
A High-Throughput Processor for Cryptographic Hash

Functions

Yuanhong Huo and Dake Liu
Beijing Institute of Technology, Beijing 100081, China

Email: {hyh, dake}@bit.edu.cn

Abstract—This paper presents a high throughput Application-

Specific Instruction-set Processor (ASIP) for cryptographic hash

functions. The processor is obtained via hardware/software co-

design methodology and accelerates SHA (Secure Hash

Algorithm) and MD5 hash functions. The proposed design

occupies 0.28 mm2 (66 kgates) in 65 nm CMOS process

including 4.5 KB single port memory and 52 kgates logic. The

throughput of the proposed design reaches 15.8 Gb/s, 12.5 Gb/s,

12.2 Gb/s, and 19.9 Gb/s for MD5, SHA-1, SHA-512, and

SHA3-512, respectively under the clock frequency of 1.0 GHz.

The proposed design is evaluated with state-of-the-art VLSI

designs, which reveals its high performance, low silicon cost,

and full programmability.

Index Terms—ASIP, Secure Hash Algorithm, MD5, VLSI

(very large scale integration)

I. INTRODUCTION

Cryptographic hash functions play an important role in

network security protocols and infrastructures, such as

TLS, SSL, SET, IPSec, and PKI [1]. Hash functions can

be used to verify integrity of data in transit. Hash

functions can also be used as message authentication

codes, e.g., in the case of the Hash Message

Authentication Code (HMAC) [1]. The cryptographic

hash functions MD5 (Message Digest Algorithm 5),

SHA-1 (Secure Hash Algorithm 1), and SHA-2 (Secure

Hash Algorithm 2) algorithms are widely adopted

nowadays. The SHA-3 (Secure Hash Algorithm 3)

standard has been released by NIST on August 5, 2015.

In the next few years, it is expected that the SHA-3 will

become a mandatory or optional cryptographic hash

algorithm for all mainstream and future network security

protocols and standards [1].

Circuits for MD5 and SHA cryptographic hash

functions should, in general, support multiple algorithms

with high performance. On the one hand, according to

specific protocols proposed for different applications,

there are requirements to adopt the hash algorithms of

different security level [2]. On the other hand, MD5 and

SHA workloads are among the most performance/power-

critical workloads due to the iterative nature of hash

computation and the high computational complexity. The

Manuscript received May 25, 2016; revised July 18, 2016.
This work was supported by the National High Technical Research

and Development Program of China (863 program) 2014AA01A705.
Corresponding author email: dake@bit.edu.cn.

doi:10.12720/jcm.11.7.702-709

increasing speeds for wired and wireless data networks

require high-throughput hardware implementations of the

cryptographic hash algorithms so as to meet the required

high performance. The IPv6 network stack and its

mandatory IPSec security protocols will push further the

requirement for high performance implementations [1].

Several hardware techniques have been adopted to

accelerate single or multiple cryptographic hash functions.

The techniques include the use of parallel counters and

Carry Save Adders (CSA) [3]-[5], loop unrolling to

mitigate the serial dependence of hash computation [6],

delay balancing [4], embedded memories [7], and

pipelining [1]-[4], [8], [9]. These techniques require

significant extra hardware resulting in higher area. Up to

now, there have been successful VLSI designs for

multiple hash functions resulting in significant area

savings via hardware sharing. For example, Cao et al. [2]

and Wang et al. [10] propose reconfigurable hardware

designs for SHA-1 and MD5 hash algorithms.

Ramanarayanan et al. [11], Michail et al. [9], and Chaves

et al. [5] present SHA accelerators for five SHA

algorithms (i.e., SHA-1/224/256/384/512). However,

these designs are implemented with ASICs/FPGAs

targeting a small predefined set of hash algorithms.

This paper presents a hash processor (HP-ASIP) for

MD5, SHA-1, SHA-2, and SHA-3. Table I lists functions

implemented in this paper. HP-ASIP is obtained via

hardware/software co-design and achieves ASIC-like

performance and full programmability with area

consumption of 0.28 mm
2
 (65 nm). Thanks to its

programmability, HP-ASIP can offer changes to the

implemented algorithms via software programming when

one of them is cracked to extend chip lifetime.

