
SSLSARD: A Request Distribution Technique for 

Distributed SSL Reverse Proxies 
 

Hai-Tao Dong
1,2,3

, Lei Song
2
, Jin-Lin Wang

2
, and Jun Yang

1
  

1 
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 

100190, China 
2 
National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, 

Beijing 100190, China 
3 
University of Chinese Academy of Sciences, Beijing 100190, China 

Email: {donght, songl, wangjl}@dsp.ac.cn; jyang@mail.ioa.ac.cn 

 

 
Abstract—Although Secure Sockets Layer (SSL) and its 

successor Transport Layer Security (TLS) are the  for transport 

layer security, their cryptographic operations tend to be highly 

CPU intensive. Web systems that support SSL/TLS often 

deploy several locally or globally distributed SSL reverse 

proxies in front of Web servers to offload SSL/TLS operations 

from Web servers and improve the execution performance of 

the SSL/TLS protocol. A particularly obvious problem is the 

distribution strategy of incoming requests to the SSL reverse 

proxies. In this paper, we propose a request distribution 

technique to improve the overall performance of SSL reverse 

proxy system. This technique is called SSL-Session-Aware 

Request Distribution (SSLSARD), consisting of a real-time load 

estimation algorithm and an SSL-session-aware request 

distribution algorithm. Our experimental results show that SSL 

session resumption is critical in improving the performance of a 

SSL reverse proxy system. And comparing with the client-

granularity distribution strategy of SSL_session_only, 

SSLSARD can deal with more concurrent requests and further 

increase system throughput. 
 
Index Terms—Secure Sockets Layer (SSL), Web system, SSL 

reverse proxy, distributed system, request distribution 

 

I. INTRODUCTION 

At present, SSL protocol [1] and its successor TLS 

protocol [2]-[4] are widely used to provide a secure 

transmission channel between a client and a server on the 

Internet, and have become the de facto standards for 

transport layer security [5]-[7]. In the rest of this paper, 

the term “SSL” is used to refer to both SSL and TLS. 

SSL runs on top of some reliable transport protocol (e.g. 

TCP), while under various kinds of application layer 

protocols. Many application layer protocols, such as 

HTTP, TELNET, FTP, etc. can run transparently over 

SSL. However, SSL is most widely used to ensure the 

security of HTTP traffic [7], namely HTTP Secure 

(HTTPS). The execution process of SSL is composed of 

                                                          
 Manuscript received November 18, 2015; revised April 14, 2016. 

This work was supported by the Strategic Priority Research Program 

of the Chinese Academy of Sciences under Grant No. XDA06010302 
and the Knowledge Innovation Project of the Institute of Acoustics, 

Chinese Academy of Sciences under Grant No. Y154191601. 
Corresponding author email: donght@dsp.ac.cn. 

doi:10.12720/jcm.11.4.374-382

two stages: the establishment of an SSL connection and 

the secure transmission of application data. 

Although SSL is the most popular protocol to provide 

a secure transmission channel between a client and a 

server on the Internet, the cryptographic operations, 

particularly public key operations, tend to be highly CPU 

intensive [1]-[5], [8]-[10]. Due to this reason, SSL’s 

popularity rate over the Internet is rather low. In fact, 

among the network traffic in people’s everyday life, only 

a rather small part is transmitted in cipher text, the most 

of which is traffic carrying sensitive information (such as 

e-mail and online shopping) [11]. So far, the number of 

Web sites on the Internet has exceeded 850 million [12]. 

However, only less than 3 million of those offer SSL 

security [13]. Results of another survey [14] show that 

among Alexa’s list of top 1,000,000 Web sites, only 

about 450,000 offer SSL security. Despite all this, 

nowadays SSL tend to achieve a universalization within 

the range of the whole Internet. More and more Internet 

traffic is carried through as cipher text. Many research 

works devote to improve the execution performance of 

SSL, starting from the directions of speeding up 

cryptographic algorithms [11], [15], [16], optimizing the 

SSL protocol [7], [17], [18], SSL offloading [8]-[10], 

utilizing SSL session resumption [5], [8]-[10], etc. SSL 

session resumption is a mechanism provided by the SSL 

protocol that allows the two parties to establish an SSL 

connection using a previous session within its lifetime 

instead of negotiating a new one, so as to immensely 

reduce the overhead in establishing SSL connections. In 

fact, SSL session resumption ratio has already become a 

new metric to measure SSL performance [9]. 

Web systems that support SSL often use SSL reverse 

proxies [8]-[10], [19]-[21] to offload CPU exhausting 

SSL operations from Web servers and improve the 

execution performance of the SSL protocol. As is shown 

in Fig. 1, one or several SSL reverse proxies are deployed 

between clients and Web servers. The SSL reverse 

proxies get content in plain text from the Web servers 

through HTTP and provide HTTPS services to the clients. 

Such SSL reverse proxies usually possess hardware 

devices dedicated to process cryptographic operations at 

great speed. 

374

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



SSL reverse proxies

Web servers

A Web site offers SSL security

...

...

Application servers, 
database servers, 

etc.

Clients

HTTPS HTTP

...

...

 
Fig. 1. Architecture of a Web site offers SSL security using distributed 

SSL reverse proxies

In order to accept more clients that request Web 

content protected by SSL, Web sites usually deploy 

several locally or globally distributed SSL reverse proxies 

as a collaboratively working system, as is shown in Fig. 1. 

