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Abstract—Interference Alignment (IA) is a precoding 

technique that achieves the maximum multiplexing gain over an 

interference channel when perfect Channel State Information 

(CSI) is available at transmitters. Most of IA researches assume 

channels remain static for a period but vary independently from 

block to block, which neglects the temporal correlation of time-

variant channels. In this paper, we propose a novel scheme that 

transmitters utilize a number of samples to predict CSI instead 

of obtaining CSI through feedback all the time. By making full 

use of the correlation of time-variant channels, our proposed 

scheme is able to reduce overhead and compensate for the 

feedback error due to low feedback Signal-Noise Ratio (SNR). 

Furthermore, we find an optimized prediction horizon achieving 

the maximum sum rate of our system, which is the best tradeoff 

between prediction error and overhead length. Simulation 

results verify that our scheme outperforms the traditional non-

predictive feedback scheme. 

 
Index Terms—Precoding technique, feedback, correlation, 

time-variant channels, overhead, prediction 

 

I. INTRODUCTION 

Interference Alignment (IA) is a precoding strategy 

that interference can be aligned to a small subspace at 

each receiver so that the number of interference-free 

dimensions remaining for the desired signal can be 

maximized. IA can achieve the maximum degrees of 

freedom (DoF) in a K-user interference channel [1]. 

However, this result is based on the assumption that 

perfect Channel State Information (CSI) is available at all 

nodes, which is impossible in practical systems. The 

performance of IA with imperfect CSI over Multiple-

Input-Multiple-Output (MIMO) interference channel was 

investigated in [2], [3]. Reference [2] provided an 

approximate closed-form signal-to-interference-plus-

noise-ratio (SINR) expression for IA with imperfect CSI. 

The upper and lower bounds of sum mutual information 

were derived for the case of imperfect channel knowledge 

in [3]. In practical systems, a number of training 

sequences and feedback bits are needed for terminals to 

learn the global CSI [4]. The channel training and 

feedback strategy seriously affects the accuracy of CSI. 

Quantized feedback was first considered in [5] and it has 

been shown that the full DoF may be preserved only if 

the number of feedback bits scales fast enough with SNR 

[5], [6], which results in a considerable large-sized 
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codebook [7]. To solve this problem, analog feedback 

strategy was proposed in [8]. Instead of quantizing the 

CSI, analog feedback directly transmits the channel 

coefficients as uncoded symbols. Reference [8] proved 

that IA’s multiplexing gain is preserved as long as the 

forward and reverse link SNRs scale together. All these 

feedback strategies are based on the assumption that 

channels remain static for a long period, which neglects 

the variance of channels caused by some environmental 

factors such as users’ mobility. The average CSI and 

precoder feedback bit rates were derived over time-

variant MIMO interference channel in [9]. The robustness 

of IA in time-variant channels was assessed through a 

joint optimization of the pilot overhead and the IA update 

interval in [10]. However, the derivations only 

accommodate forward and reverse links with asymmetric 

power levels. 

The main contribution of this paper is that we propose 

a new IA scheme that transmitters utilize a number of 

samples to predict CSI instead of obtaining CSI through 

feedback all the time. First-order Gauss-Markov channel 

model is employed to characterized the change of 

channels. By making full use of the correlation of time-

variant channels, our proposed scheme is able to reduce 

overhead and compensate for the feedback error, 

especially when reverse link power is at a lower level 

than forward link power. We quantify the error of the 

prediction algorithm and optimize the average sum-rate 

of the system. Furthermore, we demonstrate with 

simulation results that the performance of our proposed 

scheme could be affected by many factors such as 

Doppler shift and the ratio of forward and reverse link 

power. If users move slowly or the reverse link is of poor 

quality, our proposed IA scheme achieves an outstanding 

performance. 

Throughout this paper, we use the following notations: 

A denotes a matrix; 
*

( ) denotes the conjugate transpose; 

a is the absolute value of a ; 
N

I is the N N identity 

matrix; ( , )a ACN denotes a complex Gaussian random 

vector with mean and covariance matrix A ; 
ik

 is the unit 

impulse function; [ ]E  denotes expectation. 

