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Abstract—Data centers hosting applications consume 

huge amounts of energy. Flexible management of virtual 

clusters is an effective way to reduce the overall power 

consumption of data centers. In order to save energy we 

focus on decreasing the total power-on time of physical 

nodes in data centers and increasing the runtime 

efficiency of physical nodes. For a specific physical node 

how long it is power-on is determined by the job with 

longest completion time. In this work, we formulate the 

problem into maximizing the amount of data which is 

processed by unit energy. AVC-based migration approach 

is proposed, which exploits the completion time of 

parallel jobs encapsulated by virtual clusters to guide 

virtual machines migrations. Algorithm VCGM is 

designed to construct the final mapping state which is 

energy-efficiency. In VCGM, all virtual clusters are 

grouped by their remaining time and every virtual cluster 

group is “compacted” into few physical nodes one by one. 

Then we adopt the low-cost perfect matching in the 

bipartite matching problem to obtain a migration plan. 

Algorithms are simulated and evaluated to verify the 

effectiveness of our energy efficiency scheme. 

 
Index Terms—Virtual cluster migration, resource consolidation, 

green computing 

 

I. INTRODUCTION 

Cloud computing has gained more and more attention 

from industry and academic in recent years. It leverages 

virtualization technology allowing customers to on-

demand provision resources based on a pay-as-you-go 

utility model. Virtualization technologies have several 

properties: encapsulation, isolation and hardware 

independence, and so on. These properties make the way 

of utilizing data centers’computing resources in cloud 

changed. Virtualization is the core technology of cloud 

 
  

 

 
  

 

computing and views computing resources as a pool of 

unified resources, which reduces the complexity and 

manageability of data centers. 

Infrastructure providers maintain thousands of physical 

computing nodes to meet the continuously increasing 

requirement. Cloud computing brings convenience to 

users and vendors, while we should not ignore the huge 

energy consumption it brings too [1], [2]. The work [3] 

estimates that a data center with 50,000 computing nodes 

may consume more than one hundred million kwh/year 

energy. This enormous energy consumption is equivalent 

to the electricity consumption for a 100,000 population 

urban in one year and it will generate heat and lead to 

expensive cooling costs.  

The reasons for this extremely high energy 

consumption are: mass of computing resources, hardware 

power inefficiency, and resources inefficient usage. Large 

number of underutilized servers has become a major 

problem to cloud providers that needed to be figured out. 

As the base power consumption is the dominant part of 

total power consumption, no matter whether the node is 

busy or idle the energy drawn by it is huge. How long a 

physical node is power-on depends on the job with 

longest completion time. VM consolidation is an 

effective method to increase physical resources utilization 

and reduce the power consumption. Live migration is a 

valid method that migrate some VMs to other physical 

machines if necessary for VM consolidation. 

Virtual Cluster (VC) [4], [5] is a group of VMs which 

are used to complete a parallel job. Virtual cluster 

becomes popular to run high performance computing 

workloads. And its sub-tasks will run on several virtual 

machines. The interaction operations between tasks are 

required for synchronization. The parallel job is not 

completed until all its tasks have been finished.  

After a parallel job is assigned to a virtual cluster, the 

required resources of physical nodes must be allocated to 

all VMs belonging to this virtual cluster. The random 

placement of VMs belonging to same virtual cluster may 

cause some scattered resources fragment or some 

underutilized physical nodes generated when the assigned 

job finish. This is adverse to energy saving. At present, 

the researches on virtual cluster mainly focus on its 

deployment, but have little attention on its live migration. 

Virtual cluster live migration concerns the overall 

computing environment’s migration. The impaction of 
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migration to parallel job performance should be 

considered. 

Based on the mechanism Limevi [6] which supports 

virtual cluster live migration in parallel computation of 

large-scale distributed applications, we study the energy 

saving issue of a data center in cloud environment. In our 

data center, the future workloads are not been predicted 

and workloads change with time. We want to consolidate 

current workloads and make data centers in a low energy 

consumption state for a period of time. On one hand, we 

adopt VM consolidation to improve the amount of data 

which is processed by unit energy. On the other hand, 

during the consolidation we try to “compact” the 

scattered virtual cluster by the way of grouping. In a 

specific group, the remaining times of virtual machines to 

release resource are similar. It is assumed that the 

remaining times of virtual clusters are known when jobs 

are submitted. This can be predicted by machine learning 

in the practical environment [7]. Virtual cluster in one 

groupwill be remapped onto one or a set of physical 

nodes to increase the runtime efficiency of these physical 

nodes. 

Specifically, our contribution is mainly about: 

1) We analyze how the placement of virtual clusters 

impacts on the energy consumption of data centers. Then 

we obtain the VMs relationship in a certain virtual cluster 

in order to release more resources when some jobs finish. 

2) We propose a power model which has a linear 

relationship with the utilization of physical nodes. With 

the workloads change with time, the energy consumption 

can be defined as a continuous function. 

3) We group virtual clusters by their remaining time 

and generate several virtual cluster groups (VCGs). These 

VCGs are sorted by their remaining time in descendant 

order. We use the algorithm VCGM to place each VCG 

into the data center one by one for constructing the final 

mapping state.  

4) In order to get the final mapping state from the 

initial mapping state, we regard it as a bipartite matching 

problem. By using the method of low-cost perfect 

matching, we get a migration plan whose migration cost 

is lower. 

