transmission rate

is reduced. The main reason is the loss of data forwarding

in each hop. However, in Table XVIII, for multi-hop

transmission, the test results showed that P-TDMA-

723©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

SYS’s packet loss rate was higher than CSMA/CA,

because P-KER-MAC is unable to guarantee reliable

transmission, if P-KER-MAC loss a packet, it would

directly feedback to application layer. By contrast, the

CSMA/CA try to ensure reliable transmission, if

CSMA/CA loss a packet, it would retransmit the packet.

Hence, in the application, the P-TDMA-SYS’s packet

loss rate was higher than CSMA/CA. Even in the 1-hop

transmission, there still was a lost packet phenomenon in

P-TDMA-SYS transmission.

Due to the limitation of experimental conditions, we

cannot guarantee that all wireless card have a “clean”

channel. All of the wireless card worked at 2.4GHz with

other wireless devices, so a certain amount of interference

is inevitable.

Based on P-TDMA-SYS and CSMA/CSMA

comparative experiments, P-TDMA-SYS can provide

lower delay jitter and rated bandwidth. Hence, we

conclude that P-TDMA-SYS can provide a more reliable

transmission than CSMA/CA in 1-hop CBR transmission.

However, in the multi-hop transmission, because P-KER-

MAC do not have a retransmission mechanism, its

performance is slightly inferior to the CSMA/CA in

packet loss control.

VI. CONCLUSIONS

In this paper, we design and implement P-TDMA-SYS

over commodity 802.11 hardware for MANETs. P-

TDMA-SYS is an integrated TDMA network system

based Linux kernel TCP/IP network stack and it can

support real-time applications in mobile multi-hop ad-hoc

networks.

In P-TDMA-SYS, the kernel TDMA-based MAC is P-

KER-MAC. It contains a tight microsecond clock

synchronization to enable high TDMA efficiency. What’s

more, P-KER-MAC inherits the S-TDMA MAC and

provides an adaptive report rate algorithm to support real-

time applications. On the basis of P-KER-MAC, we

present a modified TCP congestion control algorithm to

fully utilize the bandwidth resources.

In the testbed, we put forward a complete and feasible

solution of disabling the wireless card’s CSMA/CA

functions. By measuring the delay of hardware and

software, we summarize the transmission function of

wireless cards. Furthermore, we evaluate the P-KER-

MAC’s TDMA mechanism in detail to prove its high

transmission efficiency. For evaluating the P-TDMA-

SYS, we compared the performance between P-TDMA-

SYS and CSMA/CA in 1-hop/multi-hop scenarios. In the

final, we conclude that P-TDMA-SYS indeed can provide

a reliable throughput and low delay/jitter transmission for

real-time applications in MANETs.

REFERENCES

[1] S. Xu and T. Saadawi, “Revealing the problems with

802.11 medium access control protocol in multi-hop

wireless ad hoc networks,” Computer Networks, vol. 38, pp.

531-548, 2002.

[2] Y. R. Kondareddy and P. Agrawal, “Synchronized MAC

protocol for multi-hop cognitive radio networks,” in Proc.

IEEE ICC, 2008, pp. 3198-3202.

[3] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-

demand distance vector (AODV) routing,” No. RFC 3561.

2070-1721, 2003.

[4] E. Jung and N. H. Vaidya, “A power control MAC

protocol for ad hoc networks,” in Proc. 8th ACM

International Conference on Mobile Computing and

Networking, 2002, pp. 36-47.

[5] S. Wu, C. Lin, Y. Tseng, and J. Sheu, “A new multi-

channel MAC protocol with on-demand channel

assignment for multi-hop mobile ad hoc networks,” in

Proc. I-SPAN, 2000, pp. 232-237.

[6] R. I. M. Series, “Technical characteristics for an automatic

identification system using time division multiple access in

the VHF maritime mobile frequency band,” I. T. Union,

Ed., 2014.

[7] V. Gabale, B. Raman, K. Chebrolu, and P. Kulkarni, “Lit

mac: Addressing the challenges of effective voice

communication in a low cost, low power wireless mesh

network,” in Proc. 1st ACM Symposium on Computing for

Development, 2010, p. 5.

[8] P. Djukic and P. Mohapatra, “Soft-TDMAC: A software

TDMA-based MAC over commodity 802.11 hardware,” in

Proc. IEEE INFOCOM, 2009, pp. 1836-1844.

[9] A. Sharma and E. M. Belding, “FreeMAC: Framework for

multi-channel mac development on 802.11 hardware,” in

Proc. ACM Workshop on Programmable Routers for

Extensible Services of Tomorrow, 2008, pp. 69-74.

[10] R. K. Patra, S. Nedevschi, S. Surana, A. Sheth, L.