II. SYSTEM MODEL 

A standard downlink of a cellular system is considered 

where Orthogonal Frequency Division Multiple-Access 

(OFDMA) is applied, such as TD-LTE [11]. Without loss 

of generality, we consider only one frequency band, with 

K base-stations, each serving one user, over a frequency-
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flat MIMO channel. Base-stations and users are all 

equipped with M antennas. Each base-station delivers 

d independent data streams to the target user. Fig. 1 

depicts the scenario. To ensure the feasibility of 

interference alignment, we let 2 / ( 1)d M K   [12]. The 

received signal at user j is composed of interference from 

other cells and its intended signal, which can be written 

as 

,
1

K
f

j j i i i j
i

P

d

 Y H Vs Z                    (1) 

where 
,

M M

j i


H represents the narrowband channel 

matrix from base-station i  to user j . 
,j i

H is assumed to 

be independent across users and with i.i.d (0,1)CN . 

,1 ,
,...,

M d

i i i d


   V v v , represents the precoding matrix 

of base-station i . 1d

i


s is the data symbol vector of 

base-station i satisfying *
( ) I

i i d
E s s , and is the circularly 

symmetric additive white Gaussian noise with the 

distribution of 1M

j


Z . At user j , the received signal 

j
Y is filtered by a unitary interference suppression matrix 

,1 ,
,...,

M d

j j j d


   U u u . 

f
P

 
is the forward link power. 

For the network defined above, interference alignment 

is feasible if there exists a set of precoders 
i

V and 

decoders 
j

U satisfying 

    *

,
,

j j i i
j i  U H V 0                  (2) 

     *

,( ) ,j j j jrank d j U H V              (3) 

where (2) ensures interference from other cells being 

aligned in a reduced subspace, while (3) guarantees the 

required dimensionality for the desired signal space. 

By considering i.i.d Gaussian input signaling, the 

average sum-rate can be written as 

2

, , ,

2 2
1 1

,

log 1

f

j l j j j lK d

sum
j l

j l

P

d
R

J 



 

 


 
 
 
 
 
 



u H v

             (4) 

where the leakage interference is treated as noise, and 

2 2

, , , , , , ,
1 1 1

K d d
f f

j l j l j k k m j l j j j m
k m m

k j m l

P P
J

d d

 

  

 

   u H v u H v       (5) 

If perfect CSI is available, condition (2) is satisfied, 

that is ,l 0jJ  . The effective direct channels 

*

, , ,j l j j j lu H v are complex Gaussian with unit variance 

since ,j lv and ,j lu are unitary and independent of 

,j jH .Therefore, (4) can be expressed as [13] 

              2

2 , , ,
1 1

log 1
K d

sum j l j j j l
j l

R 


 

  u H v                 (6) 

   
1

2 1

1
log (e)Kd e E






 
 
 

                           (7) 

where 2( )fP d  represents the average per-stream 

SNR . (7) is the exponential integral form of (6), where 
1

1 1
( ) tE t e dt

    . 

BS-1

..
1 M

BS-2

..
1 M

BS-K

..
1 M

- - -

UE-1

..
1 M

UE-2

..
1 M

UE-K

..
1 M

- - -

 
Fig. 1. A system model with K base-stations, each base-station serving 
one user 

To study the influence of channel variation and 

measure the performance of our prediction scheme, a 

time-varying channel model is needed. In this paper, we 

use the first-order Gauss-Markov channel model, which 

has widely been used as a model for Rayleigh-fading 

time-varying channels [14], [15]. For simplicity, we make 

two assumptions as follows. 

Assumption 1: Channel variation is time-stationary, 

which means that the values of channel correlation 

coefficients depend on relative time only. 

Assumption 2: Channel correlation coefficients are 

entirely identical for different antenna pairs. 