The rest of this paper is organized as follows. In 

Section 2 we present relate works. In Section 3 we 

discuss the motivation of energy efficient problem in 

virtual cluster and formulate it. In Section 4 we propose 

our consolidation method with bipartite matching. In 

Section 5 we evaluate and analyze the obtained 

experiment results. Finally, we make a conclusion for this 

paper and discuss future research directions in Section 6. 

II. RELATE WORKS 

There are a lot of researches on the energy saving 

resource management in the context of data center. 

PMapper [8] is a power-aware application placement 

controller in a heterogeneous virtualized server system. 

The VMs placement is optimized to minimize power 

consumption and migration cost under performance 

constraints. The migration cost is determined by the 

impaction on throughput and the revenue loss based on 

Service Level Agreement (SLA). However, algorithms 

proposed in pMapper are locally optimal. In contrast to 

our work, they only get an energy-efficient placement 

scheme when consolidation, the energy cost of servers 

after the consolidation finishing is not considered. 

In [9], Liu H et al. accurately predict the performance 

and energy consumption of each VM migration in a 

server farm. They design two models to estimate VM 

migration performance. A primary goal of its models is to 

determine which VM should be migrated within a server 

farm with minimum migration cost. They show that VM 

memory size, network speed and memory dirtying rate 

have most impaction on migration performance in terms 

of migration downtime, migration latency and network 

traffic. They only propose an energy model of VM 

migration and focus on the energy consumption when 

VM is migrating while the total energy consumption of 

the data center is not considered. 

Beloglazov A et al. [10] focus on optimizing data 

center resource management for energy efficiency, while 

maintaining high service level performance. They define 

an architectural framework and present resource 

provisioning and three allocation algorithms for energy-

efficient management of cloud computing environments. 

A power model which has a correlative with CPU 

utilization is proposed for formulating the energy 

consumption of modern data center. Hieu N T et al. [11] 

present a VM Consolidation with Usage Prediction 

(VMCUP) algorithm that limits the frequency of 

migrations and server switches, so as to reduce the energy 

consumption of a cloud data center. They used the 

multiple linear regression methods to estimate the 

utilization of resources in short-term future. Both [10], 

[11] only consider the resource of CPU, but the memory 

technology is still not energy-efficient and should to be 

taken into account as like what we have done.  

Takahashi S et al. [12] consolidates servers based on 

the purpose of minimum the power consumption. They 

proposed a computational formula for the power 

decreasing by the migration of VMs from one server to 

other server. Then they use a matching algorithm to 

calculate a migration scheme which has the most weight 

with largest power consumption reduction. However, the 

proposed virtual machine placement algorithm is greedy 

heuristic and the algorithm complexity is higher.  

Yang C T et al. [13] propose a power management 

scheme that determines the amount of physical nodes 

should be run by controlling the load ratio. They define a 

value that is the gross occupied resource weight ratio. A 

standby physical machine is wakened up when the value 

is greater than the maximum tolerant occupied resource 

weight ratio in order to prevent the degradation of 

performance. While if the value is less than the minimum 

occupied resource weight ratio that a running physical 
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machines is selected to be migrated for energy saving. 

This work certainly reaches the goals of significant 

energy saving. However, it does not take the migration 

cost into account and a more actual model should be 

constructed. 

Beloglazov A et al. [14] propose a VM placement 

optimization scheme which is decentralized and 

paralleled. The system architecture is hierarchical. The 

decentralization removes the problem of Single Point 

Failure (SPF) and improves scalability. The allocation 

policy has three stages and they combined in overall 

solution. The upper and lower utilization thresholds are 

used to judge which virtual machine should to be 

migrated. 

For the problem of the whole virtual cluster or multiple 

virtual clusters migration has insufficient research and 

techniques. 

Hsu C H et al. [15] propose a method of Energy-aware 

Task Consolidation (ETC), which to ration CPU 

utilization and manage task consolidation amongst virtual 

cluster. In their work, the network latency when task is 

migrating to another virtual cluster is considered. They 

use a non-linear energy consumption model which is 

different from ours. This model divides the energy 

consumption of a VM into seven different levels. Based 

on this power model, ETC uses the algorithm of Best Fit 

Decreasing (BFD) to consolidate tasks in order to keep 

the CPU utilization of virtual machines under its peek 

value. However, they only use virtual cluster scheduler to 

dispatch tasks, while not consider migrations of Virtual 

clusters like what we do. Ye K et al. [16] studies the 

performance and live migration costs of virtual cluster 

and researches on various live migration strategies for 

virtual cluster. They propose some optimization 

principles about virtual cluster migration based on the 

experiment results. But an efficient migration algorithm 

for the migration of virtual cluster does not been 

proposed. 

In our work, we propose an effective virtual cluster 

migration scheme. In order to save energy the remaining 

times of virtual machines residing on a certain physical 

node should be similar when we construct the final 

mapping state. We take performance as constraint to meet 

SLA. When we migrating virtual clusters, we also take 

migration cost into account. 

III. PRELIMINARIES AND MODEL 

In this section, we describe the motivation of virtual 

cluster based consolidation scheme. We then introduce a 

power model which is lineage with the resource utility. 

Finally, we formulate the energy consumption 

optimization problem. 

A. Motivation 

The behavior characteristics of applications are 

different, so different application focus on different type 

resource. Compared with CPU and network resource, 

data intensive jobs have much more requirement for 

storage resource. Virtual cluster used to encapsulate these 

jobs and they will have different requirements to all 

resources.  