TABLE I: FUNCTIONS IMPLEMENTED IN THIS WORK

Function Output

size

Security strengths in bits

Collisi

on

Preima

ge

2nd

preimage

MD5 128 < 64 NA NA

SHA-1 160 < 80 160 105-160

SHA-224 224 112 224 201-224
SHA-512/224 224 112 224 224

SHA-256 256 128 256 201-256
SHA-512/256 256 128 256 256

SHA-384 384 192 384 384

SHA-512 512 256 512 394-512

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256
SHA3-384 384 192 384 384

SHA3-512 512 256 512 512

702

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

The rest of this paper is organized as follows. Section

II provides the design of HP-ASIP. Section III presents

the top-level architecture, the datapath, the memory

subsystem, the pipeline scheduling, and the instruction set

of HP-ASIP. Section IV describes the area and power

consumption of HP-ASIP. Section V evaluates HP-ASIP.

Section VI concludes the paper.

Algorithm scope specification (MD5, SHA-1,

SHA-256, SHA-512, SHA3-256, SHA3-512, etc)

Algorithm implementation and optimization

Sub algorithms abstraction

Instruction-set specification and c-level function

verification

Programming tools design

(simulator and assembler, etc)
Design and optimization of HP-ASIP Top-

level architecture, datapath, control path,

and memory subsystem, etc

Firmware implementation Early silicon cost estimation

Benchmark

Satisfied？

Silicon design, final function and performance validation

Satisfied？

HW and SW integration

Y

N

Y

N

SW

flow

HW

flow

Fig. 1. Design flow of HP-ASIP.

II. DESIGN OF HP-ASIP

We propose a methodology to design HP-ASIP. Fig. 1

depicts the design flow. The design flow, a

hardware/software (HW/SW) co-design flow, optimizes

the partition of HW and SW functions cooperatively

during the design of HP-ASIP. Firstly, the scope of

algorithms (e.g., MD5, SHA-1, SHA-256, SHA-512, and

SHA3-512, etc), throughput, etc are specified according

to application requirements. Then, a datapath, a memory

subsystem, and a processor architecture are designed to

accelerate the algorithms of the scope.

A. Design and Optimization of HP-ASIP

The datapath of HP-ASIP is first designed as other

parts of HP-ASIP can be designed only when the datapath

is fixed. There are multi-mode hash accelerators for SHA

[11] and MD5 [2]. In this work, firstly, a preliminary

datapath for SHA-1/224/256/384/512 is proposed

according to [11]. The datapath can process two

independent data streams in parallel when performing

SHA-1/224/256. Then, we map one step of MD5 [2] onto

the datapath optimizing the degree of hardware sharing

between MD5 and SHA-1/224/256. At last, we map one

round of SHA-3 [1] onto the datapath incrementally.

Through our research, the critical path of the datapath

for SHA-3 is much shorter than the critical path of the

datapath for SHA-1/224/256/384/512 and MD5. To

achieve high clock frequency, we optimize the datapath

into two pipeline stages. Taking the datapath for SHA-1

(Fig. 2(a)) and the datapath for SHA-256 (Fig. 2(b)) as

examples, we explain how to optimize the datapath into

two pipeline stages.

+ ROTL5

ROTL30

ft(x,y,z)

+

et-1 dt-1 ct-1 bt-1 at-1

et dt ct bt at

++

Wt-1

Kt-1

(a)

+

Maj(a,b,c)

+

et-1 dt-1 ct-1 bt-1 at-1

et dt ct bt at

+

+

Wt-1

Kt-1

ht-1 gt-1 ft-1

+

Ch(e,f,g)

+

�1
(256)

�0
(256)

+

ht gt ft

T1

T2

(b)

Fig. 2. Fundamental transformation rounds: SHA-1(a) and SHA-256(b).

Firstly, we identify the critical path of the datapath for

SHA-1 and SHA-256, respectively as shown in Fig. 2.

Then, we optimally implement the operations of the

critical path into two pipeline stages as shown in Fig. 3.

Fig. 3(a) describes the implementation of SHA-1 on HP-

ASIP and Fig. 3(b) describes the acceleration of SHA-

256 on HP-ASIP. The rest of algorithms implemented in

this paper are optimally implemented in a similar way.

+ ROTL5

ROTL30

ft(x,y,z)

+

et-1 dt-1 ct-1 bt-1 at-1

et dt ct bt at

+

+

Wt-1

Kt-1

Pipeline

stage 0

Pipeline

stage 1

(a)

703

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

+

Maj(a,b,c)

+

et-1 dt-1 ct-1 bt-1 at-1

et dt ct bt at

+

+

Wt-1

Kt-1

ht-1 gt-1 ft-1

+

Ch(e,f,g)

+

�1
(256)

�0
(256)

+

ht gt ft

T1

T2

Pipeline

stage 1

Pipeline

stage 0

(b)

Fig. 3. Optimized transformation rounds: SHA-1(a) and SHA-256(b).