The channel gain between base-station i  and user j  at 

time k  is given by 

          2

, , ,
( ) [ ] (0) 1 [ ]

j i j i j i
k k k  H R H R φ        (8) 

where *[ ] E{ ( ) ( ) }k n n k R H H is the channel 

correlation coefficient during a time period of k . , (0)j iH  

represents the channel matrix at time block 0 , and 

, CN(0, )j iφ I  is the innovation between time 

block 0 and n . 

BS-1

..
1 M

BS-2

..
1 M

BS-K

..
1 M

- - -

UE-1

..
1 M

UE-2

..
1 M

UE-K

..
1 M

- - -

1.BSs send training pilots, UEs 

estimate forward channels

2.UEs send training pilots, BSs 

estimate reverse channels

3.UEs feedback forward estimates

4.BSs send decoding matrices

5.BSs send dedicated pilots

6.BSs send data to UEs 

 
Fig. 2(a) CSI transfer of conventional IA scheme 

III. PILOT OVERHEAD MODEL 

We split the transmission procedure into two phases. 

For the first P time blocks, the system operates the 
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conventional training and feedback scheme [16], which is 

depicted in Fig. 2 (a); for the next Q time blocks, reverse 

channel training and feedback are omitted owing to our 

channel prediction algorithm based on autoregressive 

model [17], which is depicted in Fig. 2 (b). 

BS-1

..
1 M

BS-2

..
1 M

BS-K

..
1 M

- - -

UE-1

..
1 M

UE-2

..
1 M

UE-K

..
1 M

- - -

1.BSs send training pilots, UEs 

estimate forward channels

2.BSs send decoding matrices

3.BSs send dedicated pilots

4.BSs send data to UEs 

 
Fig. 2(b) CSI transfer of IA scheme with channel prediction algorithm 

 

A. First P  Blocks 

Fig. 3 shows the pilot overhead model of conventional 

training and feedback. We assume that over each time 

block, fading remains constant and bN symbols can be 

delivered. IA solution is recomputed every time block. 

Among the bN  symbols, ftN , rtN , fbN , suN and svN  are 

respectively reserved for forward training, reverse 

training, CSI feedback, decoding matrices delivery and 

dedicated pilots delivery; the rest is for payload data. It’s 

obvious that if the overhead occupies too many symbols, 

time for payload data is little left. 

payload
...

ftN
rtN fbN

svN
suN

b
N

 
Fig. 3. Pilot overhead model of conventional IA scheme 

1) Forward and reverse channel training 

In the first place, each base-station i  broadcasts a 

ft
M N orthogonal pilot sequence matrix 

i
Φ , such that 

*

i k ik M
ΦΦ I . To guarantee the pilot orthogonality, we 

let
ft

N KM . The observation at user j  is 

            
,

1

,
K

ft f

j j i i j
i

N P
j

M 

  Y H Φ Z                 (9) 

where ftM N

j


Z  is a matrix of noise terms. User j then 

calculates the minimum-mean-square error (MMSE) 

estimate of the forward channel ,j iH  by 

                  *
,

2

,

ft f

j i j i

ft f

N P

M
j

N P

M


 



H Y Φ              (10) 

with entries of 

,
2

(0, )
ft f

j i

ft f

N P M

N P M 
H CN               (11) 

with corresponding errors 

2

,
2

(0, )j i

ft fN P M



 
H CN             (12) 

It’s similar to perform reverse channel training. Each 

user broadcasts an orthogonal pilot sequence matrix over 

rtN KM symbols. Base-stations then respectively 

calculate MMSE estimate with entries of 

                 ,
2

(0, )
r

rt r
j i

rt r

N P M

N P M 
H CN          (13) 

while the error matrix 

                  
2

,
2

(0, )
r

j i

rt rN P M



 
H CN          (14) 

where 
r

P  represents the reverse link power. 