A particularly obvious problem is the distribution strategy 

of incoming requests to the SSL reverse proxies. In order 

to improve the overall performance of SSL reverse proxy 

system, we propose a request distribution technique for 

SSL reverse proxies, called SSL-session-aware request 

distribution (SSLSARD), with which the request 

distributor distributes the incoming requests at a fine 

granularity of SSL session, taking both load balancing 

and high SSL session resumption ratio into consideration. 

This paper presents the following contributions: 

 An efficient, highly real-time load estimation algo-

rithm for SSL reverse proxies; 

 An SSL-session-aware request distribution algorithm 

for SSL reverse proxies that makes compromise be-

tween load balancing and high SSL session resump-

tion ratio by adjusting several parameters; 

 A set of simulation that evaluates the performance of 

SSLSARD. 

The rest of this paper is organized as follows: In 

Section II we describe SSLSARD in detail. In Section III 

we describe the design of simulation used to evaluate the 

performance of SSLSARD. In Section IV we present the 

results of our simulation. We describe the related work in 

Section V and then we conclude this paper in Section VI. 

II. THE SSLSARD STRATEGY 

In this section, we describe the SSLSARD request 

distribution strategy in detail. SSLSARD consists of a 

real-time load estimation algorithm and an SSL-session-

aware request distribution algorithm. To describe 

intuitively, first we provide an example of system 

architecture utilizing SSLSARD. Next, we describe the 

SSLSARD load estimation algorithm and request 

distribution algorithm respectively. 

A. An Example of System Architecture Utilizing 

SSLSARD 

Fig. 2 shows an example of system architecture 

utilizing SSLSARD. A request distributor is connected 

between clients and several locally or globally distributed 

SSL reverse proxies in series. First, the request distributor 

establishes a TCP connection with a client. Second, the 

request distributor receives a ClientHello and checks it 

for information on session resumption, then chooses a 

target SSL reverse proxy node according to the 

SSLSARD strategy. Third, the request distributor 

transfers its end point of the TCP connection to the target 

node using the technique of TCP hand-off [22]. Then the 

client can establish SSL connection with the target node 

and send HTTPS request to it. This system architecture 

enables the request distributor to distribute the incoming 

requests at the granularity of SSL session, which is 

essential to SSLSARD. 

Clients

...
Web servers

A Web site offers SSL security

...

HTTP

...

(2)ClientHello
(3)TCP hand-off

(1)TCP connection

Request 
distributor

SSL reverse proxies

 
Fig. 2. An Example of System Architecture Utilizing SSLSARD  

B. SSLSARD Load Estimation Algorithm 

The load of SSL reverse proxies is an important input 

parameter of the request distribution algorithm. The SSL 

workload has high computational complexity. Moreover, 

its amount of computation differs greatly depend on 

whether session resumption takes place. In order to utilize 

the SSL reverse proxies’ computational resource 

efficiently, the calculation of load should be fast and 

highly real-time. In this subsection we firstly present our 

method of measuring SSL reverse proxy’s load. Then we 

describe the proposed real-time load estimation algorithm. 

Some symbols used in this paper are defined as follows: 

 N  is the total number of the SSL reverse proxies; 

 iG  are the SSL reverse proxies, 1,  2,  3,  ,  i N  ; 

  il t  is the load of 
iG  at time t . 

SSL reverse proxy’s load is caused mainly by SSL, 

consisting of the overhead of SSL handshake and that of 

bulk encryption. The overhead of SSL handshake 

includes public key operations. Some related work 

indicates that when providing a service of a small Web 

page (1KB-32KB) using HTTPS, an SSL server spends 

about 70%-90% of its processing time on public key 

operations [7], [23]. In this paper, we assume that the 

HTTPS request content size is small enough that the 

difference in bulk encryption overhead among requests 

can be neglected. Only considering the difference in SSL 

handshake overhead, we divide the requests into two 

375

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



categories: the requests that willing to negotiate a new 

SSL session and the requests willing to resume an existed 

session s . Each request of the first category is expected 

to cause a load of 
,i newp  to 

iG , while each request of the 

second category is expected to cause a load of  ,i reup s  

to 
iG . If s  can be resumed on 

iG , then 

 , , ,i reu i reu i newp s p p  ; or otherwise  , ,i reu i newp s p . 

,i newp  and 
,i reup  stands for the processing ability of 

iG , 

where a smaller value means a greater processing ability. 

Our load estimation algorithm adopts a model of 

discrete sliding window. As is shown in Fig. 3, we split 

the time axis into time slices of duration T . The sliding 

window at time t  covers the time slice t  belongs to (end 

with t ) and the former time slice. Suppose that 
dt  is the 

beginning of the time slice t  belongs to;  dil t  is the 

total load distributed to 
iG  during the time interval 

 ,  d dt T t   with  0   0il  ; while  i tl is the total 

load distributed to 
iG  during the time interval  ,  dt t ,  

then   il t  is estimated as follows: 

  
   i d i

i

d

l t l t
l t

T t t

 


  
 (1) 

That is, the load of 
iG  at current time t  is estimated 

using the normalized load distributed to 
iG  during the 

former time slice and the current one. Like traditional 

load estimation algorithms, we have a load information 

updating period T  to wipe off old load information. 