We assume that the resources which are utilized by a 

virtual cluster will not be released until all tasks in it have 

been finished. That is to say, all VMs in a same virtual 

cluster will release its resources at same time. Based on 

this assumption, we analyze how the placements of 

virtual clusters impact on the energy consumption of data 

centers. 

The random placement of virtual cluster will make its 

VMs’ distribution scattered. When some short jobs finish, 

a small amount of resource will be released on some 

physical nodes. Usually, the parallel job running time is 

long and their resource requirement is diverse, so these 

released resources may not been used by other large scale 

virtual clusters. This will lead to these physical nodes in a 

low utilization ratio and inefficient energy usage. 

Especially for large and long jobs, scattered distribution 

of them will increase the total active time of physical 

nodes in a data center (such as Fig. 1 shows). 

 VM1,1
30min

VM1,2
30min

VM1,3
30minVM2,2

3h
VM2,3
3h

 VM2,4
3h

 VM3,2
50min

VM3,3
50min

VM3,1
50min

VM3,4
50min

 VM3,5
50min  VM4,2

5h

VM4,1
5h

VM4,3
5h

Utilization:

Nodes:

79.2% 70.8% 79.2% 66.7% 83.3%

pn1 pn2

Utilization:

Nodes:

25.0% 50.0% 25.0% 25.0% 50.0%

AFTER 50 MINUTES 

VC1

VC2

VC3

VC4

 VM2,1
3h

 VM2,1
3h

 VM2,4
3h

 VM4,2
5h

VM4,1
5h

VM2,2
3h

VM2,3
3h

VM4,3
5h

pn3 pn4 pn5

pn1 pn2 pn3 pn4 pn5

 
Fig. 1. System state changes after some VC finished. 

Fig. 1 illustrates partial physical nodes states of data 

center. At the beginning, the system is efficiently used 

while the virtual clusters are mapping scattered. After 50 

minutes, 𝑉𝐶1  and 𝑉𝐶3  finish their jobs and release 

resources occupied by them. The released resources of 

short jobs lead to inefficient usage of physical nodes and 

unnecessary energy consumption. 

VM consolidation is a valid way to increase the 

utilization of physical nodes and reduce the energy 

consumption, but it will not lower the possibility of 

generating underutilized physical nodes. We want to 

consolidate virtual machines into few physical nodes 

meanwhile to “compact” virtual clusters.  

If we can consolidate VMs that belong to the same 

virtual cluster into fewer physical nodes, this virtual 

cluster will release more resource on a physical node 

when its work finish. Moreover, in order to improve the 
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migration performance of virtual clusters the, VMs 

belonging to the same virtual cluster should be deployed 

together as much as possible [16]. This will bring a 

benefit that the communication and Synchronization 

latency can be reduced mostly.  

Based on the analysis above, we design a VC-based 

consolidation scheme which uses the correlations among 

VMs in same virtual cluster to save more energy. 

B. Energy Consumption Model 

The power consumption of physical node generally is 

determined by CPU, memory, disk storage, and network. 

The utilization of CPU has more influence on its power 

consumption than other system resources. Physical node 

in different work state will have different power 

consumption. We divide the work state of a physical node 

into three modes: active, idle and off. In the off mode, the 

power consumption is 0. In the active and idle modes, the 

physical node is power-on and its power consumption is 

determined by its workload. References [10], [12], [17] 

show that a specific physical node in idle mode consumes 

50% ~ 70% power of its saturated. That means physical 

node with lighter workload still consumes huge power. 

The base power consumption is the main part of a 

physical node’s power consumption as long as it is 

power-on. So we focus on the base power consumption of 

physical nodes and want to reduce it as much as possible. 

As discussed above, VM consolidation is a key 

technology to reduce the total power consumption for 

data centers. This is justified by judging whether a 

physical node with lightly workload has the opportunity 

to be an idle node or not. If so, VMs mapping on these 

physical nodes can be migrated to a few optimal set of 

physical nodes. Physical nodes inactive for a period of 

time can be switched to the Advanced Configuration and 

Power Interface (ACPI) S3 stand-by mode in which the 

power consumption is very low [18]. Our purpose is 

trying to minimize the total energy consumption of a data 

center without impacting the performance of application 

by eliminating unnecessary power consumption of lightly 

physical nodes. 

We assume that the resources requirements of VMs are 

proportional. The resources of physical nodes also 

configured in proportion. This can be made sense from 

Amazon EC2 instance type [19]. For example, the 

instance of R3 in Amazon EC2, it has five different kinds 

of types. Table I shows the resource allocations of them. 

We consider that each type VM has a fixed bundle of 

resources. We can use one type resource to reflect the 

VM’s resource requirement, here is memory. 

TABLE I: RESOURCE ALLOCATIONS OF AMAZON EC2 INSTANCE TYPES. 