2) Analog CSI feedback 

After forward and reverse channel training, each 

user j feedbacks its forward channel estimates to all base-

stations over 2

fbN K M symbols. The base-stations 

then recompute MMSE estimates of the forward channels 

by utilizing their received feedback matrices. For 

simplicity, we make the same assumption as [8]: at the 

end of the feedback step, the base-stations cooperate by 

sharing their rows of the received feedback matrix, which 

enables them to form a unified estimate of the forward 

channels ,j iH . Borrowing the derivations in [13], the 

final expression for the variance of the channel feedback 

error is 

2 2

2 1

( 1)
ft rt fb

M M KM

dN d K M N N


   
  



 
  
 

H
     (15) 

1 2

( 1)Kd Kd K 
 


                                (16) 

where 
r fP P  , is the ratio of reverse link power and 

forward link power. 

After channel estimation, base-stations calculate 

precoding and decoding matrices following principle (2) 

and (3). To achieve interference alignment, user j  must 

have the knowledge of the decoding matrix jU and its 

precoded channel ,j j jH V . 

3) Decoding matrices delivery 

To separate the desired signal and the interference, 

decoding matrix is required at users. Decoding matrices 

are delivered by analog signal based on non-codebook. 

Each base-station i  broadcasts its decoding matrix iU by 

multiplying an orthogonal pilot sequence matrix 

sud N

i


Ψ over suN Kd symbols. The observed 

signal at user j is given by 
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,

1

K
su f

j j i i i j
i

N P

d 

 Y H U Ψ Z                  (17) 

User j  calculates a MMSE estimate of jU , that is 

             
*

*
,

2

su f

j jj j j
su f

N P

d

N P

d






U H Y Ψ                  (18) 

where the error matrix , ,,j j j jj j U U U  is complex 

Gaussian with variance 

     2

2 2
1

j

su f ft f

su f ft f

N P d N P M

N P d N P M


 
  

 
U

        (19) 

2

1
1

Kd

Kd




 



 
 
 

                                      (20) 

4) Dedicated pilots delivery 

To enable each user j  to learn its precoded channel, 

each base-station i  broadcasts its precoding matrix iV by 

multiplying an orthogonal pilot sequence matrix 

svd N

i


Ω over svN Kd symbols. The observed signal 

at user j is given by 

      
,

1

K
sv f

j j i i i j
i

N P

d 

 Y H VΩ Z                      (21) 

The MMSE estimate of 
, ,j j j j j
A H V is then 

*
,

2

sv f

j j j j

sv f

N P

d

N P

d






A Y Ω ,                       (22) 

where the error matrix , ,,j j j jj j
 A A A  is complex 

Gaussian with variance 

         

2

2

2

1

1
sv f

KdN P d





 


A

                 (23) 

B. Next Q Blocks 

Fig. 4 shows the pilot overhead model of our proposed 

IA scheme based on channel prediction. In this phase, 

reverse channel training and feedback are omitted owing 

to our channel prediction based on previous P CSI 

samples obtained in phase A. Therefore, Among the 
b

N  

symbols, only 
ft

N ,
su

N and 
sv

N  are required respectively 

for forward training, decoding matrices delivery and 

dedicated pilots delivery; the rest of the symbols are for 

payload data. These steps are identical with those in 

phase A. It’s clear that the introduction of channel 

prediction greatly reduces the length of overhead. 

Furthermore, since conventional channel feedback is 

replaced by channel prediction, the channel feedback 

error in phase A is of course replaced by channel 

prediction error. When the SNR of reverse link is 

relatively low, the channel feedback error is much larger 

than the channel prediction error, which can be seen from 

our simulation in section V. Next we introduce the 

channel prediction algorithm. 

payload ...

ftN
suN

svN

b
N

 
Fig. 4. Pilot overhead model of IA scheme with channel prediction 
algorithm 

The number of samples predictor saved is flagged as 

P , denoting the prediction order; While Q , representing 

the number of blocks the channel is predicted ahead, 

denotes the prediction horizon [18]. The model is 

depicted by Fig. 5. We employ the channel prediction 

algorithm based on autoregressive model. Autoregressive 

model can represent a type of time-varying random 

process, and it specifies that the output signal depends 

linearly on its own previous values [19], [20]. It can be 

expressed as 

1

( 1) ( 1) ( 1)
p

m
m

x n a x n m n


              (24) 

where 1, , pa a are the parameters of the model, and 

( 1)n  is a white noise process with zero mean and 

constant variance 2

 . When 2

  is small, we can obtain 

the p-order autoregressive-model prediction as 

1

( 1) ( 1)
p

m
m

x n a x n m


                  (25) 

where ( 1)x n  is the predicted value of ( 1)x n  based on 

the autoregressive model with the previous values 

( ), , ( 1)x n x n p   . Thus the main task of the 

autoregressive-model prediction is to calculate of the 

parameters of the autoregressive model.  

