
A Novel Event Detection Framework for Wireless Sensor 

and Actor Networks 
 

Haoyun Wang
1,2

, Yuhan Fei
1
, Jiaojiao Liu

1
, Yingjun Xiong

1,2
, Shougang Ren

1,2
, and Huanliang Xu

1,2

1. 
College of Information Science and Technology, Nanjing Agricultural University Nanjing 210095, China 

2. 
Collaborative Innovation Center of Meat Production and Processing 

Email: {wanghy, 2014114004, 2012114003, xyj, rensg, huanliangxu}@njau.edu.cn 
 

 

Abstract—Wireless Sensor and Actor Network (WSAN) can 

observe the physical world using event detection methods by 

sensor nodes and implement appropriate operation by actor 

nodes. Compared with Wireless Sensor Network (WSN), 

WSAN set high requests for real-time, collaboration, mobility, 

etc. Therefore, the event detection methods applied to WSN 

cannot be adopted for WSAN. In this paper, we present a three-

layer Cooperative Event Detection Framework (3-CEDF) for 

WSAN. Firstly, sensor nodes cooperate with each other to 

affirm the occurrence of events via voting mechanism. Then, 

cluster-head nodes use a modified K-means algorithm and a 

proposed type matching mechanism to detect the event types 

with the boundary information of event data. Finally, actor 

nodes get the priority of events processing using a modified k-

nearest neighbor algorithm with the slope similarity measure. 

The performances of effectiveness, real-time, mobility and 

communication traffic for 3-CEDF are obtained through 

analysis and simulations, when 3-CEDF is compared to the 

centralized event detection method adopted for WSN. 

Index Terms—Wireless sensor and actor network, event 

detection, cooperative algorithm, type matching, similarity 

measure 

 

I. INTRODUCTION 

Wireless Sensor and Actor Network (WSAN) [1] 

derives from Wireless Sensor Network (WSN) [2]. The 

concept of WSAN, proposed by I. F. Akyildiz [3] in 2004, 

has caused the extensive attention of scholars. WSAN 

consists of sensor nodes and actor nodes. We can deploy 

sensor nodes massively in the monitored area. In WSAN, 

sensor nodes detect environmental events and sent event 

data to corresponding actor nodes, then actor nodes can 

respond quickly and take real-time control of the 

surrounding environment. WSAN can observe the 

physical world, process data, make decision and 

implement appropriate operation. Therefore, WSAN has 

been used more widely in many applications [4], such as 

battlefield surveillance system, building microclimate 

control system, nuclear biochemical attack detection 
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system, home automation system and environmental 

testing system, etc. 

Compared with event detection for WSN, WSAN sets 

higher requests for real-time [5], collaboration [6], 

mobility [7], etc. To make sure that actor nodes can take 

right action, the event data reported from sensor nodes to 

actor nodes must be valid. Therefore, the end-to-end 

delay between sensor nodes and actor nodes needs to be 

shorter. Besides, the algorithms and protocols in WSAN 

had better to be collaborative due to the distributed 

deployment of nodes. In particular, actor nodes in WSAN 

are mobile, for example, the robots in the distributed 

application or the soldiers equipped with digital 

transceivers on the battlefield. Moreover, the energy 

consumption of nodes need to be reduced and the lifetime 

of WSAN can be prolonged [8].  

When events happening, sensor nodes detect them 

immediately in WSAN and report them to actor nodes. 

As soon as receiving the event data, actor nodes take 

actions to control the events. Because the architecture of 

WSAN is different from WSN, we cannot apply directly 

the existing event detection algorithms for WSN to 

WSAN. In this paper, We proposes a three-layer 

Cooperative Event Detection Framework (3-CEDF) for 

WSAN. Firstly, sensor nodes cooperate to detect events 

and report the event data to cluster-head nodes. Secondly,, 

cluster-head nodes use a modified K-means algorithm [9] 

to classify the event data received with the boundary 

information and detect the event type by matching the 

predefined event model and call corresponding actor 

nodes to move toward to the event area. Finally, actor 

nodes get the priority of events processing and take 

appropriate actions. Considering the features of WSAN, 

3-CEDF meets the requirements of effectiveness, real-

time and energy efficiency.  