Type vCPU Memory(GB) SSD(GB) 

r3.large 2 15.25 1×32 

r3.xlarge 4 30.5 1×80 

r3.2xlarge 8 61 1×160 

r3.4xlarge 16 122 1×320 

r3.8xlarge 32 244 2×320 

C. Formalization Description 

Suppose that there are N nodes in this data center and 

M virtual clusters. Let 𝑃𝑁𝑖  represents a single physical 

node in this data center and VCk represent a homogenous 

virtual cluster. The resources capacities of 𝑃𝑁𝑖  and the 

resources requirements of VCk  are represented by two 

vectors ci(cpu
i
,memi,diski,neti)  and 

rk(cpu
k
, memk,diskk,netk)  respectively. In each virtual 

cluster VCk , it has Numk  virtual machines which are 

represented by VM(k, j). We use a binary variable 𝑥𝑖,(𝑘,𝑗)
𝑡  to 

represent whether VM(k, j)  is running on a node 𝑃𝑁𝑖  at 

thetime𝑡. We also use a variable 𝑙𝑖
𝑡  to indicate whether 

𝑃𝑁𝑖  is active at time t. 𝑃𝑁𝑖  is active means that there is at 

least one VM mapping on it at the moment. 

𝑢𝑖(𝑡)  is used to represent the memory utilization of 

𝑃𝑁𝑖  at the time t and it can be calculated from the 

following formulas: 

𝑢𝑖(𝑡) =
∑ 𝑟𝑘(𝑚𝑒𝑚𝑘)𝑥𝑖,(𝑘,𝑗)

𝑡
(𝑘,𝑗)

𝑐𝑖(𝑚𝑒𝑚𝑖)
              (1) 

where ∑ 𝑟𝑘(𝑚𝑒𝑚𝑘)𝑥𝑖,(𝑘,𝑗)
𝑡

(𝑘,𝑗)  shows how many 

memories of 𝑃𝑁𝑖 are allocated tothose VMs which 

belongs to certain virtual clusters. It is divided by the 

capacity of 𝑃𝑁𝑖 , and then we can get the memory 

utilization of 𝑃𝑁𝑖 . 

The power consumption of 𝑃𝑁𝑖  that is correlated with 

memory utilization is given by: 

𝑃(𝑢𝑖(𝑡)) = {
𝑃𝑏𝑎𝑠𝑒 + 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ∙ 𝑢𝑖(𝑡) , 𝑃𝑁𝑖 ∉ 𝑜𝑓𝑓

0, 𝑃𝑁𝑖 ∈ 𝑜𝑓𝑓
(2) 

where 𝑃𝑏𝑎𝑠𝑒 represents the base power consumption of an 

idle physical node; 𝑃𝑚𝑎𝑥  is the power consumption of a 

saturated physical node. 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑚𝑎𝑥 − 𝑃𝑏𝑎𝑠𝑒 . 

The workloads of the data center will change with time, 

so we define the total energy consumption of a physical 

node over a period of the time (𝑡0, 𝑡1) as: 

𝐸𝑖 = ∫ 𝑃(𝑢𝑖(𝑡))𝑑𝑡                             (3)
𝑡1

𝑡0

 

Our objective is to improve the amount of data which 

is processed by unit energy. It is formulated as follow: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {
∑ 𝑟𝑘(𝑚𝑒𝑚) ∙ 𝑁𝑈𝑀𝑘𝑘

∑ 𝐸𝑖𝑃𝑁𝑖∉𝑜𝑓𝑓

}                     (4) 

where ∑ 𝑟𝑘(𝑚𝑒𝑚) ∙ 𝑁𝑈𝑀𝑘𝑘 is used to show the total 

workloads of all jobs which have been dispatched to this 

data center and needed to be processed within the time 

span of (𝑡0, 𝑡1 ). ∑ 𝐸𝑖𝑃𝑁𝑖∉𝑜𝑓𝑓  represents the amounts of 

energy which are consumed by this data center during 

these jobs’ processing. 

Based on previous assumptions that the memory 

requirement of VM is stable all the time and the data 

center is homogenous, we give the theorem below. 

Theorem1: minimizing the total energy consumption 

of a data center can be simplified as minimizing the 

number of active physical nodes. 
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minmize ∑ E𝑖

𝑃𝑁𝑖

=  minmize ∫ ∑ 𝑙𝑖(𝑡)

𝑁

𝑖=1

𝑡1

𝑡0

              (5) 

Proof. In the homogenous data center, all physical 

nodes capacities of resources are same. At time t, the total 

energy consumption of this data center is: 

∑ E𝑖

𝑃𝑁𝑖

=  ∑ ∑ 𝑃(𝑢𝑖(𝑡))

𝑁

𝑖=1

𝑡1

𝑡=𝑡0

 

=  ∑ ∑(𝑃𝑏𝑎𝑠𝑒 + 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ∙ 𝑢𝑖(𝑡))

𝑁

𝑖=1

𝑡1

𝑡=𝑡0

 

= ∑ ∑ 𝑙𝑖
𝑡

𝑁

𝑖=1

∙ 𝑃𝑏𝑎𝑠𝑒

𝑡1

𝑡=𝑡0

+ 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ∙ ∑ ∑ 𝑢𝑖(𝑡)

𝑁

𝑖=1

𝑡1

𝑡=𝑡0

 

Because the workload of this data center is determined 

at time t, ∑ ∑ 𝑢𝑖(𝑡)𝑁
𝑖=1

𝑡1
𝑡=𝑡𝑛

 is a constant value. ∑ E𝑖𝑃𝑁𝑖
is 

determined by how many physical nodes are in active 

mode, which is ∑ ∑ 𝑙𝑖
𝑡𝑁

𝑖=1
𝑡1
𝑡=𝑡0

. 