H(s-P+1) H(s-P+2) H(s) H(s+1) H(s+Q)H(s+2)... ...

Feedback Coefficients Predicted Coefficients

 
Fig. 5. Channel prediction algorithm model 

Since we have made the assumption that all base-

stations cooperate with each other, the predictor can be 

placed at any base-station. We use ,

s n

j i



H  to denote the 

predictive channel coefficient and 
,

s n

j i


H  the actual 

channel coefficient at time s n  between base-station i  

and user j . The computation of predictive channel 

coefficient is given by 

       
1

, , ,
0

, [1, ]
Ps n

s m s m
j i m j i j i

m

W n Q


 



    H H E           (26) 

where 
, ,

s m s m

j i j i

 
H E is the estimated channel coefficient and 

,

s m

j i


E  is the channel estimation error at time s m . We 

aim at designing the prediction weight vector 

 0 1 1
, , ,

n P
W W W


W  to minimize the mean square error 

between predictive and actual channel coefficients. 
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Therefore, the objective function is given by 

          *
, ,, ,

min ( )( )
s n s n

s n s n
j i j ij i j i

E
 

 
  

  
H H H H        (27) 

Bringing (26) into this function and according to the 

orthogonality principle, we can get the point that the 

optimum 
n

W  must satisfy (for 0, , 1m P  ) 

 *, , , ,
( )( ) 0

s n
s n s m s m

j i j i j i j i
E


  

  H H H E     (28) 

with (26) and (28), this yields the Wiener-Hopf equations 

1
2

'
' 0

( [ '] [ '] ) [ ]
P

m
m

W m m m m n m 




    
H

R I R       (29) 

where 
, ,

[ ] E{ ( ) }
s s m

j i j i
m

 
R H H  is the correlation matrix of 

interval m and we assume that this information is 

available to all base-stations . 2

, ,
{ ( ) }

s s

j i j i
E




H
E E , is the 

error variance of the channel samples, i.e., the variance of 

feedback error calculated in phase A, step 2). (29) can 

also be written in matrix form as [21] 

                      
2

n


H
W (R + Ι) = Π                    (30) 

where  

 [ ], [ 1],..., [ 1]n n n P   Π R R R ,
 

[0] [1] [ 1]

[ 1] [0] [ 2]

[1 ] [2 ] [0]

P

P

P P



 


 

 
 
 
 
 
 

R R R

R R R
R

R R R

 

Thus, the MMSE-optimum predictor coefficient matrix 

n
W  is given by 

                      
2 -1

opt Η
σW = Π(R + Ι)                        (31) 

The mean square error obtained with the optimum 

coefficient 
opt

W  can be shown to be (for 1, ,n Q  ) 

 2 *
, ,, ,

2 -1

[ ] ( )( )

=1

s n s ns n s n
j i j ij i j in E



    



B

*

H

H H H H

Π(R + I) Π

       (32) 

This depends on the channel correlation [ ]mR  and the 

channel estimation error variance 2


H
. Although (32) is 

difficult to interpret, based on the conclusions derived by 

[21], it can be proved that if 2


H
 is fixed, with the increase 

of n , the correlation between predicted channels and 

channel samples decays, and 2
σ [ ]n

B
 increases as a result. 