Moreover, in our algorithm estimating load between 

updating intervals is enabled, so the goal of real-time 

estimation is guaranteed. In our work, the way the request 

distributor obtains the nodes’ load information is 

proactively estimating, instead of periodically receiving 

load information from the nodes. The monitoring of the 

nodes’ state is not adopted by us, either. As a result, the 

network delay, bandwidth consumption and extra work 

on the SSL reverse proxies are minimized. 

0
t

timeT 2T td

li(td) li(t)

 
Fig. 3. The model of discrete sliding window. 

C. SSLSARD Request Distribution Algorithm 

Load balancing and high SSL session resumption ratio 

are two core concerns when designing request 

distribution algorithm for SSL reverse proxies. 

Unfortunately, the two concerns are contradictory. Load 

balancing focuses on distributing requests to the least 

loaded node, while high SSL session resumption ratio 

focuses on distributing requests from the same client to 

the same target node. Our request distribution algorithm 

is aimed at making compromise between the two 

concerns. In the rest of this subsection, we discuss the 

request distribution decision-making models for both 

categories of requests described in Section II. B. Some 

symbols used in this subsection are defined as follows: 

  
T

1, 2, ,, , ... ,new new new N newp p pp  is the performance 

vector of the SSL reverse proxies when a new SSL 

session is willing to be negotiated; 

    
T

1 2, , ... , ,reu Ns p p pp  where  

,

,

, if has cached

, or else

i reu i

i

i new

p G s
p

p


 


 

is the performance vector of the SSL reverse proxies 

when SSL session s  is willing to be resumed; 

         
T

1 2, , ... , Nt l t l t l tl  is the load vector of 

the SSL reverse proxies; 

  
T

1 2, , ... , , where Nx x xx   

 1 2

1

, , ... , 0,1 , 1
N

N i

i

x x x x


   

is the request distribution decision-making vector, in 

which the only “1” element indicates the selected node. 

 Problem 1: 

The first problem is the distributing strategy of 

requests that willing to negotiate a new SSL session. In 

our work, the measurement of SSL reverse proxy’s load 

takes performance difference among the nodes into 

consideration so that the estimated load is normalized. 

Therefore, the only object of this problem is balancing 

load among the nodes. 

Firstly we quantify this object. The load vector after 

request distribution is: 

 
   

      
T

1 2

1

, , ... ,

new

d

N

t t
T t t

l t l t l t

   
  

  

l l p x
  (2) 

Let 

    
1

1 N

i

i

l t l t
N 

    (3) 

We define objective function  f x  as the SSL reverse 

proxy system’s load balance degree, which is measured 

by the standard deviation of all the SSL reverse proxies’ 

load: 

      
2

1

1 N

i

i

f l t l t
N 

   x  (4) 

So we can describe the object as: work out the x  that 

minimizes  f x . The determination of the optimal 

solution is described as follows: 

Step 1: Work out the x  that minimizes T

new p x  (if 

there are more than one such solutions, select the one that 

the node it represents is least loaded); 

376

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



Step 2: Find out the solutions that the nodes they 

represent are less loaded than the solution worked out in 

Step 1; 

Step 3: Calculate  f x  for all the solutions found in 

Step 1 and 2, determine the x  that minimizes  f x  as 

the optimal solution. 

 Problem 2: 

Considering a request willing to resume session s , a 

problem is whether distribute it to the node that has 

cached s  or to some node that is much less loaded but 

hasn’t cached s . There are two objects in this problem: 

Object 1: Minimize the load caused by this time’s request 

distribution; 

Object 2: Balance the load among the nodes. 

Our goal is to make compromise between these two 

objects. We define objective function  1f x  as the load 

caused by this time’s request distribution:  

    
T

1 reuf s x p x   (5) 

So we can describe Object 1 as: work out the x  that 

minimizes  1f x . 

The load vector after request distribution is: 

 
     

      
T

1 2

1

, , ... ,

reu

d

N

t t s
T t t

l t l t l t

   
  

  

l l p x
 (6) 

The definition of objective function  2f x  here is the 

same with  f x  in (3) and (4). So Object 2 can be de-

scribed as: work out the x  that minimizes  2f x . 

We define the utility function of this problem as fol-

lows: 

 

 
   

 

   

 

1

2

1 1

1

1

2 2

2

2

min

min

f f
U

f

f f

f









     
  

  

     
  

  

x x
x

x

x x

x

  (7) 

Parameters 
1 , 

2 , 
1  and 

2 are constants whose 

values depend on the number and processing ability of 

the nodes. Through adjusting these parameters, the 

relative weights on load balance and SSL session 

resumption can be changed freely, so as to adapt the 

algorithm to SSL reverse proxy systems of different 

specifications. Among all the noninferior solutions, the 

one that minimizes  U x  is the optimal solution of our 

algorithm. The determination of the noninferior solutions 

is described as follows: 

Step 1: Among all the nodes that have cached s , find 

out the x  that minimizes  1f x  (if there are more than 

one such solutions, select the one that the node it 

represents is least loaded) as a noninferior solution; 

Step 2: Find out the solutions that the nodes they 

represent are less loaded than the noninferior solution 

determined in Step 1; 

Step 3: Calculate  2f x  for the noninferior solution 

determined in Step 1 as a benchmark; 

Step 4: Calculate  2f x  for the solutions found in Step 

2, if any  2f x  is smaller than the benchmark described 

in Step 3, determine x  as a noninferior solution. 