Before the formulation of our problem, we define a 

notation𝑟𝑘 < c𝑖 which means that𝑐𝑝𝑢𝑘 < 𝑐𝑝𝑢𝑖 , 𝑚𝑒𝑚𝑘 <
𝑚𝑒𝑚𝑖 , 𝑑𝑖𝑠𝑘𝑘 < 𝑑𝑖𝑠𝑘𝑖 and 𝑛𝑒𝑡𝑘 < 𝑛𝑒𝑡𝑖 . Based 

onTheorem1, the objective (4) can be simplified as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∫ ∑ 𝑙𝑖(𝑡)𝑑𝑡

𝑁

𝑖=1

𝑡1

𝑡0

                  (6) 

Subject to: 

∑ 𝑟𝑘

(𝑘,𝑗)

𝑥𝑖,(𝑘,𝑗)
𝑡 ≤ c𝑖𝑙𝑖

𝑡                         (7) 

∑ 𝑥𝑖,𝑘,𝑗
𝑡

𝑖

= 1                                   (8) 

𝑥𝑖,(𝑘,𝑗)
𝑡 ∈ {0,1}                            (9) 

𝑙𝑖
𝑡 ∈ {0,1}                                  (10) 

Constraints (7) represents the resource constraint, that 

is, the total requirements of all VMs on a physical node 

cannot exceed its resource capacity. This constraint can 

avoid the performance degradation. Equation (8) 

represents that at any time there is only one 𝑃𝑁𝑖  this 

𝑉𝑀(𝑘,𝑗) can reside on it.  

In order to achieve this goal, we discretize object (6) 

and make the number of physical nodes that virtual 

cluters is mapping on as few as possible at any moment 

during ( 𝑡0, 𝑡1 ). This problem can be regarded as bin 

packing problem which have been proven to be NP-

complete [2]. To quickly obtain an approximate solution, 

the heuristic algorithm First Fitting Decreasing (FFD) [20] 

is a state-of-art algorithm. By simply using FFD, we can 

get a solution which uses fewest physical nodes. FFD 

indeed improves the amount of data which is processed 

by unit energy and save energy of data centers at the 

consolidation moment. However, after the consolidation, 

the runtime efficiency of physical nodes cannot be 

guaranteed. How to release physical nodes as much as 

possible when short virtual clusters’ jobs are finished 

later is not considered by FFD, which we will solve in 

next section. We modify the process of bin packing, and 

try our best to make those VMs with similar remaining 

time reside on some physical nodes. This may lead to use 

more physical nodes than FFD, but we try to keep it in an 

acceptable range. 

IV. VIRTUAL CLUSTER CONSOLIDATION 

Based on what we discussed in Section 3, we can 

reduce the total energy consumption by monitoring and 

controlling the number of active physical nodes. 

Determining the amount of active physical nodes is the 

first step of our VC-based consolidation scheme, and the 

virtual machines distribution of a virtual cluster will be 

considered next in order to make the release of resources 

more concentrated. 

Algorithm VCGM described in this section is used to 

construct the final mapping states of all physical nodes in 

the data center. After the construction of final mapping 

state, we adopt the bipartite matching method to generate 

a migration plan with minimum migration cost. Based on 

this plan, virtual machines can be migrated in a feasible 

way. 

A. Final Mapping State Construction 

For a virtual cluster, the more “compact” its VMs are, 

the bigger size of resources can be released from one 

physical node when the job finish. For a physical node, 

the more similar the remaining times of its VMs are, the 

higher the possibility of it to change into the stand-by 

mode or even shut down. 

For VMs from the same virtual cluster, the remaining 

times that VMs occupy resources to handle tasks are 

same. We “merge” jobs whose remaining times are close. 

For detail, we sort virtual clusters based on their 

remaining times and then group them according to their 

remaining time. We put virtual clusters whose remaining 

times in (−∆𝑡 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑘 , 𝑟𝑒𝑚𝑎𝑖𝑛𝑘) into the kth virtual 

cluster group (VCG). At here, we use k-Means clustering 

algorithm [21] which is an efficient and simple algorithm 

to generate all groups. After grouping, we can get a 

set {𝑉𝐶𝐺𝑖}  that each VCG in it includes one or more 

virtual clusters. 

How to construct an optimal final mapping state is 

critical to the final result. We want to make every active 

physical node in the final mapping state contains VMs 

belonging to different groups as few as possible. So we 

introduce the mapping state entropy of a physical 

machine in data centers. For a certain physical node, the 

fewer number of distinct VCGs which it’s VMs belong to 

is, the more order the mapping state of this physical node 

is and the smaller the mapping state entropy is. 

In order to get a final mapping State of this data center 

which mapping state entropy is lowest, we use the 

heuristic algorithm VCGM to remap VMs of every VCG 

in {𝑉𝐶𝐺𝑖} .VCGM is a modified first fit decreasing 
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algorithm. We regard physical nodes as bins whose sizes 

are equal to physical nodes’ resource capacity and VMs 

as items whose sizes are equal to VMs’ resource 

requirement. As what we described before, all physical 

nodes are uniform. Each VCG in {𝑉𝐶𝐺𝑖} will be sorted 

first, and then will be packed one by one. The sorting 

order will be evaluated in Section 5. The algorithm is 

performed on every VCG and all its VMs will be sorted in 

descending order based on their resource requirement. 