IV. OPTIMUM PREDICTION HORIZON 

According to (4) and (5), the average sum-rate of each 

block can be expressed as 

 2
1 l 1

log 1
K d

sum eff
j

C E 
 

     

where 

2

,,l ,l

2
2

, ,,l ,,l
1 1

2

,,l ,l

2
2

, ,,l ,l ,

1 1

( )( )

( )

f
j jj j

eff
K d

f
j k j kj k mj

k m

f
j jj j

K d
f

j k j kj j k m

k m

P

d

P
E

d

P

d

P
E

d











 



 

 


 

   
 


 

  
 

 

 

u H v

u u H H v

u H v

u H u H v

 

For phase A, since we do channel estimation and 

feedback for each block, the effective average per-stream 

SINR keeps constant, and it is given by [10] 

2 2

2 2 2 2 2 2 2 2
1 [( 1)( ) ]

P
d K

 


        


    
H U A U

A U

U H U A

 

For phase B and [1, ]n Q , with the increase of n , 

the prediction accuracy drops off. The effective average 

per-stream SINR is shown to be 

2 2

2 2 2 2 2 2 2 2
[ ]

1 [( 1)( [ ] [ ]) ]
Q

n
d K n n

 


        


    
B U A U

A U

BU U A

 

Then the effective sum-rate of phase A is 

1

2 1

1
log ( )e Pb P

P

b P

N N
R Kd e E

N





 
   

 
 

And the effective sum-rate of phase B is 

1 [ ]

2 1
1

0 , 0

1
[ ] log ( )e

[ ]
, 0

Q

Q
n

Q

n Qb Q

b

Q

R Q Kd e E
nN N

Q
N Q








 
      

 



 

where P ft rt fb su svN N N N N N      is the total 

overhead of IA with conventional channel estimation and 

feedback; while Q ft su svN N N N    is the total 

overhead of IA with channel prediction. Furthermore, the 

effective sum-rate of the whole process is 

[ ] [ ]P Qsum

P Q
R Q R R Q

P Q P Q
 

 
 

Let P  be a certain value that never varies, in Appendix 

A, we prove that under some suitable conditions, there 

must exist a value of Q  that maximizes [ ]sumR Q . 

Having quantified IA average sum-rate as a function of 

prediction horizon Q , we redefine the optimization 

problem as (33), shown at the bottom of this page. 

In fact, it’s hard to get the closed-form solution for the 

function above. Since this is a unconstrained nonlinear 

integer optimization problem, one-dimension search 

method is suitable to solve it. To achieve maximum 

search efficiency, D.S.C interpolation is adopted [22]. 

Specific algorithm is as follows. 
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Algorithm: D.S.C Interpolation 

Initialization： 

Define 
0

Q as the initial value, and step size 1Q  . 

Iteration: 

1) Let 0k   

if 
0 0[ ] [ ]sum sumR Q Q R Q   

turn to 2); 

else 

let Q Q   and turn to 2); 

end if 

2) Let
1k kQ Q Q   and calculate

1[ ]sum kR Q 
; 

3) If 
1[ ] [ ]sum k sum kR Q R Q   

let 2Q Q   , 1k k   and turn to 2); 

else  

let / 2Q Q   , 
1m kQ Q   ,

 
1m mQ Q Q   , 

1m kQ Q  , 
2 1m kQ Q  ; 

end if 

4) For set 
2 1 1{ , , , }m m m mQ Q Q Q  

 

if  
1 1[ ] [ ]sum m sum mR Q R Q   

remove 
mQ  and let 

1b mQ Q  ; 

else 

remove 
2mQ 

 and let 
1b mQ Q  ; 

end if 

5) Let 
a bQ Q Q  , 

c bQ Q Q  , and apply quadratic 

interpolation(    denotes rounding down) 

( [ ] [ ])
0.5

2( [ ] 2 [ ] [ ])

sum a sum c
b

sum a sum b sum c

R Q R Q Q
Q Q

R Q R Q R Q

  
   

  
; 

6) If  [ ] max [ 1], [ 1]sum sum sumR Q R Q R Q    

stop iteration and let optQ Q ; 

else if [ ] [ 1]sum sumR Q R Q   && [ ] [ 1]sum sumR Q R Q   

make
 
Q  as the new initial state, and let 0Q Q , 1Q   , 

then turn to 1); 

else 

make
 
Q  as the new initial state, and let

 
0Q Q , 1Q  , 

then turn to 1); 

end if 

 

Next section we will make performance analysis to the 

IA scheme with channel prediction by matlab simulation. 