TABLE II: SIZE OF PARAMETERS FOR MD5 AND SHA FUNCTIONS

Algorithm Internal
state size

Message
block size

Iteration
constants

Itera
tions

MD5 4×32b 16×32b 64×32b 64

SHA-1 5×32b 16×32b 0 80
SHA-224 8×32b 16×32b 64×32b 64

SHA-256 8×32b 16×32b 64×32b 64
SHA-384 8×64b 16×64b 80×64b 80

SHA-512 8×64b 16×64b 80×64b 80

SHA-512/224 8×64b 16×64b 80×64b 80
SHA-512/256 8×64b 16×64b 80×64b 80

SHA3-224 25×64b 18×64b 24×64b 24

SHA3-256 25×64b 17×64b 24×64b 24

SHA3-384 25×64b 13×64b 24×64b 24

SHA3-512 25×64b 9×64b 24×64b 24

In this design, SHA-3 requires only one pipeline stage

of the datapath while SHA-1/224/256/384/512 and MD5

need two pipeline stages. To fully adopt the two-stage

pipelined datapath, we introduce odd and even register

contexts for hash values and message schedulers. Firstly,

we analyze the parameters of the targeted algorithms.

Table II lists the size of the internal state, the size of each

message block, the size of iteration constants, and the

iterations of the targeted algorithms. The maximum size

of internal state for MD5 and SHA-1/224/256/384/512 is

512b and the maximum size of message block for MD5

and SHA-1/224/256/384/512 is 1024b. We thus introduce

512b register and 1024b register for both the odd and the

even register contexts (to be discussed). When

performing SHA-3, we adopt 1600b of the odd and even

register contexts for the internal state of SHA-3.

In this work, we introduce data memory (to be

discussed) for the iteration constant (Kt) [11] and the

index for the message schedule (Wt) of the targeted

algorithms so that we can adopt them via software

programming when performing MD5 and SHA message

digest computation. Besides, we propose instructions to

adopt the odd and even register contexts (to be discussed).

HP-ASIP can thus process two independent data streams

simultaneously when performing SHA-384/512 and

process four independent data streams simultaneously

when performing MD5 and SHA-1/224/256.

In this design, common operations among the targeted

algorithms are implemented by shared functional blocks

to achieve low silicon cost. After mapping all the

algorithms targeted in this paper onto the datapath

incrementally, we fix the datapath. Then, we extract and

represent the control signals for the processing routines in

the datapath by a group of control indications and

propose a specific instruction set for the targeted

algorithms. As the rounds of message digest computation

for SHA-1 and MD5 can be divided into 4 parts [2], we

introduce 4 instructions to fulfill the hash computation of

SHA-1 and MD5, respectively (to be discussed).

Afterwards, algorithm pseudocode for the algorithms

targeted in this paper are developed adopting the

instruction set. We extract the addressing and control

information of the algorithm pseudocode and propose a

specific memory subsystem, a control path, and a top-

level architecture for HP-ASIP. Based on the specified

functional blocks and the instruction set, we develop the

RTL (Register Transfer Level) description of HP-ASIP.

Then, the correctness and performance of the functional

design and the silicon layout are verified. Based on the

algorithm pseudocode, we develop the assembly codes of

the algorithms, offering the support of all algorithms

targeted in this paper. At last, the hardware (assembly

instruction set) and software (assembly codes) are

integrated and HP-ASIP is thus designed.

As shown in Fig. 1, the design and optimization flow

of HP-ASIP is recursive. Any previously mentioned

essential requirements not fulfilled may cause a huge

work of redesign. Adopting the HW/SW co-design

methodology, we ensure that HP-ASIP can achieve low

silicon cost via optimizing the degree of hardware sharing

among the targeted algorithms. This method results in an

ASIP for the targeted cryptographic hash algorithms

satisfying all the previously mentioned essential

requirements.

B. Data Block Expansion for SHA Function

The SHA-1 algorithm computation steps described in

Fig. 2(a) are performed 80 times (rounds). Each round

adopts a 32-bit word obtained from the current input data

block. As each input data block only contains 16 32-bit

words (512 bits), we need to obtain the remaining 64 32-

bit words via data expansion. The data expansion is

performed via the computation described in (1), where
()i

tM denotes the first 16 32-bit words of the i th data

block.