The function acceptable() is called to guarantee the 

performance constraint. The procedure is as follows: 
 

Algorithm 1 VCGM (pnSet, {𝑉𝐶𝐺𝑖}) 

Input: a physical nodes set pnSet; a virtual cluster group 

set {𝑉𝐶𝐺𝑖}; 

Output:pnSet; 

1:  sort VCGs in {𝑉𝐶𝐺𝑖} by remaining time; 

2:  for𝑉𝐶𝐺 ∈ {𝑉𝐶𝐺𝑖}do 

3:   descending sort virtual machines of VCG by resource 

requirement; 

4: for𝑣𝑚 ∈ 𝑉𝐶𝐺do 

5: for𝑃𝑁1 ∈ 𝑝𝑛𝑆𝑒𝑡do 

6:   ifacceptable(𝑃𝑁1, 𝑣𝑚) then 

7:   mapping 𝑣𝑚to𝑃𝑁1; 

8: return𝑝𝑛𝑆𝑒𝑡; 

B. A Low-Cost Perfect Matching 

How to get the final mapping state from the initial 

mapping state with lower cost can be regarded as a 

bipartite matching problem. The initial mapping state and 

final mapping state can be divided into two physical 

nodes set IS and FS. Both IS and FS have n elements. 

𝐼𝑆 = {𝑝1, 𝑝2, … , 𝑝𝑛} and 𝐹𝑆 = {𝑞1, 𝑞2, … , 𝑞𝑛}. For 𝑝𝑖  in IS 

and 𝑞𝑗  in FS, they have their own list 𝐼𝐿𝑖𝑠𝑡𝑖  and 𝐹𝐿𝑖𝑠𝑡𝑗 

which are used to save all virtual machines mapping on 

𝑝𝑖 and 𝑞𝑗 .Every elements in IS are all connections with 

FS(as Fig.2 shows). No such edge exists that its endpoints 

in the same set of 𝐼𝑆or𝑆. A matching T defined here is a 

collection of edges that every element of {𝐼𝑆 ∪ 𝐹𝑆}  is 

incident to at most one edge of T. T is a subset of the 

whole edges set. We say an element is exposed means 

that there is no edge of T incident to it. A matching is 

perfect if no element is exposed. For a perfect matching, 

its cardinality is equal to |𝐼𝑆| = |𝐹𝑆|. 

An edge 𝑒 = (𝑝𝑖 , 𝑞𝑗) existsbetween 𝑝𝑖  and 𝑞𝑗  means 

that the physical node 𝑃𝑁𝑖 ’s initial state 𝑝𝑖  will be 

transformed into the final state 𝑞𝑗 . The transformation 

from 𝑝𝑖  to 𝑞𝑗  will bring migration cost 𝑐𝑖𝑗  which can be 

calculated from the difference between 𝐼𝐿𝑖𝑠 �𝑖  and 

𝐹𝐿𝑖𝑠𝑡𝑗. That is to say, a migration must have happened if 

𝑣𝑚 ∈ 𝐹𝐿𝑖𝑠𝑡𝑗 and 𝑣𝑚 ∉ 𝐼𝐿𝑖𝑠𝑡𝑖  and it will bring a 

migration cost. The cost of a virtual machine’s migration 

depends on its resource requirement.  

𝑐𝑖𝑗 = ∑ 𝑟𝑘(𝑚𝑒𝑚)𝑣𝑚      𝑣𝑚 ∈ 𝐹𝐿𝑖𝑠𝑡𝑗 , 𝑣𝑚 ∉ 𝐼𝐿𝑖𝑠𝑡𝑖  (11) 

We have given costs 𝑐𝑖𝑗  for every edgesand the goal is 

to find a perfect matching T minimizing ∑ 𝑐𝑖𝑗(𝑝𝑖,𝑞𝑗)∈𝑇 . We 

can use the minimum cost perfect matching model to 

solve it. This problem can be formulated as an Integer 

Linear Programming (ILP). For a given perfect matching 

T, let its incidence vector be y where 𝑦𝑖𝑗 = 1 if (𝑝𝑖 , 𝑞𝑗) ∈

𝑇, otherwise 𝑦𝑖𝑗 = 0. So we can formulate the minimum 

weight perfect matching problem as follows: 

minimize ∑ 𝑐𝑖𝑗

𝑖,𝑗

𝑦𝑖𝑗                        (12) 

Subject to: 

∑ 𝑦𝑖𝑗 = 1𝑗    𝑖 ∈ 𝐴                    (13) 

∑ 𝑦𝑖𝑗 = 1𝑖    𝑗 ∈ 𝐵                    (14) 

𝑦𝑖𝑗 ∈ {0,1}                            (15) 

This optimization problem can be solved by a classical 

algorithm Kuhn-Munkras (KM) [22]. The solution to this 

ILP corresponds to a perfect matching and this matching 

is corresponding to a migration plan. 

C. Migration 

After the migration plan is generated, we should make 

each migration feasible in order to get the real final 

mapping state. In first step, we will generate a matching 

triples list mtList based on the migration plan that 

includes all matching triples which not been migrated yet. 

A matching triple includes three components: the 

migrating virtual machine vm, the source physical node 

sp, the target physical node tp. In a matching triple, if sp 

is same with tp, which means that the destination of vm 

equals to the source, and vm will not be migrated. This 

kind of matching triples can be deleted from mtList. 