V. SIMULATION RESULTS 

Consider an IA cluster with three base-stations, each 

serving only one user. All the base-stations and users are 

equipped with two antennas and all channel coefficients 

are i.i.d zero mean unit variance circularly symmetric 

complex Gaussian. Suppose each base-station conveys 

one spatial stream, i.e. 1d  . The OFDM symbol period 

66.7μssT  is chosen according to the 3GPP LTE 

standard [23]. “Time block” mentioned above denotes 

10ms . We make the assumption that during each time 

block, channels remain static. According to [23], 7 

symbols can be delivered during one time slot ( 0.5ms ). 

Hence, one time block consists of 140 symbols. Channels 

vary based on first-order Gauss-Markov channel model 

from block to block, which is given by (8). We invoke the 

standard Clarke-Jakes correlation function 

0[ ] (2 )m sk J f kT  , where 0 ( )J   is the 0-th order bessel 

function of the first kind and mf  denotes the normalized 

Doppler frequency. 
m

f v  , where v denotes the 

velocity of the users. In this paper we let the carrier 

frequency be 2.4GHz, with the corresponding wavelength 

0.125m  . 

We illustrate the mean square error of the channel 

coefficients based on non-predictive scheme as well as 

predictive scheme in Fig. 6 respectively for 15Hz
m

f  , 

30Hz
m

f  and 45Hz
m

f  . The non-predictive scheme 

means that the latest estimated CSI is used in all the 

upcoming time blocks without updating. Without loss of 

generality, prediction order 5P  is adopted. As time goes 

on, the mean square error of the two schemes both 

increase. Nevertheless, the mean square error of the 

predictive scheme is below that of the non-predictive 

scheme all along, which fully embodies the accuracy of 

our prediction algorithm. 

 

Fig. 6. Mean Square Error v. Time blocks with 15dBSNR  , 0.1   

1 [ ]

2 1

11

2 1

1
log ( )e

[ ]1
arg max log ( )e

Q

P

Q
n

n Qb Qb P
opt

Q N b P b

Kd e E
nN NN NP Q

Q Kd e E
P Q N P Q N Q












  
              
 
 


  (33) 

 

Fig. 7 plots the optimum prediction horizon versus 

prediction order respectively for 20Hzmf 
 
and 

60Hzmf  . As anticipated, with the growth of prediction 

order, the optimum prediction horizon is also on a rising 

trend. 

Respectively for 
2 10dBfSNR P    and 

2 15dBfSNR P   , we illustrate the optimum 

prediction horizon versus Doppler shift in Fig. 8. Without 

loss of generality, prediction order 5P  is adopted. As 
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anticipated, with the increase of Doppler shift, the 

optimum prediction horizon decreases. 

 
Fig. 7. Optimum Prediction Horizon v. Prediction Order 

with 15SNR dB , 0.1   

 
Fig. 8. Optimum Prediction Horizon v. Doppler Shift with 0.1   

Respectively for 10dBSNR   and 15dBSNR  , we 

illustrate the effective sum-rate versus the ratio of 

forward and reverse link power in Fig. 9. We compare 

three different schemes: “NP-NO”, “NP-O” and “P-O”. 

The “NP-NO” scheme is the conventional IA scheme that 

channel estimation and feedback is required at each time 

block with neither prediction nor optimization. While the 

“NP-O” scheme is an IA scheme of which the 

optimization objective is the interval to do channel 

estimation and feedback that achieves the maximum sum-

rate, but channel prediction is unconsidered [10]. The “P-

O” scheme is our proposed scheme in this paper. Without 

loss of generality, prediction order 5P  is adopted. As 

observed, if the reverse link power decays, the average 

sum-rate of the three schemes all decrease. The reason is 

that when SNR of the reverse link becomes lower, the 

channel estimation accuracy degrades. Meanwhile, it’s 

clear that the downtrend of the “P-O” scheme is slower 

than the other two schemes. This is because the “P-O” 

scheme partially omits the reverse channel estimation and 

feedback phase, which relieves its sensitivity to the 

reverse link quality. When 1  is quite low, the “NP-O” 

scheme may be a good choice, but when 1  is high 

enough, the “P-O” scheme is sure to perform better. 