The current researches on event detection algorithms 

mostly focus on WSN applications. The cooperative 

detection algorithms applied in WSAN are not presented 

yet. This paper analyzes the performance of effectiveness, 

real-time, mobility and communication traffic for 3-

CEDF, as well as the influence of different key 

parameters to its performance compare with the proposed 

detection methods for WSN. The experiment results 

illustrate the proposed algorithm show a better 

performance compare with traditional event detection 

algorithm for WSN. 

The rest of the paper is organized as follows. In 

Section 2 we talk about related work, In Section 3 we 
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propose the concepts and definitions related to 3-CEDF. 

We describe the cooperative event detection algorithm 

implemented by adjacent sensor nodes in Section 4, and 

the detection algorithm executed by sensor nodes and 

cluster-head nodes in Section 5. In Section 6 we provide 

the algorithm performed collaboratively by cluster-head 

nodes and actor nodes. In Section 7 we analyze the 

performance of the proposed algorithms. Section 8 shows 

the simulation results. Finally, we concludes this paper 

and discusses the future of work in Section 9. 

II. RELATED WORK 

Although WSN has been deployed in many 

applications [13], more and more applications require the 

combination of actor nodes and sensor nodes. In WSAN, 

sensor nodes collect information from physical 

environment, and actor nodes take actions to change the 

environment. Cooperation is an important characteristic 

of WSAN [14]. Different from WSN in which sink nodes 

take charge of data collection and mining, WSAN needs 

cooperation mechanism between sensor nodes and actor 

nodes to realize the performance goals of applications. 

The coordination between sensors and actors can 

establish paths to transmit data and help actors to find 

related positions or precise locations of events. After 

receiving event data, actor nodes need to cooperate with 

each other to make correct decisions and finish related 

tasks [15]. In this paper, 3-CEDF utilizes three-layer 

cooperation relations in WSAN to make normal sensor 

nodes, cluster-head nodes and actor nodes work together, 

which reducing energy consumption and prolonging 

working life of WSAN. At the same time, all kinds of 

nodes use their own sliding windows [16] to ensure the 

real-time requirement of event detection for WSAN. 

At present, the event detection method for WSN can be 

classified into three types: detection methods based on 

threshold [17], methods based on spatial-temporal model 

[18] and methods based on pattern [19]. If sensor 

readings are more than default threshold, detection 

methods based on threshold will determine the 

occurrence of events. Detection methods based on 

spatial-temporal model use the correlation between time 

and space of sensor reading to make the prediction of 

event happening. Methods based on pattern can recognize 

what happens by model matching. The first two kinds of 

event detection methods have certain limitations. 

Detection methods based on threshold need long-time 

sample series to train machine-learning algorithms and 

obtain optimized threshold. However, this method cannot 

meet the real-time requirement of event detection for 

WSAN. Detection methods based on spatial-temporal 

model need to build correct prediction model and the 

parameters of prediction model are difficult to adjust 

according to the specific WSAN application field. 

Different with WSAN, WSAN contain actor nodes, 

which execute predefined control strategies according to 

the types of detected events. Therefore, the detection 

method using pattern matching can be adopted for 

WSAN. 

In the event detection algorithms for WSN, sensor 

nodes need to proceed data fusion [20] several times 

when uploading perceived data. If some sensor nodes are 

failed or artificial damaged, their false readings will 

influence the outcome of data fusion and cause wrong 

decisions. In [21], an event detection method was 

presented which could get event eigenvalues through 

analyzing principal components of the data got by central 

nodes, but its computational complexity is high. In [22], 

detection vectors were injected actively to make cross 

validation with original data. However, that method could 

change the environment of event area. All above methods 

detect events in centralized manner. In [23], a distributed 

detection method based on local voting was proposed, 

which using majority rule to filter out error readings of 

sensor nodes and to ensure data accuracy. The paper also 

analyzed the time-space relativity of sensor readings 

obtained by sensor nodes in event region, nodes on event 

boundary and error nodes respectively. In this paper, 3-

CEDF uses local voting mechanism to send sensor 

readings of center region to avoid the interference of false 

sensor readings, and this mechanism makes actor nodes 

control the development of happening events more 

effectively.  