()

1

3 8 14 16

W
(),

i

t

t

t t t t

M

RotL W W W W   


 

  

， 0 15

16 79

t

t

 

 

 (1)

For the SHA-2 algorithm, the computation steps shown

in Fig. 2(b) are performed for 64 rounds (80 rounds for

SHA-512). In each round, a 32-bit word (64-bit for SHA-

512) from the current input data block is adopted. As the

input data block only contains 16 32-bit words (64-bit for

SHA-512), we need to expand the initial data block to

704

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

obtain the remaining words. The expansion is performed

via the computation described in (2), where ()i

tM denotes

the first 16 words of the i th data block and the operator

describes the arithmetic addition operation.

()

1 2 7 0 15 16

W
() () ,

i

t

t

t t t t

M

W W W W    


 

  

， 0 15

16 63{ 79}

t

t or

 

 
 (2)

For efficiency reasons, this work accelerates data block

expansion in hardware. Taking SHA-256 as an example,

we expand the 512 bits of each data block in hardware.

The input data block expansion described in (2), can be

implemented with registers and ADD operations. The

output value is selected between the original data block

(for the first 16 rounds) and the computed values (for the

remaining rounds). Fig. 4 depicts the implemented

structure for SHA-256. As the datapath for MD5 and

SHA-1/224/256/384/512 is two-stage pipelined, we

implement the data block expansion adopting two

pipeline stages so that the datapth and the data block

expansion circuit can work synchronously.

... ... w2 w1 w0

+

w15 w14 w9

σ1

+

Pipeline

stage 0

σ0

+

w13 w8 ... w1 w0w15 w14 ...
Pipeline

stage 1

Fig. 4. Data block expansion of SHA-256.

C. Message Padding

To ensure that the input data block is a multiple of 512

bits as required by the MD5 and SHA-1/224/256

specifications (1024 bits for SHA-384/512, etc), the

original message needs to be padded. Taking the padding

procedure for a 512-bit input data block as an example, it

is performed as follows: for an original message

composed of n bits, the bit “1” is appended at the end of

the message, followed by k zero bits, were k is the

smallest solution to the equation n+1+k 448 mod 512 .

The last 64 bits of the 512-bit input data block are filled

with the binary representation of n. For the SHA-512

message padding, 1024-bit data blocks are utilized and

the last 128, not 64 bits, are reserved for the binary value

of the original message [5]. The message padding

operations can be efficiently implemented in software.

III. THE PROPOSED PROCESSOR

This work adopts SIMD (Single Instruction Multiple

Data) architecture to meet the requirements on the

computational complexity. A two-stage pipelined

datapath and a SIMD instruction set are proposed for the

targeted algorithms. Multiple memory banks are designed

to fulfill the bandwidth requirements of the datapath. We

also introduce a variable depth pipeline to approach the

efficiency limit.

A. Top-level Architecture

The top-level architecture (Fig. 5) of HP-ASIP is made

up of three parts: control logic, memory subsystem, and

datapath. The control logic includes PC FSM, PM

(program memory), ID (instruction decoder), DMA, and

status registers. The control logic reads an instruction

from the PM, a 256 × 80b SRAM, per clock cycle and

decodes the machine code (i.e., the instruction fetched)

into control signals. The control logic also performs loop

acceleration. The memory subsystem is composed of

AGU, RPN, WPN, and DM (data memory). The AGU

generates addresses for operands according to the

machine code. Then, the addresses generated will be

passed to the DM. The DM contains four memory blocks.

Each memory block contains 16 32 × 8b SRAMs and can

provide 16-byte data per clock cycle. The outputs of these

memory blocks will be passed to the RPN and then to the

datapath. The datapath accelerates the hash algorithms

implemented in this paper. The outputs of the datapath

will be passed to the WPN. The RPN and WPN are

introduced for data shuffling to ensure that the vector data

can be accessed in parallel without access conflict. The

outputs of the WPN will be written to a memory block.

ID PM

PC FSM

AGU (address generation unit)

DM
dm0 dm1 dm3

RPN (read permutation network)

datapath

WPN (write permutation network)

dm2

DMA

status

Fig. 5. Top-level architecture of HP-ASIP.

B. Datapath

The datapath of HP-ASIP contains 2 pipeline stages

and 5 blocks (Fig. 6). Among these blocks, the block

SHA-1/224/256/384/512 first stage & SHA-3 fulfills

functions of SHA-3 and the first pipeline stage of MD5

and SHA-1/224/256/384/512, etc. The block SHA-

1/224/256/384/512 second stage fulfills the computing

tasks of the second pipeline stage of MD5 and SHA-

1/224/256/384/512, etc. The block Hash Register is made

up of two 512b registers and is utilized for the hash

values of MD5, SHA-1/224/256/384/512, and SHA-3.