Subramanian, and E. A. Brewer, “WiLDNet: Design and

implementation of high performance WiFi based long

distance networks,” in Proc. NSDI, 2007, p. 1.

[11] S. Leffler. (Sep 2015). Madwifi-project.org-Trac. [Online].

Available: http://madwifi-project.org/

[12] P. Persistent, “Environmental medicine, Part 4: Pesticides--

biologically persistent and ubiquitous toxins,” Alternative

Medicine Review, vol. 5, pp. 432-447, 2000.

[13] D. Mills, “Simple network time protocol (SNTP) version 4

for IPv4,” Ipv6 and OSI, RFC2030, 1996.

[14] S. Jung, K. Kini, and H. Kang, “A bit-rate/bandwidth

scalable speech coder based on ITU-T G. 723.1 standard,”

in Proc. IEEE ICASSP, 2004, pp. I-285-8.

[15] I. Draft, “recommendation and final draft international

standard of joint video specification (ITU-T Rec. H. 264|

ISO/IEC 14496-10 AVC),” Joint Video Team (JVT) of

ISO/IEC MPEG and ITU-T VCEG, JVTG050, vol. 33,

2003.

[16] M. Vanhoef and F. Piessens, “Advanced Wi-Fi attacks

using commodity hardware,” in Proc. 30th Annu. Conf.

Computer Security Applications, 2014, pp. 256-265.

[17] H. Wu, S. Cheng, Y. Peng, K. Long, and J. Ma, “IEEE

802.11 distributed coordination function (DCF): Analysis

and enhancement,” in Proc. IEEE ICC, 2002, pp. 605-609.

[18] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke,

“Analysis of IEEE 802.11 e for QoS support in wireless

LANs,” IEEE Wireless Communications, vol. 10, pp. 40-

50, 2003.

[19] AODV-UU Linux Implementation. (Mar. 2016). [Online].

Available: https://sourceforge.net/projects/aodvuu/

[20] Netfilter Architecture. (Oct. 2015). [Online]. Available:

http://www. netfilter.org/documentation/HOWTO/netfilter-

hacking-HOWTO-3.html

[21] Iptables Description and Target. (Oct. 2015). [Online].

Available: http://ipset.netfilter.org/iptables.man.html

724©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

[22] Computer System Time. (Dec. 2015). [Online]. Available:

https:// en.wikipedia.org/wiki/System_time

[23] iPerf. (Nov. 2015). [Online]. Available: https://iperf.fr/

[24] Stack Overflow: Reliability of Linux kernel add_timer at

resolution of one jiffy? (Dec. 2015). [Online]. Available:

http://stackoverflow.com/questions/16920238/reliability-

of-linux-kernel-add-timer-at-resolution-of-one-

jiffy/17055867#17055867

[25] G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “IEEE

802.11 ad hoc networks: performance measurements,” in

Proc. 23rd International Conference on Distributed

Computing Systems Workshops, 2003, pp. 758-763.

[26] Linux Wireless: Mac80211. (Dec. 2015). [Online].

Available: https://

wireless.wiki.kernel.org/en/developers/documentation/mac

80211

[27] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly

high-speed TCP variant,” ACM SIGOPS Operating

Systems Review, vol. 42, pp. 64-74, 2008.

Zechen Lin was born in Fujian Province,

China, on Nov. 14, 1990. He received his

B.E degree in Communication

Engineering from Hefei University of

Technology, Anhui province, China, in

2009 and 2013. He is currently working

toward Master’s degree at Hefei

University of Technology. His major

interests are mobile networks, wireless

communications and multimedia applications.

Zhizhong Ding received his B.E degree

in Radio Communications from Nanjing

University of Aeronautics and

Astronautics, Nanjing, China, Master’s

degree in Circuit and System from Hefei

University of Technology, Hefei, China,

and Ph.D. in Information and

Communication Engineering from

University of Science and Technology of China. He currently is

a Professor with the Department of Communication

Engineering and with the Institute of Communications and

Information Systems, Hefei University of Technology. His

research interests include wireless communications, network

communications and information theory.

Qingxin Hu received his B.E degree and Master’s degree in

Hefei University of Technology, Anhui province, China. He

currently is a Professor with the Department of Communication

Engineering and with the Institute of Communications and

Information Systems, Hefei University of Technology. His

research interests include wireless communications, wireless

signal processing and railway information security.

Shuai Tao was born in Shanxi Province,

China, in 1989. He received his B.E

degree in Communication Engineering

from Hefei University of Technology,

Anhui province, China. He is currently

working toward Master’s degree at Hefei

University of Technology. His research

interests include wireless

communications and network management.

725©2016 Journal of Communications

Journal of Communications Vol. 11, No. 8, August 2016