Sensor readings in WSAN form into time series. The 

efficiency and accuracy of time series data mining 

depend directly on the representation methods of time 

series. At present, main representations of time series 

involve DWT (Discrete Wavelet Transform) [24], PAA, 

PLA (Piecewise Linear Approximation) [25] and SAX 

(Symbolic Aggregate Approximation) [26]. Among them, 

PAA uses a fixed-width sliding window to obtain the 

subsequences and expresses the data in sliding window 

by mean values. PAA has less computational complexity 

and can be implemented on the resource-constrained 

sensor nodes. Besides, it can reduce the dimension of 

time series effectively, reserve the partial features of 

original data, and advantage the follow-up steps of event 

detection. In [27], time series clustering algorithm based 

on boundary information was presented. On that basis, 

upper bound and lower bound of time sequences were 

taken into consideration in [28]. By calculating the 

boundary of time series, more feature information and 

maximum fluctuation range of the subsequences are 

added in addition to mean values recorded by PAA. In 

[29], angle information of time series were used to 

calculate angle similarity distance, which can overcome 

the shortcomings of less robustness and unclear physical 

conception. However, it has a large amount of calculation.  

In this paper, the above algorithm is simplified to 

calculate slope similarity distance between multiple time 

series received by actor nodes to analyze the development 

trend of happening events.  

The performances of effectiveness, real-time, mobility 

and communication traffic for 3-CEDF are obtained 

through analysis and simulations, when 3-CEDF is 

compared to the traditional event detection method 

adopted for WSN. Algorithm show a better performance 
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compare with traditional event detection algorithm for 

WSN.
 

III. CONCEPTS AND DEFINITIONS  

This paper proposes a three-layer Cooperative Event 

Detection Framework (3-CEDF) for WSAN. Firstly, 

sensor nodes cooperate to detect events. Once the sensor 

readings exceed the predefined threshold, sensor nodes 

ask their neighbors to vote and get the credit degree 

according to the voting results. If the degree value is 

more than 0.5, sensor nodes report the event data to 

cluster-head nodes. Secondly, cluster-head nodes use a 

modified K-means algorithm [9] to classify the event data 

received with the boundary information and get the 

probability distribution using statistical method. Then, 

cluster-head nodes detect the event type by matching the 

predefined event model and call corresponding actor 

nodes to move toward to the event area. Finally, actor 

nodes get the priority of events processing using a 

modified k-nearest neighbor algorithm (KNN) [10] with 

the slope information of event data. The logical diagram 

for 3-CEDF displayed in Fig. 1. 

 
Fig. 1. The logical diagram for 3-CEDF 

Assume that the monitored area is a two-dimensional 

space denoted by R. In R, there are sn  sensor nodes 

, {1,..., }Si i ns   and an  actor nodes , {1,..., }aj j na  , which have ad  

types. Every sensor node has sd  sensors and each type of 

actor nodes deals with different event. When the 

clustering of sensor nodes becomes steady, there are cn  

clusters in R and each normal sensor node belongs to 

respective cluster. Sensor nodes can send sensory data 

through corresponding cluster-head nodes , {1,..., }cv v nc   to 

different actor nodes. 

A. Multidimensional Vector Time Sequence 

The attribute values of R change dynamically. Several 

sensors on sensor nodes sample the attribute values 

periodically. At time t, the attribute vector obtained by 

sensor node is  can be defined as 

1 2( ) ( ( ), ( ),..., ( ))s

i i i i

d

s s s sm t x t x t x t . The multidimensional vector 

time sequence constituted by attribute vectors sampled 

from time 
1t  to time jt  can be denoted as 

1 1 2( , ) { ( ), ( ),..., ( )}
i i i is j s s s jt t m t m t m tm . 