705

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

The block Message Scheduler consists of two 1024b

registers and is adopted for the messages of MD5 and

SHA-1/224/256/384/512. The block selDataOut is

utilized to choose results from the two pipeline stages of

the datapath.

SHA-1/224/256/384/512 first stage &

SHA-3

SHA-1/224/256/384/512 second stage

Hash Register

(2x512b)

src1

selDataOut

Message

Scheduler (Wt)

(2x1024b)

src0

dst

Fig. 6. Datapath of HP-ASIP.

When performing SHA-3 on HP-ASIP, 1600-bit of

Hash register and Message Scheduler are adopted for the

SHA-3 hash values. The block SHA-1/224/256/384/512

first stage & SHA-3 handles one round of SHA-3 [1].

When performing MD5 and SHA-1/224/256/384/512 on

HP-ASIP, two pipeline stages of the datapath are adopted.

To fully adopt the two-stage pipelined datapath, we

process two independent messages each time. Taking

SHA-512 as an example, when performing hash

computing, two 512-bit hash values can be stored in Hash

register and two 1024-bit messages can be stored in

Message Scheduler. Therefore, we can process two

independent data streams simultaneously via software

programming (i.e., interleaved).

TABLE III: ADDRESSING PATTERNS OF HP-ASIP

Addressing
pattern

Assembly
description

Comment

1 imm
(e.g., 18)

Point to address represented by an
immediate e.g., 18

2 ar Point to address represented by
register ar, next cycle ar remains

3 ar++ Point to address represented by

register ar, next cycle ar = ar+1
4 ar+=s Point to address represented by

register ar, next cycle ar = ar+s, s
is the step

5 ar+=s% Point to address represented by

register ar, next cycle ar = ar+s, s
is the step;

if (ar > AddrEnd) ar = AddrStart

C. Memory Subsystem

The operands of HP-ASIP are 16-byte vector data. The

16-byte vector data should be obtained within one clock

cycle to ensure that the datapath of HP-ASIP can work

efficiently. We thus propose a parallel memory

subsystem and specific addressing patterns for HP-ASIP.

Five addressing patterns are proposed for HP-ASIP as

shown in Table III. All the algorithms targeted in this

paper can thus be supported adopting the 5 addressing

patterns and the parallel memory subsystem.

To ensure that the vector data can be obtained in

parallel, we introduce the RPN and WPN. Fig. 7

describes an example of the RPN. Without the RPN, 16-

byte data stored in addresses 19 to 34 can’t be obtained

simultaneously in sequential order. Utilizing the RPN for

shuffling, the vector data can be allocated in parallel for

the datapath. The WPN works in a similar way.

32

Bank0

33 34 35 36 ... 46 47

16 17 18 19 20 ... 30 31

0 1 2 3 4 ... 14 15

...

Bank1 Bank2 Bank3 Bank4 Bank14 Bank15

data
memory

32 33 34 19 20 ... 30 31

19 20 ... 30 31 32 33 34

read
permutation

network

Fig. 7. An example of the RPN.

D. Pipeline Scheduling

To approach the efficiency limit of the datapath, the

instructions of HP-ASIP are realized in pipelined

modules. The HP-ASIP contains 7 pipeline stages as

shown in Fig. 8. Firstly, an instruction will be read out

from the PM and decoded into control signals during IF

and ID, respectively. During ID, the addresses of

operands will be generated and then passed to the DM.

The source operands will be obtained from the DM

during Mem. The obtained operands will be passed to the

RPN and permuted if necessary during Perm. Afterwards,

the outputs of the RPN will be passed to the datapath.

PermIF ID

Out

Ctrl

EXE1 EXE2

WB

Addr line

Ctrl line

Data line

Mem

Fig. 8. Pipeline scheduling of HP-ASIP.

The datapath can consume 1 or 2 pipeline stages to

fulfill the requirements of different instructions. Some

logics are designed to buffer the control signals and the

addresses of destination operand to ensure that the

datapath can work properly. The block Out Ctrl is utilized

to select which pipeline stage of the datapath should

output results. Finally, the results will be stored during

WB.

E. Instruction Set

To support multiple algorithms targeted in this paper,

we propose an instruction set for HP-ASIP. The

instruction set of HP-ASIP consists of 24 SIMD

instructions. Among these instructions, 2 are for SHA-3,

3 are for SHA-384/512, 3 are for SHA-224/256, 8 are for

SHA-1, and 8 are for MD5. Table IV lists selected typical

706

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

instructions of HP-ASIP. Column 1 shows the instruction

mnemonics in assembly. Column 2 shows functions of

the instructions. Adopting the instruction set introduced,

all the algorithms targeted in this paper can be efficiently

accelerated.