This request distribution algorithm improves the 

quality of request distribution at the expense of 

calculation complexity. And the expense of (7) increases 

as N  increases. However, the procedure of determining 

noninferior solutions greatly reduces the complexity of 

calculation, providing our request distribution algorithm a 

wider range of application. In general, the expense of (7) 

is acceptable for a normal-sized SSL reverse proxy 

system. For a larger distributed system, a more powerful 

request distributor is needed. 

III. SIMULATION MODEL 

In this section, we describe the simulation model we 

designed and implemented based on the system 

architecture shown in Fig. 2. Based on this simulation 

model, we will evaluate the performance of SSLSARD in 

Section IV. 

TABLE I: SYSTEM PARAMETERS IN THE SIMULATION MODEL 

Parameters of the SSL reverse proxy system 

Number of the SSL reverse proxies (N) 4 

Lifetime of SSL session 5min 

Public key algorithm RSA, key size = 2048 bits 

Symmetric key algorithm AES, key size = 256 bits 

Parameters of the request distributor 

Period of load information updating ( T ) 2s 

Request distribution decision-making 

parameters 

1  = 10; 
2  = 1;  

1  = 1; 
2  = 2. 

TABLE II: PROCESSING ABILITY OF THE SSL REVERSE PROXIES 

 
Private key 

decryption 

Symmetric 

encryption 
(or decryption) 

,i newp  
,i reup  

1G  90 times/s 1050 Mbps 12.39 1 

2G  75 times/s 840 Mbps 14.92 1.25 

3G  60 times/s 750 Mbps 18.49 1.4 

4G  45 times/s 540 Mbps 24.73 1.94 

A. System Parameters 

Table I provides system parameters in our simulation 

model, while Table II provides detailed processing ability 

of the SSL reverse proxies. The SSL reverse proxy 

system consists of 4 nodes, whose processing ability for 

private key decryption and symmetric encryption is 

different from each other. The lifetime of SSL session for 

a typical Web site can be set from 5s to 24h [8]. In our 

377

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



simulation, we set it as 5 min. In the configuration of 

request distribution decision-making parameters, we set 

1  and 
2   relatively large to add the weight of SSL 

session resumption with respect to load balancing. 

TABLE III: CLIENT REQUEST PARAMETERS IN THE SIMULATION MODEL 

Newcome clients per second Poisson distribution,   = 40-80 

Moment when a new client 

arrives 
Uniform distribution 

Requests per user session 
Negative binomial distribution, 

r  = 1, p  = 0.023 

User think time 
Generalized Pareto distribution, 

k  = 0.714,   = 1.429,   = 2 

Content size 128 KB 

B. Request Parameters 

Table III provides client request parameters in our 

simulation model. Experience suggests that the number of 

newcome clients per second obeys Poisson distribution, 

while the moment when a new client arrives obeys 

Uniform distribution. The mean value of newcome clients 

per second varies from 40 to 80, representing different 

levels of load. The study on online user behavior in [24] 

provided statistical data of average requests per user 

session. We had done a curve fitting to these statistical 

data and as a result, we modeled the number of requests 

per user session according to a negative binomial 

distribution. The user think time refers to the time 

between the retrieval of two successive requests from the 

same client. In our simulation, the user think time was 

modeled according to a generalized Pareto distribution 

[25]. The object of each HTTPS request is a 128KB Web 

page, which conforms to the assumption that the HTTPS 

request content size is small enough. 

IV. EXPERIMENTAL RESULTS 

In this paper, on evaluating the performance of 

SSLSARD, we considered the following metrics: 1) SSL 

session resumption ratio, which is defined as the percent 

of requests that resume existed SSL sessions. 2) Load 

balance degree, which is measured by the standard 

deviation of all the SSL reverse proxies’ load. 3) 

Throughput, namely the number of requests the SSL 

reverse proxy system deals with per second. 

On evaluating the performance of SSLSARD, we 

chose the following two algorithms as benchmarks [5]: 

 Round Robin with Weight (WRR): Based on the 

request distribution policy of Round Robin, this 

algorithm additionally assigns weights to the nodes 

according to their processing ability. In our simulation, 

we assign weights to the SSL reverse proxies 

according to their ability in private key decryption. 

The weights of 
1G , 

2G , 
3G  and 

4G  are 6, 5, 4, 3 

respectively. 

 SSL_session_only: This algorithm considers SSL 

session resumption as the only significant factor in 

request distribution. Requests from the same client are 

always distributed to the same node. The first request 

from each client can be distributed using algorithms 

like WRR, LL, etc. In our simulation we adopt WRR. 

The weights of the SSL reverse proxies are the same 

with the WRR algorithm described above. 

A. SSL Session Resumption Ratio 

Fig. 4 shows the SSL session resumption ratio of the 

SSL reverse proxy system. The SSL session resumption 

ratio of WRR is extremely low, maintaining a level of a 

bit lower than 1/4. The reason why it is a bit lower than 

1/4 rather than exactly 1/4 is, because WRR is too slow, 

some requests have to wait for a long time to be 

processed so that their target sessions go out of date. 

According to the description of SSL_session_only, its 

SSL session resumption ratio should be the highest 

among all the request distribution algorithms. The results 

of our simulation indicate that SSLSARD has an SSL 

session resumption ratio almost not lower than 

SSL_session_only. This illustrates that with SSLSARD, 

the load of the SSL reverse proxy system is almost 

always well balanced that the situation where a request 

willing to resume session is need to be distributed to a 

node that hasn’t cached this session rarely happens. As 

newcome clients per second increases, the SSL session 

resumption ratio of SSLSARD and SSL_session_only 

decline slightly. This is because requests have to wait for 

a longer time to be processed and more sessions go out of 

date when the number of concurrent requests is large. 