In order to detect events and their types from complex 

multidimensional vector time sequences, we divide the 

sequences into several subsequences, which can be used 

to implement further data mining, such as clustering, 

classifying, abnormity detection, etc. In this paper, sensor 

nodes can use a method similar to Piecewise Aggregate 

Approximate (PAA) [11] to split received time sequences 

with equal length, and the partitioning granularity is 
sg . 

Bigger the 
sg  is, lower the sensitivity of subsequences is. 

However, if 
sg  is too small, data features will be easy to 

lose and energy consumption of data mining algorithms 

will increase. 

Considering the real-time requirement for WSAN 

applications, three kinds of sliding windows are used on 

sensor nodes, cluster-head nodes and actor nodes to 

support on-line detection in this paper, of which the 

window sizes are , ,s c aW W W  respectively. Longer the size 

of sliding window is, bigger the proportion of historical 

data in the sliding window is, and less sensitive to the 

change of latest data is. Nevertheless, if the size is too 

small, data features in sliding windows will be ignored 

easily, and energy consumption of maintaining sliding 

windows on nodes will be increased. So configuring 
sg  

and , ,s c aW W W  correctly will affect the requirement of 

real-time, accuracy and energy consumption for event 

detection algorithms for WSAN. These parameters should 

be adjusted to meet specific application requirements in 

practice. 

B. Mean Vector Sequence 

At time 
sWt , sensor node 

is  uses the sliding window 

1,
sWt t 

  , of which window size is sW and step size is 1, to 

get the multidimensional vector time sequence 

1 1 2( , ) { ( ), ( ),..., ( )}
i s i i i ss W s s s Wt t m t m t m tm , in which 

1 2

, {1,2,..., }( ) ( ( ), ( ),..., ( ))s

i s i i i

d

s j j W s j s j jsm t x t x t x t  . According 

to sg , 1( , )
i ss Wt tm  can be divided into s  isometric 

subsequences, and s s sW g  . Based on PAA, the mean 

value of each subsequence will be calculated and the 

mean vector sequence ,1 ,2 ,( ) { ( ), ( ),..., ( )}
i s i s i s i s ss W s W s W s Wt p t p t p tp  

will be obtained. The thj  vector , ( )
i ss j Wp t  in ( )

i ss Wtp  can 

be expressed as follow. 

,
( 1) 1

( ) ( )
s

i s i

s

g j
d d

s j W s v s
v g j

p t m t g
  

       (1) 

In Eq. (1), ( )
i

d

s vm t  stands for the thd  dimension 

element in ( )
is vm t , , ( )

i s

d

s j Wp t  indicates the thd  dimension 

element in , ( )
i ss j Wp t , and 

1

, , , ,( ) ( ( ),..., ( ),..., ( ))s

i s i s i s si

dd

s j W s j W s j W Ws jp t p t p t p t . 

3

Journal of Communications Vol. 11, No. 1, January 2016

©2016 Journal of Communications

app:ds:probability
app:ds:distribution
app:ds:sequence
app:lj:%E7%81%B5%E6%95%8F%E6%80%A7?ljtype=blng&ljblngcont=0&ljtran=sensitivity
app:ds:sequence
app:ds:isometric
app:ds:subsequence
app:ds:subsequence


C. Boundary Vector Sequence 

When some event happen in the monitored area R, 

cluster-head node 
ic  will receive real-time boundary 

vector sequence 
isq  from sensor node 

is , and judge the 

event type from it. Firstly, sensor node 
is  uses sliding 

window 1,
sWt t 

   to obtain multidimensional vector time 

sequence 1( , )
i ss Wt tm  at time 

sWt . Then, 
ism  is split into 

s  isometric subsequences, of which the upper bounds 

and lower bounds can be calculated to get the boundary 

vector sequence 
,1 ,2 ,( ) { ( ), ( ),..., ( )}

i s i s i s i s ss W s W s W s Wt q t q t q tq . 

The calculation method of the 
thj  vector 

, ( )
i ss j Wq t  in 

( )
i ss Wtq  is as follows. 