TABLE IV: SELECTED TYPICAL INSTRUCTIONS OF HP-ASIP

Instruction
mnemonic

Function

SHA5120 One step of SHA-384/512 (adopting the odd

register context)
SHA5121 One step of SHA-384/512 (adopting the even

register context)
SHA2560 2x one step of SHA-224/256 (adopting the odd

register context)

SHA2561 2x one step of SHA-224/256 (adopting the
even register context)

SHA110 2x one step of the second round of SHA-1 [2]
(adopting the odd register context)

MD500 2x one step of the first round of MD5 [2]

(adopting the odd register context)
MD530 2x one step of the fourth round of MD5 [2]

(adopting the odd register context)
SHA3 One round of SHA-3 [1]

As loop control under software flow consumes much

resource, we introduce an efficient branch-cost-free loop

acceleration in hardware. In this design, the instruction

REPEAT and nested loops are hardware accelerated. All

the loops implemented in this design are performed with

no branch cost. We achieve this adopting two

mechanisms. Firstly, the microcode for each instruction

of HP-ASIP contains a special part indicating how many

times the instruction requires to be repeated. The special

part of an instruction can be configured via appending an

option “-i Imm” at the end of the instruction in assembly

code. For example, if we want to repeat an instruction 24

times, an option “-i 24” can be adopted. Secondly, we

propose an instruction REPEAT to repeat a block of

instructions several times.

Fig. 9. Slices of assembly code for SHA-1.

Fig. 9 shows how to perform SHA-1 on HP-ASIP with

the proposed instructions. Data hazard avoidance

assembly coding is adopted to enhance performance. The

indexes for the message schedule are stored in dm0

before performing hash computation. The REPEAT

instruction repeats the following 2 instructions 20 times.

Fig. 10 shows how to perform SHA-3 on HP-ASIP

with the proposed instructions. C code of SHA-3 and the

corresponding assembly code are presented. The round

constants are stored in dm0 before performing hash

computation. The instruction SHA3 is adopted. To

process one data block, the instruction SHA3 repeats 24

times with the option “-i 24”.

Fig. 10. Slices of assembly code for SHA-3.

IV. AREA AND POWER CONSUMPTION

The proposed design is synthesized by Synopsys

Design Compiler with STMicroelectronics 65 nm low

power cell library. Table V lists the area consumption of

each component of HP-ASIP. The overall area cost of

HP-ASIP is 0.28 mm
2
 in 65 nm CMOS technology,

wherein the datapath consumes 0.19 mm
2
. The equivalent

gate count for the whole design is 66 kgates and for the

logic part is 52 kgates. The total peak power consumption

of HP-ASIP is 103.7 mW under the clock frequency of

1.0 GHz. The power estimation is provided by Synopsys

Design Compiler.

TABLE V: AREA CONSUMPTION OF COMPONENTS

Component Area (μm2)

 Sum Percentage Combinational Noncombinational

AGU 7024 2.53% 7024 0

ID 346 0.12% 346 0

PC FSM 1138 0.41% 542 596

PM 26549 9.57% 0 26549

DM 32145 11.58% 95 32050

RPN 12692 4.57% 12692 0

WPN 5926 2.14% 5926 0

datapath 191655 69.07% 148221 43434

total 277476 100.00% 174847 102629

Among all the modules of HP-ASIP, the datapath, the

DM, and the PM are the modules consuming most of the

area. The datapath costs 69.1% of the area. The DM with

4 memory blocks consumes 11.6%. The PM and the

AGU cost 9.6% and 2.5%, respectively. The permutation

networks, including read/write permutation network, cost

…

REPEAT 20 {

SHA100 dm0[ar0].b

SHA101 dm0[ar0++].b

}

REPEAT 20 {

SHA110 dm0[ar0].b

SHA111 dm0[ar0++].b

}

REPEAT 20 {

SHA120 dm0[ar0].b

SHA121 dm0[ar0++].b

}

REPEAT 20 {

SHA130 dm0[ar0].b

SHA131 dm0[ar0++].b

}

…

C code:

…

for (round = 0; round < 24; round++)

{

keccak_theta(state);

keccak_rho();

keccak_pi(state);

keccak_chi(state);

*state ^= keccak_round_constants[round];

}

…

Assembly:

…

SHA3 dm0[ar0+=8].h –i 24

…

707

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

6.7%. Processor top-level and control path consume negligible area.