40 45 50 55 60 65 70 75 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Newcome clients per second

S
S

L
 s

e
s
s
io

n
 r

e
u

s
e

 r
a

te

 

 

WRR

SSL_session_only

SSLSARD

 
Fig. 4. SSL session resumption ratio of the SSL reverse proxy system

B. Load Balance Degree 

We next show the SSL reverse proxy system’s load 

balance degree using the three algorithms. In our 

simulation, a fixed number of newcome clients visit the 

Web system per second. Each of these clients generates a 

number of requests as is described in Section III. B. So at 

the early stage of the simulation, the number of incoming 

requests per second increases gradually and finally 

reaches a steady state. Assuming the queues for requests 

in the SSL reverse proxies are long enough, Fig. 5 (a) and 

378

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



(b) provide the SSL reverse proxy system’s load balance 

degree during the first 15 minutes of our simulation using 

the three algorithms, with the number of newcome clients 

per second set as 55 and 70, respectively. We can observe 

that WRR’s load balance degree is worst. The amount of 

computation a request brings to a node differs greatly 

depend on whether SSL session resumption takes place. 

Since WRR doesn’t take SSL session resumption into 

consideration, load imbalance is very likely to happen. In 

SSL_session_only, requests are distributed at the 

granularity of clients, which may easily cause load 

imbalance if several clients that request frequently are 

distributed to some certain node. Due to its excellent load 

estimation algorithm and SSL-session-aware request 

distribution algorithm, SSLSARD performs much better 

than SSL_session_only in load balance degree. 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time(min)

L
o

a
d

 b
a

la
n

c
e

 d
e

g
re

e

 

 

WRR

SSL_session_only

SSLSARD

 
(a) 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time(min)

L
o

a
d

 b
a

la
n

c
e

 d
e

g
re

e

 

 

WRR

SSL_session_only

SSLSARD

 
(b) 

Fig. 5. The load balance degree of the SSL reverse proxy system during 
the first 15 minutes of our simulation. (a) 55 newcome clients per 

second. (b) 70 newcome clients per second. 

C. Throughput 

Fig. 6 shows the throughput results of the SSL reverse 

proxy system using the three algorithms. We can observe 

that WRR performs far worse than SSL_session_only and 

SSLSARD. This is because WRR doesn’t take SSL 

session resumption into consideration. On the one hand, 

requests willing to resume session tend to be distributed 

to all the nodes, so that the total load of the SSL reverse 

proxy system is high. On the other hand, not considering 

SSL session resumption can result in load imbalance. Fig. 

6 also shows that, since SSLSARD can achieve high SSL 

session resumption ratio and load balancing 

simultaneously, it can deal with more concurrent requests 

than SSL_session_only and therefore can obtain a 

relatively large throughput. When the number of 

newcome clients per second is large, the throughput of 

SSLSARD and SSL_session_only decrease because their 

SSL session resumption ratio decrease, as is described in 

Section IV. A. 

40 45 50 55 60 65 70 75 80
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Newcome clients per second

T
h

ro
u

g
h

p
u

t(
re

q
/s

)

 

 

WRR

SSL_session_only

SSLSARD

 
Fig. 6. Throughput of the SSL reverse proxy system

V. RELATED WORK 

Some early works studied on the performance of the 

SSL protocol, pointing out the huge proportion that 

public key operations take up in SSL overhead in a 

quantificational way. In [7], [23], the authors presented a 

detailed description of the anatomy of the SSL protocol 

and quantified the overhead associated with different 

components of it. From another point of view, the authors 

of [26] profiled SSL Web servers with trace-driven 

workloads, replaced individual components inside SSL 

with no-ops, then measured the observed increase in 

server throughput, and provided the upper-bound that 

may be achieved by optimizing each operation within 

SSL as well. Many previous works pointed out that the 

execution performance of SSL can be greatly increased 

by properly utilizing the SSL session resumption 

mechanism [5], [7]-[10], [26]. Ref. [9] first suggested 

defining and measuring SSL performance with a new 

metric “Percent ID Reuse” (namely the “SSL session 

resumption ratio” mentioned in this paper) for evaluation. 

In the system architecture described in Section II, A, 

there is a front-end used as request distributor. This 

architecture has much in common with a Web server 

cluster. The front-end of Web server cluster can be 

divided into two categories according to the OSI layer 

used to distribute the incoming requests, namely layer-4 

front-end and layer-7 front-end [27]. Layer-4 front-end 

379

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



selects the target server that is going to attend the request 

based on the information contained in the TCP SYN 

packet sent from the client. Then it distributes the request 

to the target server, so as to establish a TCP connection 

between the client and the target server. Layer-7 front-

end, however, must establish a TCP connection with the 

client before distributing requests. It then receives HTTP 

requests from the client and distributes them to the Web 

servers. The request distributor in this paper should be 

called “layer-SSL front-end”, since it distributes SSL 

ClientHellos to the back-end nodes. It also needs to 

establish a TCP connection with the client first before 

distributing requests, adopting the idea of layer-7 front-

end in a Web cluster. 

TCP hand-off [22] is one of the most popular request 

routing mechanisms for layer-7 request distributors [27]. 