, , ,( ) ( ) ( )
i s i s i s

d d d

s j W s j W s j Wq t u t l t   i         (2) 

 , ( 1) 1 ( 1) 2( ) max ( ), ( ),..., ( )
i s i s i s i s

d d d d

s j W s g j s g j s g ju t m t m t m t        (3) 

 , ( 1) 1 ( 1) 2( ) min ( ), ( ),..., ( )
i s i s i s i s

d d d d

s j W s g j s g j s g jl t m t m t m t       (4) 

In the above formulas, , ( )
i s

d

s j Wq t  stands for the thd  

dimension element in , ( )
i ss j Wq t , and 

1

, , , ,( ) ( ( ),..., ( ),..., ( ))s

i s i s i s si

dd

s j W s j W s j W Ws jq t q t q t q t
. , ( )

i s

d

s j Wu t  

and , ( )
i s

d

s j Wl t  indicate the upper bound and lower bound 

of the subsequence  ( 1) 1 ( 1) 2( ), ( ),..., ( )
i s i s i s

d d d

s g j s g j s g jm t m t m t     

respectively. 

D. Slope Vector Sequence 

Cluster-head nodes choose appropriate actor node to 

control the event development when detecting event type. 

An actor node can receive many scheduling requests from 

different cluster-head nodes. Therefore, actor nodes need 

to do similarity detection on the boundary vector 

sequences received from cluster-head nodes to ensure the 

execution priority of control policies. When actor node 

ia
 
receives boundary vector sequence ( )

ic tq
 
from 

cluster-head node 
ic , it can calculate corresponding slope 

vector sequence ,1 ,2 , 1( ) { ( ), ( ),..., ( )}
i i i i sc c c ct r t r t r t r . The 

thj
 
vector ,ic jr  in ( )

ic tr
 
can be expressed as (5).  

, 1 ,

, 1 , , 1 ,

, 1 , , 1 ,

,

,

( ( ( )) ( ( ))) ,

( ( )) ( ( )) ( ( )) ( ( ));

0, ( ( )) ( ( )) ( ( )) ( ( ));
( )

0, (

i i

i i i i

i i i i

i

i

d d

c j c j s

d d d d

c j c j c j c j

d d d d

c j c j c j c jd

c j

c

real q t real q t g

real q t real q t imag q t imag q t

real q t real q t imag q t imag q t
r t

real q



 

 



   

   


 1 , , 1 ,

, 1 ,

, 1 , , 1 ,

( )) ( ( )) ( ( )) ( ( ));

( ( ( )) ( ( ))) ,

( ( )) ( ( )) ( ( )) ( ( )).

i i i

i i

i i i i

d d d d

j c j c j c j

d d

c j c j s

d d d d

c j c j c j c j

t real q t imag q t imag q t

imag q t imag q t g

real q t real q t imag q t imag q t

 



 








  




   

                           (5) 

 

In the above formulas, , ( )
i

d

c jr t
 
stands for the thd

 
dimension element in , ( )

ic jr t , and 1

, , , ,( ) ( ( ),..., ( ),..., ( ))s

i i i i

dd

c j c j c j c jr t r t r t r t . 

( )Real   indicates the real part of complex number, 

( )imag   stands for the imaginary part of complex number, 

and “ ” stands for the intersection of two sets. 

IV. COOPERATIVE EVENT DETECTION ALGORITHM 

BETWEEN ADJACENT SENSORS 

This paper presents a new three-layer cooperative 

event detection framework for WSAN. Firstly, sensor 

nodes cooperate with each other to detect events. Once 

sensor nodes find anomalous readings, they will ask 

surrounding sensor nodes to vote and calculate the 

credibility degrees of happening events according to 

voting results. When confirming events happen, sensor 

nodes will send event data to cluster-head nodes to detect 

the types of events.  