Initial State Final State

p1

p2

p3

q1

q2

q3

Cij =f(x)

… …

pn
qn

 
Fig. 2.The connection between IS and FS 

In second step, we pick out initial feasible matching 

triples which can be migrated successfully. Those 

feasible matching triples can be deleted from mtList and 

conduct migrations according to these triples. After the 

preceding migrations, some infeasible matching triples 

will become feasible. And this process will be run again 

until there is no more feasible matching triples can be 

found. 
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In third step, there are two situations. The first is that 

there is not have any matching triples in the list. That is to 

say, the migration plan has been finished successfully. 

The second is that there exists some deadlock (or cyclic) 

among matching triples. We exploit a physical nodes 

which role as a buffer to temporarily hold one or some 

VMs in order to break the deadlock or cyclic. Make some 

infeasible matching triples to be feasible and return back 

to second step. Based on three steps above, we can get the 

final mapping state successfully.  

V. EVALUATION 

In this section, the evaluation of our approach has been 

done. We introduce the experiment setup first. The 

simulation results have been obtained from a set of 

experiments. We also compare those results with the FFD 

and low cost FFD (LC-FFD) schemes. 

For a generic cloud computing environment, it is 

essential to evaluate it on a large-scale virtualized data 

center. While it is difficult to conduct repeatable 

experiments on a real environment, simulations have 

been chosen to evaluate the performance of the proposed 

heuristic algorithm. 

A. Experiment Setup 

We have simulated a data center comprising 1000 

homogeneous physical nodes. Each node is modeled to 

have a dual-core CPU with the performance equivalent to 

3000MIPS, 8GB of RAM. The power model has been 

proposed in Section 3. According to it, the base power 

consumption of a physical node is 175W, and the 

saturated nodes will consume about 250W.  

In order to simulate a real workload, we classify all 

VCs. According to virtual cluster’s resource requirement, 

we divided all VCs into three types: light, medium, and 

heavy. For the light VCs, their resource requirement is set 

under 30% of nodes resource capacity; for the medium 

VCs, their requirement is set between 30% and 50% of 

nodes resource capacity; for heavy VCs, their requirement 

is above 50% of nodes resource capacity. Based on the 

remaining time, each kind of VCs also can be classified 

into short-term, medium-term and long-term. 

As what we described above, we totally have 9 types 

of VCs. And for a single virtual cluster, the number of 

virtual machines belongs to It is between five and ten. At 

the beginning of this experiment, we have an initial 

mapping state. The proportions of all types of VCs are 

normally distributed. All experiments have been run 50 

times and take the average. 

B. Simulation Results 

As we mentioned in Section 4, VCGs belonging to 

{𝑉𝐶𝐺𝑖} should be sorted by a certain order in algorithm 

VCGM. In the first experiment, we test two kinds of 

sorting order: LRF (Long remaining time first) and SRF 

(Short remaining time first). As Fig. 3 shows, the number 

of active physical nodes in VCGM-SRF is less than that in 

VCGM-LRF when the consolidation finishing at time step 

1. However, with some jobs completed, VCGM-LRF 

released more physical nodes than VCGM-SRF did. The 

reason is that long-term VCG is consolidated firstly 

which will migrate virtual machines belonging to it away 

from some physical nodes. In the situation of without 

new jobs submitting, this will increase the stand-by 

probability of the sephysical nodes and reduce their total 

power-on time which is good for energy saving. So when 

we used VCGM to construct the final mapping state, 

VCGM-LRF is better than VCGM-LRF. In the following 

experiment we acquiescently adopt LRF as our sorting 

order. 

We compare VCGM with three schemes. For the 

benchmark experiment we use the non-consolidation 

policy (No-Conso). No-Conso does not execute any 

consolidation during the whole experimental time. 

Although some jobs have been finished, some physical 

nodes are still active with a low utilization. No-Conso is 

used here to show that how much energy consumption 

can be saved by an effective consolidation scheme. 

 
Fig. 3. The efficiency of LRF and SRFin VCGM. 

For contrast experiments we use another two modified 

FFD consolidation algorithms. The first is the basic first 

fit decreasing (FFD) algorithm which is a state of art 

algorithm to solve the bin packing problem. It sorts all 

virtual clusters by their requirement in descending order 

and then remapping all virtual clusters one by one.  

The second is the low cost first fit decreasing 

algorithm (LC-FFD). In LC-FFD, all active physical 

nodes are sorted by their utilization in descending order 

and divide into two sets. It calculates the least number of 

physical nodes (N∗) that all jobs needed and put the first 

N∗ nodes into target set and put the rest physical nodes 

into source set. Those virtual machines mapping on 

source physical nodes will be migrated to target physical 

nodes. If the spare capacity on all physical nodes in target 

set cannot meet the requirement of the migrating VM, the 

physical node which this VM reside on will be removed 

from the source set and added into the target set. LC-FFD 

is similar with an algorithm iFFD which is proposed in 

Reference [8]. LC-FFD tries to construct an optimal final 

mapping state while minimize migration costs by 

migrating as few VMs as possible. 

We have studied above algorithms with respect to the 

active physical nodes numbers varies with time, the total 
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energy consumption, and the migration performance. We 

conducted a comparative study of the algorithms with 

change in the system workload. The different workloads 

are 50, 100, 150 and 200. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.The number of active physical nodes varies with time. 

We first investigate the number of active physical 

nodes varies with time (Fig. 4 (a) (b) (c) (d)). In Fig. 4, 

the horizon axis represents the discrete time steps and 

each time step is a custom smallest time unit. With time 

goes on, some jobs were finished and the resources 

occupied by them were also released. At the beginning, 

the numbers of active physical nodes are dropped heavily 

and this owe to the effectiveness of consolidation 

algorithms. While with the release of resources, the freed 

physical nodes number is different. 