Once the target node is selected, the request distributor 

hands off its end point of the TCP connection to the target 

node. With TCP hand-off, responses from the target node 

can go directly to the client avoiding the request 

distributor. So this mechanism has very fast response 

speed. Since SSL can run on top of TCP, request 

distribution at the granularity of SSL session can also use 

the TCP hand-off technique. 

Among request distribution strategies for Web server 

system, some are aimed at exploiting the cache locality of 

the Web servers by distributing requests that ask for a 

determined Web page to a server that is likely to have it 

in its cache module. This class of algorithms deals with 

requests that normally ask for static content in Web pages. 

The request distribution algorithm proposed in this paper 

adopted the idea of cache hitting, since the cache of SSL 

sessions on SSL reverse proxies has much in common 

with the cache of Web pages on Web servers. The LARD 

strategy [28], which was proposed by Pai et al. in 1998 

and designed for Web server cluster, is the first request 

distribution strategy that takes a request’s target content 

into account. With LARD, a request is always distributed 

to a Web server node that caches the target, unless this 

node has a load larger than a threshold. In the latter 

situation the request is distributed to the least loaded node 

instead. In 1999, Bunt et al. proposed another request 

distribution algorithm that concerns cache hitting [29]. In 

this algorithm, a controllable threshold   is set. 

Whenever a request arrives, the request distributor selects 

the most lightly-loaded Web server that has the object 

cached as the target Web server, provided that its load is 

within  % of the most lightly loaded of all the Web 

servers. Otherwise, the least loaded Web server is 

selected. Furthermore, many other works also focused on 

cache hitting, see our references [30]-[33] for details. 

There is not much previous research focusing on the 

request distribution for SSL servers or SSL reverse 

proxies. Ref. [5] refered to RR and SSL_session_only. 

Ref. [10] proposed CSSL-SL, a request distribution 

algorithm for SSL reverse proxies, which introduces a 

mechanism of broadcasting SSL session information on 

the basis of RR. Whenever an SSL reverse proxy has 

negotiated a new SSL session with a client, it broadcasts 

this session’s information to all the other nodes via LAN. 

As a result, all the nodes can cache this session and the 

SSL session resumption ratio can be increased. This 

algorithm needs LAN to broadcast SSL session 

information. Therefore the SSL reverse proxies can only 

be deployed at the same geographical location. Moreover, 

when the number of the SSL reverse proxies is large, the 

overhead of network communication is tremendous. 

   

 

  

 

 

 

 

 

 

  

 

 

 

VI. CONCLUSIONS 

In this paper, we researched on distributing requests 

among distributed SSL reverse proxies in a Web system. 

Aiming at improving the overall performance of SSL 

reverse proxy system, we proposed an SSL-session-aware 

request distribution technique for SSL reverse proxies 

called SSLSARD, which takes both load balancing and 

high SSL session resumption ratio into consideration. 

Through simulation, we compared the performance of 

SSLSARD with that of two benchmarks WRR and 

SSL_session_only, and drew the following conclusions: 1. 

Considering SSL session resumption is critical to a 

request distribution strategy for SSL reverse proxies. 2. 

Comparing with SSL_session_only, SSLSARD‘s SSL 

session resumption ratio is almost not lower, while its 

load balance degree is much better, due to its excellent 

load estimation algorithm and request distribution 

algorithm. 3. SSLSARD can deal with more concurrent 

requests than SSL_session_only and it can achieve a 

larger throughput. 

380

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications

Among request distribution strategies, the calculation 

methods of the nodes’ load can be divided into two 

categories. Methods of the first category need to monitor 

the nodes’ state in real time, measuring the nodes’ load as 

the occupation situation of the nodes’ one or multiple 

hardware resources (such as CPU, memory, disk, etc.) or 

network resources [34]-[37]. However, a mass of works 

disagreed with monitoring the nodes’ state. They held the 

view that it is difficult to monitor the nodes’ state [38], 

[39], or the nodes’ state information is of little use in load 

balancing [29], or monitoring the nodes’ state may reduce 

the system’s performance [40]. In the second category of 

load calculation methods, the request distributor obtains 

the nodes’ load information by estimating, rather than by 

monitoring the nodes’ state. The basis of the estimation is 

diversified. For example, it can be the number of active 

TCP connections on each node [39], the data throughput 

of each node [38], the HTTP response time and network 

delay of each node [41], etc. The idea of not monitoring 

the nodes’ state makes this category of methods simple 

and fast. So we adopted this idea in designing our load 

estimation algorithm. In previous works, load calculation 

methods seldom predict the nodes’ load between load 

information updating intervals in real-time. This idea of 

real-time predicting was proposed in [34]. We adopted

this idea in our estimation algorithm as well.



REFERENCES 

[1] A. Freier, P. Karlton, and P. Kocher, RFC 6101: The 

Secure Sockets Layer (SSL) Protocol Version 3.0, 2011. 

[2] T. Dierks and C. Allen, RFC 2246: The Transport Layer 

Security (TLS) Protocol Version 1.0, 1999. 

[3] T. Dierks and E. Rescorla, RFC 4346: The Transport 

Layer Security (TLS) Protocol Version 1.1, 2006. 

[4] T. Dierks and E. Rescorla, RFC 5246: The Transport 

Layer Security (TLS) Protocol Version 1.2, 2008. 