At time 
sWt , sensor node is  obtains

 1( , )
i ss Wt tm  from 

sensor readings in the sliding window. By Eq. (1), sensor 

node 
is  transforms 1( , )

i ss Wt tm  to corresponding mean 

vector sequence ( )
i ss Wtp . With the moving of sliding 

window, sensor node is  can get ( )
i ss Wtp  and 1( )

i ss Wt p  

respectively at two adjacent time points. When the 

similarity degree between the two sequences is over 

threshold 
s , sensor node 

is  will estimate that some 

event is happening. The similarity of two mean vector 
sequences can be calculated as follows.

 

1 1 , 1 ,
1 1

1
( ( ), ( )) ( ) ( ) ( ) ( )

s s

i i s i s i s i s i s i s

d
v v

s s W s W s W s W s j W s j W
j vs s

D t t t t p t p t
d




  

 

   


p p p p    (6)
 

When sensor node is  finds some anomaly, it will ask 

its neighbor nodes to vote. If neighbor node js  also 

deems there is an anomaly, js  will returns 1 to affirm. 

Otherwise, js  will return 0 to deny. After sensor node is  

receives vote results from all the neighbor nodes, it will 

confirm some event is truly happening if support rate 
isv  

is over v . The value of v  is usually set over 0.5. If 
isv  

is just over zero, sensor readings of node is  indicate an 

isolated event which is caused by various errors and 

interferences. Moreover, if 
isv  equals to 0.5, sensor node 

is  is probably at the edge of event area, and the data 

obtained by is  cannot reflect the real state of happening 

event. 

If sensor node is  detects some anomaly at time jt , it 

will confirm the occurrence of some event after receiving 

voting results from all the neighbor nodes at time vt . 

Then, node is  will transfers event-related boundary 
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vector sequence ( )
is vtq  to corresponding cluster-head 

node ic . Table I provides the steps of Cooperative Event 

Detection Algorithm Between Adjacent Sensors 
(CEDBAS). 

TABLE I: PROCEDURES OF CEDBAS 

Let sW  be the sliding window of sensor node is ; 

Let 1( , )
s sW j W jt t m

 
and

 
1( , )

s sW j W jt t m
 
be the samples at time 1jt   and time jt ;  

Let 1( )
is jt p

 
and ( )

is jtp  be the mean vector sequences calculated from 1( , )
s sW j W jt t m

 
and 1( , )

s sW j W jt t m ; 

Let ( )
is vtq

 
be the boundary vector sequence calculated from 1( , )

s sW v W vt t m  at time vt ; 

1: if ( 1( ) ( )
i is j s j st t  p p ) then 

2:      ask neighbor nodes to vote;  

3:      when a new message arrives 

4:     if ( is  is asked to vote) then 

5:     send 1 to the neighbor node; 

6:             end if 

7:    when all votes arrive at time vt  

8:         if (
is vv  ) then 

9:    report ( )
is vtq

 
to cluster head ic ; 

10:            end if  

   11: elseif ( 1( ) ( )
i is j s j st t  p p ) then 

12:    when a new message arrives 

13:     if ( is  is asked to vote) then 

14:     send 0 to the neighbor node; 

15:            end if 

16:            end if  

 

V. COOPERATIVE EVENT DETECTION ALGORITHM 

BETWEEN SENSORS AND CLUSTER-HEADS 

When sensor node is  finds some event, node is  will 

cooperate with cluster-head node ic  to detect the event 

type and choose appropriate actor node to handle the 

event. Cluster-head node ic  receives event-related 

boundary vector sequences from several normal sensor 

nodes using the sliding window of which window size is 

cW  and step size is sW . The data from the sliding 

window will be analyzed using modified K-means 

clustering algorithm. 

For clustering analysis, cluster-head node needs to 

calculate the similarity between two boundary vector 

sequences. Cluster-head node ic  receives boundary 

vector sequence , {1,2,..., }( )
i cs m m Wt q  and , {1,2,..., }( )

j cs n n Wt q  

from sensor node is  and js  separately during the time 

interval 1,
cWt t 

  . The similarity of boundary vector 

sequences can be calculated by Eq. (7). 

Two boundary vector sequences can be merged into 

one independent boundary vector sequence if the 

similarity is high. The combining method of boundary 

vector sequences is shown as Eq. (8). 