TABLE VI: COMPARISON BETWEEN HP-ASIP AND EXISTING VLSI DESIGNS

Implementation Hash

function

Frequency

(MHz)

Throughput Gate

count

Area /

Scaled area

Power

(mW)

Program

mability

Technolo

gy

[10] SHA-1 and

MD5

66 417.0 Mb/s for SHA-1

520.0 Mb/s for MD5

21K NA NA N 0.25 μm

[2] SHA-1 and
MD5

104 16.0 Mb/s for SHA-1
28.0 Mb/s for MD5

9K NA NA N 0.18 μm

[1] SHA3-224,

SHA3-256,

SHA3-384,
SHA3-512

412 9.9 Gb/s for SHA3-512 NA 1,115 slices NA N Virtex 6

XC6VLX

760

[11] SHA-1,

SHA-224,

SHA-256,

SHA-384,
SHA-512

1,400 18.0 Gb/s for SHA-1,

23.0 Gb/s for SHA-224,

23.0 Gb/s for SHA-256,

18.0 Gb/s for SHA-384,
18.0 Gb/s for SHA-512

NA 62,500 μm2 /

130,401 μm2

50 N 45 nm

This work MD5,

SHA-1,
SHA-224,

SHA-256,

SHA-384,
SHA-512,

SHA3-224,
SHA3-256,

SHA3-384,

SHA3-512

1,000 15.8 Gb/s for MD5,

12.5 Gb/s for SHA-1,
15.5 Gb/s for SHA-224,

15.5 Gb/s for SHA-256,

12.2 Gb/s for SHA-384,
12.2 Gb/s for SHA-512,

34.9 Gb/s for SHA3-224,
33.0 Gb/s for SHA3-256,

26.8 Gb/s for SHA3-384,

19.9 Gb/s for SHA3-512

66K 277,476 μm2 /

277,476 μm2

104 Y 65 nm

V. EVALUATION

The synthesis results of HP-ASIP are compared with

successful VLSI designs for hash algorithms. Table VI

summarizes the comparison results. Four VLSI designs

are chosen for comparison, because they are very

comparable: [2] and [10] are successful SHA-1/MD5

processor cores that support both the SHA-1 and MD5

hash functions; [1] is one of the most efficient SHA-3

methods proposed recently; [11] accelerates SHA-

1/224/256/384/512, and it is the most comparable method

to ours for SHA functions.

Note that the gate counts of [2] and [10] listed in Table

VI exclude the cost of memory [2]. The area of [11] is

obtained in 45 nm CMOS technology while HP-ASIP is

synthesized in 65 nm CMOS technology. To compare

with [11] more fairly, we scale the area provided by [11]

to 65 nm CMOS technology. The scaled area is figured

out by multiplying the area obtained at 45 nm CMOS

technology with 265

45
（ ）.

When performing SHA-1/224/256 and MD5, HP-ASIP

processes four independent payloads simultaneously. For

example, when performing SHA-1, HP-ASIP

simultaneously processes four 512b messages producing

four 160b hashes with the latency of 2  (80 + 2) clock

cycles, resulting in the SHA-1 throughput of 12.5 Gb/s.

When performing SHA-384/512, HP-ASIP processes two

1024b messages simultaneously producing two

384b/512b hashes with the latency of 2  (80 + 4) clock

cycles, resulting in the throughput of 12.2 Gb/s. When

performing SHA3-224, HP-ASIP processes one 1152b

message producing a 224b hash with the latency of 9 +

24 clock cycles, resulting in the throughput of 34.9 Gb/s.

The remained throughput of HP-ASIP listed in Table 6 is

figured out in a similar way.

In terms of throughput, Ramanarayanan’s design [11]

achieves better throughput than HP-ASIP for SHA-

1/224/256/384/512 because Ramanarayanan’s design

obtains high clock frequency. However, HP-ASIP is

programmable and supports MD5 and SHA-3 because

HP-ASIP obtains programmable architecture and

application specific instruction set.

Compared with state-of-the-art ASICs/FPGAs, our

design achieves competitive throughput for MD5 and

SHA functions with full programmability. For its

programmability, HP-ASIP can offer changes to the

algorithms implemented in this paper to extend its chip

lifetime. For example, when one of the implemented

cryptographic hash algorithms is cracked, HP-ASIP can

still work properly via updating software.

VI. CONCLUSIONS

This paper presents a SIMD ASIP for cryptographic

hash functions that accelerates MD5, SHA-1, SHA-2, and

SHA-3. Adopting processor architecture, we map the

hash algorithms onto a two-stage pipelined datapath,

optimizing the degree of hardware sharing among the

algorithms. This approach results in a hash processor that

achieves the throughput of 15.8 Gb/s for MD5, 12.5 Gb/s

for SHA-1, 12.2 Gb/s for SHA-512, and 19.9 Gb/s for

SHA3-512, occupying 0.28 mm
2
 in 65 nm CMOS.