[5] J. H. Kim, G. S. Choi, and C. R. Das, “An SSL back-end 

forwarding scheme in cluster-based web servers,” IEEE 

Trans. on Parallel and Distributed Systems, vol. 18, no. 7, 

pp. 946-957, July 2007. 

[6] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. 

Schinzel, and E. Tews, “Revisiting SSL/TLS 

implementations: New bleichenbacher side channels and 

attacks,” in Proc. 23rd USENIX Security Symposium, San 

Diego, 2014, pp. 733-748. 

[7] G. Apostolopoulos, V. Peris, and D. Saha, “Transport 

layer security: how much does it really cost?” in Proc. 

INFOCOM'99. Eighteenth Annual Joint Conference of the 

IEEE Computer and Communications Societies, New 

York, 1999, pp. 717-725. 

[8] R. Mraz, “Secure blue: an architecture for a scalable, 

reliable high volume SSL internet server,” in Proc. 17th 

Annual Computer Security Applications Conference, New 

Orleans, 2001, pp. 391-398. 

[9] R. Mraz, K. Witting, and P. Dantzig, “Using SSL session 

ID reuse for characterization of scalable secure web 

servers,” Technical Report RC 22323 (Revised May 5, 

2002), IBM Research Division, Yorktown Heights, NY, 

2002. 

[10] R. Hatsugai and T. Saito, “Load-balancing SSL cluster 

using session migration,” in Proc. 21st International 

Conference on Advanced Information Networking and 

Applications, Niagara Falls, 2007, pp. 62-67. 

[11] M. E. Kounavis, X. Kang, K. Grewal, M. Eszenyi, S. 

Gueron, and D. Durham, “Encrypting the internet,” ACM 

SIGCOMM Computer Communication Review, vol. 40, no. 

4, pp. 135-146, October 2010. 

[12] Netcraft. (October 2015). Web Server Survey. [Online]. 

Available: 

http://news.netcraft.com/archives/category/web-server-

survey/ 

[13] Netcraft. (April 2014). Half a Million Widely Trusted 

Websites Vulnerable to Heartbleed Bug. [Online]. 

Available: 

http://news.netcraft.com/archives/2014/04/08/half-a-

million-widely-trusted-websites-vulnerable-to-heartbleed-

bug.html 

[14] J. Vehent. (January 2014). SSL/TLS analysis of the 

Internet's top 1,000,000 websites. [Online]. Available: 

https://jve.linuxwall.info/blog/index.php?post/TLS_Surve

y 

[15] P. Bilski and W. Winiecki, “Multi-core implementation of 

the symmetric cryptography algorithms in the 

measurement system,” Measurement, vol. 43, no. 8, pp. 

1049-1060, October 2010. 

[16] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. 

Tischhauser, “ALE: AES-Based lightweight authenticated 

encryption,” in Fast Software Encryption, S. Moriai, Ed. 

Berlin Heidelberg: Springer, 2014, pp. 447-466. 

[17] Y. Song, K. Beznosov, and V. Leung, “Multiple-channel 

security architecture and its implementation over SSL,” 

EURASIP Journal on Wireless Communications and 

Networking, vol. 2006, no. 2, pp. 1-14, April 2006. 

[18] N. Lim, S. Majumdar, and V. Srivastava, “Engineering 

SSL-based systems for enhancing system performance,” 

in Proc. 2nd ACM/SPEC International Conference on 

Performance Engineering, Karlsruhe, 2011, pp. 469-474. 

[19] NGINX. (October 2015). SSL-Offloader. [Online]. 

Available: http://wiki.nginx.org/SSL-Offloader 

[20] BlueCoat. (October 2015). Reverse Proxy with SSL - 

ProxySG Technical Brief. [Online]. Available: 

https://bto.bluecoat.com/sites/ 

default/files/tech\_briefs/Reverse\_Proxy\_with\_SSL.b.p

df 

[21] Ericom. (October 2015). Ericom Secure Gateway. 

[Online]. Available: 

http://www.ericom.com/securegateway.asp 

[22] G. Hunt, E. Nahum, and J. Tracey, “Enabling content-

based load distribution for scalable services,” Technical 

Report, IBM TJ Watson Research Center, 1997. 

[23] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy 

and performance of SSL processing,” in Proc. IEEE 

International Symposium on Performance Analysis of 

Systems and Software, Austin, 2005, pp. 197-206. 

[24] A. Oke and R. Bunt. “Hierarchical workload 

characterization for a busy web server,” in Computer 

Performance Evaluation: Modelling Techniques and 

Tools, T. Field, P. G. Harrison, J. Bradley, and U. Harder, 

Ed. Berlin Heidelberg: Springer, 2002, pp. 309-328. 

[25] E. Casalicchio, V. Cardellini, and M. Colajanni, “Content-

aware dispatching algorithms for cluster-based web 

servers,” Cluster Computing, vol. 5, no. 1, pp. 65-74, 

January 2002. 

[26] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance 

analysis of TLS web servers,” ACM Transactions on 

Computer Systems, vol. 24, no. 1, pp. 39-69, February 

2006. 

[27] K. Gilly, C. Juiz, and R. Puigjaner, “An up-to-date survey 

in web load balancing,” World Wide Web, vol. 14, no. 2, 

pp. 105-131, March 2011. 

[28] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, 

and W. Zwaenepoel, et al., “Locality-aware request 

distribution in cluster-based network servers,” in Proc. 