, ,

1 1 , ,

, , ,

( ( ), ( )) ( ) ( )

( ( )) ( ( ))1
,

( ( )) ( ( ))

( ( )) ( ( )) ( ( )

                             

i j i j

s s
j j

i i

i j i

s s m s n s m s n

v v
d

s l n s l n

v v
l vs s s l m s l m

v v v

s l m s l n s l m

D t t t t

real q t imag q t

d real q t imag q t

real q t real q t imag q t



  

 


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Cluster-head node ic  uses modified K-means 

algorithm to cluster the boundary vector sequences 

received by sliding window at time t  according to the 

order of reported events. The value of K in the clustering 

algorithm equals to the types of actor nodes. The 

algorithm utilizes Eq. (7) to calculate the similarity 

between new coming sequence and the center point 

, , {1,2,..., }i ac j j dM  of existing classification and uses Eq. (8) 

to update the classification center points. Cluster-head 

node ic  can get ad  classifications , {1,2,..., }aj j dC   after 

clustering and each classification corresponds to a set of 

boundary vector sequences received from different sensor 

nodes. Each classification has its own center point 

, , {1,2,..., } , ,1 , ,2 , ,( ) { ( ), ( ),..., ( )}
i a i i i sc j j d c j c j c jt M t M t M t M  and 

, , ( )
ic j lM t  is the thl  vector of , ( )

ic j tM . 

Based on center points of classification, cluster-head 

node can do event type matching. There are ad  kinds of 

actor nodes in R, and each kind of actor nodes can only 

process corresponding kind of events. After clustering, 

cluster-head node ic  will match each center point 

, , {1,2,..., }( )
i ac j j d tM  with ad  kinds of probability 

distribution functions of event attributes , {1,2,..., }( )
av v dF x , 

to make sure of the event type which best matches with 

the classification center points . The matching method is 

shown as Eq. (9). 

, , , , ,
1 1

1
( ( ), ) ( ( ( ))) ( ( ( )))

s s

i i i

d
d d

c c j v v c j l v c j l
l ds s

D t F F real M t F imag M t
d



  

 


M   (9) 

In Eq. (9), ( )d

vF x  stands for the probability 

distribution function of the thd  dimension attribute. 

If 
 

, ,
1,2,...,

( ( ), ) max { ( ( ), )}
i i

a

c c j n c c j v
v d

D t F D t F


M M , the 

event type of classification of which the center point is 

, ( )
ic j tM  is n, and sensor nodes which send this type of 

events can be confirmed. Meanwhile, there exists a 

situation that the probability distribution function of one 

event type may matches several classification center 

points , , ( )
ic l l j tM , which can be merged into , ( )

ic n tM  by 

Eq. (8). After combination, node ic  will report new 

classification center point , ( )
ic n tM , which matches the 

event type n, to the actor node na  to process the event. 

Table II shows the steps of cooperative event detection 

algorithm between sensor nodes and cluster-head nodes 

(CEDBSC). 

TABLE II: PROCEDURES OF CEDBSC 

Let cW
 
be the sliding window of cluster-head ic ; 

Let 1 2{ , ,..., }ns s sS
 
be the set of sensor nodes reporting to the 

sliding window at time t ;
 

Let 
1 2

{ , ,..., }
ns s sQ q q q

 
be the set of boundary vector sequences 

reported to the sliding window at time t ; 

Let parameter K of K-means algorithm equals to ad ; 

Let , {1,2,..., }( )
av v dF x

 
be the probability distribution functions of 

predefined events; 

1: classify 
1 2

{ , ,..., }
ns s sQ q q q

 
into ad

 
sets using K-means algorithm 

at time t
 
and calculate , , {1,2,..., }( )

i ac j j d tM  to be the center point of 

each set; 

2:           calculate , , {1,2,..., }( ( ), ( ))
i ac c j v v dD t F xM ; 