 

Fig. 9. Effective Sum-Rate v. 1  with 20Hzmf 
 

Fig. 10 compares the effective sum-rate of the three 

schemes referred above versus Doppler shift. Without 

loss of generality, prediction order 5P  is adopted. As 

observed, the effective sum-rate of the “NP-NO” scheme 

remains constant no matter how Doppler shift varies. 

While the other two schemes perform worse with the 

increase of Doppler shift, which is consistent with our 

anticipation. Fig. 10 also shows that the “P-O” scheme is 

more sensitive to Doppler shift. When Doppler shift is 

relatively small, the “P-O” scheme achieves a much 

better performance than the other two schemes. 

 
Fig. 10. Effective Sum-Rate v. Doppler Shift with 

10dBSNR  , 0.1    

VI. CONCLUSION 

It’s known that perfect channel state information is 

needed to achieve the maximum gain of IA. We analyzed 

how imperfect CSI impacts on IA performance caused by 

additive white Gaussian noise. Then a classic time-

varying channel model was introduced. We showed that 

if channel is time-varying, channel estimation and 

feedback would become more frequent, which results in a 

huge rise of overhead. We proposed a new IA scheme 

comprising two phases. Phase A performs conventional 

channel estimation and analog feedback, while phase B 

executes the channel prediction algorithm. We quantified 

the error of the prediction algorithm as well as the 

average sum-rate of the system. We confirmed one-

dimension search method could be used to find the 
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optimum prediction horizon in order to achieve the 

maximum average sum-rate. Finally, simulation results 

showed that the performance of our proposed scheme 

could be affected by many factors such as Doppler shift 

and the ratio of forward and reverse link power. If users 

move at a low speed or the reverse link is of poor quality, 

our proposed IA scheme achieves a much better 

performance. Our derived analysis can also be of great 

significance to the further work on interference alignment. 

APPENDIX A 

Assumption: 
2 1

(1 ) (1 [ ]) b Qb P
N NN N

P Q



 


  


   

 

Proposition: In the definition domain, there must exist 

a block Q  that is a local maximum point of [ ]sumR Q , and 

also it is the global optimal solution. 

Proof:  The assumption 2 1    indicates that 

2 0.5
U

  , which can be used to prove that [ ]Q n  is 

monotone decreasing with n .Therefore, [ ]QR Q  is 

monotone decreasing with Q . Suppose 0N   such 

that [ 1] [ ] 0sum sumR N R N   .  

Define ( )b Q bN N N   . Then 

1

0

1

0

[ 2] [ 1]

( 1) [ 2] [ ]

( 2)( 1)

( 1) [ 1] [ ]

( 2)( 1)

( [ 1] [ ])
2

0.

sum sum

N

Q Q P

n

N

Q Q P

n

sum sum

R N R N

P N R N R n PR

P N P N

P N R N R n PR

P N P N

P N
R N R N

P N













  

    


   

    


   

   

   


  

 



 

Therefore, we come to the conclusion that once there 

exist a block N  for which [ ] [ 1]sum sumR N R N  , then for 

the following blocks Q N , [ ]sumR Q  is monotone 

decreasing with Q . 

While since (1 ) (1 [ ]) b Qb P
N NN N

P Q 


    , 

then [ ]P QR R  , meaning that [0] R [ ]sum sumR   . 

Therefore, in the definition domain, [ ]sumR Q  is monotone 

decreasing or first increasing and then decreasing. 

Summing up the above, there must exist a block Q  that 

is a local maximum point of [ ]sumR Q , and also it is the 

global optimal solution. The proposition is fully attained. 
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