Eighth International Conference on Architectural Support 

for Programm, San Jose, 1998, pp. 205-216. 

[29] B. Richard and L. Derek, “Achieving load balance and 

effective caching in clustered web servers,” in Proc. 

Fourth International Web Caching Workshop, San Diego, 

1999, pp. 159-169. 

[30] L. Cherkasova and M. Karlsson, “Scalable web server 

cluster design with workload-aware request distribution 

strategy WARD,” in Proc. Third International Workshop 

on Advanced Issues of E-Commerce and Web-Based 

Information Systems, San Juan, 2001, pp. 212-221. 

[31] Z. Xu, J. Han, and L. Bhuyan, “Scalable and decentralized 

content-aware dispatching in web clusters,” in Proc. IEEE 

International Performance, Computing, and 

381

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications



Communications Conference, New Orleans, 2007, pp. 

202-209. 

[32] J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias, 

“Design alternatives for scalable Web server 

accelerators,” in Proc. IEEE International Symposium on 

Performance Analysis of Systems and Software, Austin, 

2000, pp. 184-192. 

[33] E. V. Carrera and R. Bianchini, “Efficiency vs. portability 

in cluster-based network servers,” in Proc. Eighth ACM 

SIGPLAN Symposium on Principles and Practices of 

Parallel Programming, Snowbird, 2001, pp. 113-122. 

[34] J. Jiang, H. Deng, and X. Liu, “A predictive dynamic load 

balancing algorithm with service differentiation,” in Proc. 

15th IEEE International Conference on Communication 

Technology, Guilin, 2013, pp. 372-377. 

[35] M. Andreolini, M. Colajanni, and R. Morselli, 

“Performance study of dispatching algorithms in multi-

tier web architectures,” ACM SIGMETRICS Performance 

Evaluation Review, vol. 30, no. 2, pp. 10-20, September 

2002. 

[36] X. Zhang, M. Barrientos, J. B. Chen, and M. Seltzer. 

“HACC: An architecture for cluster-based web servers,” 

in Proc. 3rd Conference on USENIX Windows NT 

Symposium, Seattle, 1999, pp. 155-164. 

[37] X. Qin, H. Jiang, Y. Zhu, and D. R. Swanson, “Dynamic 

load balancing for I/O-and memory-intensive workload in 

clusters using a feedback control mechanism,” in Euro-

Par 2003 Parallel Processing, H. Kosch, L. Böszörményi, 

and H. Hellwagner, Ed. Berlin Heidelberg: Springer, 2003, 

pp. 224-229. 

[38] K. Dutta, A. Datta, D. VanderMeer, H. Thomas, and K. 

Ramamritham, “ReDAL: An efficient and practical 

request distribution technique for application server 

clusters,” IEEE Trans. on Parallel and Distributed 

Systems, vol. 18, no. 11, pp. 1516-1528, November 2007. 

[39] V. Ungureanu, B. Melamed, and M. Katehakis, “Effective 

load balancing for cluster-based servers employing job 

preemption,” Performance Evaluation, vol. 65, no. 8, pp. 

606-622, July 2008. 

[40] E. Casalicchio and M. Colajanni, “A client-aware 

dispatching algorithm for web clusters providing multiple 

services,” in Proc. 10th International Conference on 

World Wide Web, Hong Kong, 2001, pp. 535-544. 

[41] S. Kontogiannis and A. Karakos, “ALBL: An adaptive 

load balancing algorithm for distributed web systems,” 

International Journal of Communication Networks and 

Distributed Systems, vol. 13, no. 2, 2014, pp. 144-168. 

 

Hai-Tao Dong was born in Heilongjiang 

Province, China, in 1988. He received 

the B.S. degree in communication 

engineering from the University of 

Electronic Science and Technology of 

China (UESTC), in 2011. He is currently 

pursuing the Ph.D. degree in signal and 

information processing with the Institute 

of Acoustics, Chinese Academy of Sciences (IACAS). His 

research interests include network security and broadband 

network communication. 

 

Lei Song was born in Anhui Province, 

China, in 1986. He received the B.S. 

degree from the University of Science 

and Technology of China (USTC), in 

2008 and the Ph.D. degree in signal and 

information processing from the IACAS, 

in 2013. He is currently Research 

Associate in National Network New 

Media Engineering Research Center, IACAS. His research 

interests include broadband network communication and 

network new media. 

 

Jin-Lin Wang was born in Beijing, 

China, in 1964. He received the B.S. 

degree in mathematics from the USTC, 

in 1986 and the M.S. degree in acoustics 

from the IACAS, in 1989. He is 

currently a research professor of IACAS, 

and the director of National Network 

New Media Engineering Research 

Center. His current research interests include structure and new 

service of broadband network, digital media service, and 

network architecture, etc.. 

 

Jun Yang was born in Anhui Province, 

China, in 1968. He received the B.S. 

degree and the M.S. degree in 

engineering from the Harbin Engineering 

University, in 1990 and 1993, 

respectively, and the Ph.D. degree in 

science from the Department of 

Electronic Science and Engineering of 

Nanjing University, in 1996. He is currently a research 

professor of IACAS, and the director of Key Laboratory of 

Noise and Vibration Research. His research interests include 

digital signal processing, array signal processing, and acoustic 

signal processing, etc. 
 

382

Journal of Communications Vol. 11, No. 4, April 2016

©2016 Journal of Communications