With the workload of data center changed from light to 

heavy, VCGM is always better than both FFD and LC-

FFD. For LC-FFD, only those VMs mapping on source 

physical nodes can be migrated. And the virtual machines 

on physical nodes in target set will never change during 

the whole migration. For FFD, its purpose is how to get 

an optimal solution of minimizing the active physical 

nodes after consolidation. FFD only concerns the total 

number of physical nodes to serve all virtual clusters 

without concerning the remaining running time of 

allvirtual machines. While for VCGM, it will divide all 

virtual clusters into several groups based on the 

remaining time and the virtual machines belongs to same 

group will be consolidated together, that is to say, after 

consolidation each VCG will be more “compact” than 

before. After using VCGM to make a consolidation at 

time step 1, the remaining time of all VMs mapping on a 

physical node is similar. Those physical nodes with short 

remaining time will be freed later and the amount of freed 

physical nodes at subsequent time steps is more than no-

grouping algorithms. We also observed that the heavier 

the workload of this data center is, the more effective the 

VCGM is. 

We next investigate the total energy consumption of 

this data center which spanning over the whole 

experiment time steps. Fig.5 represents these results with 

different workloads. VCGM leads to 42% - 55% less 

energy consumption on average than that without 

consolidation scheme brings. Comparing with the energy 

consumption LC-FFD brings, VCGM can save 32% - 43% 

of it and the more jobs in the data center the more 

effective VCGM is. 

 
Fig. 5. The total energy consumption. 

We observe that the total energy consumption drawn 

by the scheme with VCGM is significantly lower than 

schemes with LC-FFD and FFD. It allows us to conclude 

that VCGM can effective minimum the total energy 
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consumption. This benefit from avoiding the long term 

running of physical nodes being in an under-utilization 

state in order tore leases physical nodes as more as 

possible. This establishes the importance of taking the 

remaining running time into account, while coming up 

with consolidation virtual clusters. We make the virtual 

cluster group more “compact” and the total active time of 

physical nodes in this data center is decreasing. 

At last, the experiment of testing migration 

performance has also been done. The migration 

performance can be tested from two aspects: the number 

of active physical nodes before and after consolidation, 

the migration cost ratio. At time step 0, we have an initial 

mapping state and this state will be consolidated at next 

time step. From the Fig. 6 we can get these active 

physical numbers after consolidation, it shows that FFD 

is the best one. VCGM is as good as the FFD and 

outperform LC-FFD. For LC-FFD, the previous 

placement on target physical nodes cannot be changed. It 

seems to appear the situation that some source node is 

added into the target set for meeting those unsatisfied 

VMs requirements.LC-FFD may use more physical nodes 

than its expectation. It is obvious that VCGM can 

construct a final mapping state with an acceptable 

number of active physical nodes. 

The migration cost ratio is defined as the total 

migration cost divided by the total required resource of 

all virtual clusters. Fig. 7 shows the results of the three 

consolidation algorithm. Just as LC-FFD’s name implies 

the migration cost of it is significantly lowest and when 

workload of this data center is almost full its migration 

cost is much lower. Since the number of physical nodes 

in target set is almost close to data centers upper limit. So 

the possibility of virtual machines’ successful migration 

becomes tiny and a little of migration costs will be 

brought by LC-FFD. 

For the FFD consolidation scheme the migration cost 

ratio of it is higher than LC-FFD. Because its sort all 

virtual machines in descending order by their resource 

requirement, this will lead to most of virtual machines are 

migrated to get the optimal number of active physical 

nodes. For VCGM consolidation scheme the migration 

cost ratio of it is also higher than LC-FFD and the migra-

tion cost ratio has no relevant with the amount of 

workloads in this data system. 

 
Fig. 6. The number of physical nodes occupied 

 
Fig. 7. The migration ratio 

That is because, in order to “compact” the VCGsin 

{𝑉𝐶𝐺𝑖} , there must have some additional migration 

happened. The more scattered the VCG is, the more 

migration cost it will bring. But the migration ratio is 

stable when the workloads of this data center vary from 

light to weight. Although the ratio of VCGM is higher 

than the ratio of LC-FFD and is similar to the ratio of 

FFD, the energy effective is much better than FFD and 

LC-FFD. 

VI. CONCLUSION AND FUTURE WORK 

Virtual resource consolidation in clouds has become an 

important approach to improve energy efficiency. Based 

on the fact that resource utilization directly relates to 

energy consumption, a power model with respect to the 

physical nodes resource utilization has been defined in 

this paper. The correlation of virtual clusters deadlines is 

also be used to guide the virtual machines migration. This 

approach will classify virtual clusters by the property of 

deadline and put different type virtual cluster into 

different physical nodes. This can decrease the total 

active time of physical nodes in this data center. With the 

finishing of some jobs, physical nodes will be released 

and turned into low power model. A validate migration 

plan which its migration cost is lower can be generated 

by the low cost perfect matching model. The evaluation 

results demonstrate that we can save total energy 

consumption by 42%-53%. The validation of the 

heuristics VCGM shows that our approach increases 

energy-saving possibilities. 

We will make further research on the final mapping 

state construction in order to get a lower cost migration 

plan. We plan to extend our work into a heterogeneous 

data center which is a more general environment. 
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