Compared with state-of-the-art VLSI designs, our design

achieves ASIC-like performance, full programmability,

and low silicon cost.

708

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

ACKNOWLEDGMENT

The finance supporting from National High Technical

Research and Development Program of China (863

program) 2014AA01A705 is sincerely acknowledged by

authors.

REFERENCES

[1] H. E. Michail, L. Ioannou, and A. G. Voyiatzis, “Pipelined

SHA-3 Implementations on FPGA: Architecture and

Performance Analysis,” in Proc. Second Workshop on

Cryptography and Security in Computing Systems, 2015,

pp. 13-18.

[2] D. Cao, J. Han, and X. Zeng, “A reconfigurable and ultra

low-cost VLSI implementation of SHA-1 and MD5

functions,” in Proc. 7th International Conference on ASIC,

2007, pp. 862-865.

[3] A. Satoh and T. Inoue, “ASIC-Hardware-Focused

comparison for hash functions MD5, RIPEMD-160, and

SHS,” INTEGRATION, the VLSI Journal, vol. 40, no. 1, pp.

3-10, 2007.
[4] M. Macchetti and L. Dadda, “Quasi-Pipelined hash

circuits,” in Proc. 17th IEEE Symposium on Computer

Arithmetic, 2005, pp. 222-229.

[5] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis,

“Cost-Efficient SHA hardware accelerators,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 16, no. 8, pp. 999-1008, 2008.
[6] Y. K. Lee, H. Chan, and I. Verbauwhede, “Throughput

optimized SHA-1 architecture using unfolding

transformation,” in Application-Specific Systems,

Architectures and Processors, 2006, pp. 354-359.

[7] M. McLoone and J. V. McCanny, “Efficient single-chip

implementation of SHA-384&SHA-512,” in Proc. IEEE

International Conference on Field-Programmable

Technology, 2002, pp. 311-314.

[8] G. S. Athanasiou, G. Makkas, and G. Theodoridis, “High

throughput pipelined FPGA implementation of the new

SHA-3 cryptographic hash algorithm,” in Proc. 6th

International Symposium on Communications, Control and

Signal Processing, 2014, pp. 538-541.

[9] H. E. Michail, G. S. Athanasiou, G. Theodoridis, and C. E.

Goutis, “On the development of high-throughput and area-

efficient multi-mode cryptographic hash designs in

FPGAs,” Integration, the VLSI Journal, vol. 47, no. 4, pp.

387-407, 2014.
[10] M. Wang, C. Su, C. Huang, and C. Wu, “An HMAC

processor with integrated SHA-1 and MD5 algorithms,” in

Proc. Asia and South Pacific Design Automation

Conference, 2004, pp. 456-458.

[11] R. Ramanarayanan, et al., “18Gbps, 50mW reconfigurable

multi-mode SHA hashing accelerator in 45nm CMOS,” in

Proc. ESSCIRC, 2010, pp. 210-213.

Yuanhong Huo was born in Henan

Province, China, in 1988. He received

the B.Sc. degree from Zhengzhou

University, Zhengzhou, China, in 2011.

He is currently pursuing the Ph.D. degree

in computer science and technology with

the Beijing Institute of Technology,

Beijing, China. His current research

interests include Application Specific Instruction Set Processors

(ASIP) design, Software Defined Radio (SDR), software-

hardware co-design and VLSI implementation.

Dake Liu received the D.Tech. degree

from Linkoping University, Linkoping,

Sweden, in 1995. He has experiences in

the design of communication systems

and radio frequency CMOS integrated

circuits. He is currently a Professor and

the Head of the Institute of Application

Specific Instruction Set Processors

(ASIP), Beijing Institute of Technology, Beijing, China, and

also a Professor with the Computer Engineering Division,

Department of Electrical Engineering, Linkoping University. He

is the Co-Founder and Chief Technology Officer of Freehand

DSP AB Ltd., Stockholm, Sweden, and the Co-Founder of

Coresonic AB, Linkoping, which was acquired by MediaTek,

Hsinchu, Taiwan. He has authored over 150 papers on journals

and international conferences and holds five U.S. patents. His

current research interests include high-performance low-power

ASIP and integration of on-chip multiprocessors for

communications and media digital signal processing. Dr. Liu is

enrolled in the China Recruitment Program of Global Experts.

709

Journal of Communications Vol. 11, No. 7, July 2016

©2016 Journal of Communications