3:  if 
 

, ,
1,2,...,

( ( ( ), ) max { ( ( ), )})
i i

a
c c j n c c j v

v d
D t F D t F


M M

 
then 

 4:  if 
 

, , , ,
1,2,...,

( ( ( ), ) max { ( ( ), )})
i i

a
c c l l j n c c l l j v

v d
D t F D t F 


M M

 
then 

 5:   merge , , ( )
ic l l j tM  with , ( )

ic j tM  and calculate new center point 

, ( )
ic n tM ; 

6:                         end if 

7:                confirm the event type as n ; 

 8: notify corresponding actor node na to deal with the event of type 

n ;  

9:                report , ( )
ic n tM  to node na ; 

10:                        end if 

VI. COOPERATIVE EVENT DETECTION ALGORITHM 

BETWEEN CLUSTER-HEADS AND ACTORS 

After finishing type matching with event data received 

from sensor nodes, cluster-head node ic  will ask 

corresponding actor nodes to handle detected events. At 

the same time, node ic  will transmits classification center 

point , ( )
ic j tM  related to event type j  to actor node ja  

which takes charge of dealing with the events of type j . 

Node ja  uses the sliding window, of which window size 

is aW  and step size is cW , to get boundary vector 
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sequence , ( )
ic j tM  and transform it into slope vector 

sequence ( )
ic tr . At time 

aWt , actor node ja  receives 

( )
j aa Wn t  scheduling requests from cluster-head nodes 

using sliding window 1,
aWt t 

   and makes sure of the 

priority of events processing using the modified KNN. 

Node ja  can use Eq. (10) to calculate the similarity 

between ( )
ic mtr  and other received slope vector sequence 

,
( )

j j ic nt
r . 

, ,

1

, ,

1 1

( ( ), ( )) ( ) ( )

1
     ( ) ( )

( 1)

i j j i i j j i

s s

i j

c c m c n c m c n

d

v v

c l m c l n

l vs s

D t t t t

r t r t
d





 



 

 

 
 



r r r r

     (10) 

Node ja  also can choose the k most similar slope 

vector sequences with ( )
ic mtr  to get the average 

similarity ( )
i a

avg

c Wtr  of ( )
ic mtr . The calculation method of 

average similarity is shown as below. 

,

,

1,

( ) 1

1,

1
( ( ), ( )),

                                  ( ) 1

( )
1

( ( ), ( )),
( ) 1

                                  ( ) 1

i j j i

j a

a Wi a j a

i j j i

j a

j a

k

c c m c n

j j i

a W
avg

n tc W

c c m c n

j j ia W

a W

D t t
k

k n t

t

D t t
n t

k n t





 



 




   


 



  





r r

r

r r






 (11) 

TABLE III: PROCEDURES OF CEDBCA. 

Let aW
 
be the sliding window of actor ja

 
which deal with the 

event of type j ; 

Let 
1, ,{ ,..., ,...}

ij c j c j
  M M M

 
be the set of boundary vector 

sequences reported to the sliding window at time t ; 

1: calculate 
1

{ ,..., ,...}
jc cr r r

 
to be the slope vector sequences from 

j
M  at time t ; 

2: calculate 
,

( , )
i v v ic c cD


r r  and get the average similarity ( )

i

avg
c tr

 
using k-nearest neighbor sequences; 

3:           if 
 

 
1,2,..., ( )

( ) max ( )
i l

a j

avg avg
c c

l n t

t t


r r  then 

4:   deal with the event reported by cluster-head ic
 
with priority;  

5:                        end if 

If 
 

 
1,2,..., ( )

( ) max ( )
i a v a

a Wj a

avg avg

c W c W
v n t

t t


r r , the event 

reported by cluster node ic  will be prioritized. At the 

same time, node ja  will realize the sensor nodes related 

to cluster-head node ic  according to ( )
i a

avg

c Wtr . Using 

localization algorithms [12], node ja  can move to the 

position where events occur accurately to implement 
control strategies. Table III shows the steps of 
cooperative event detection algorithm between cluster-
head nodes and actor nodes. 

VII.  PERFORMANCE ANALYSIS 

The cooperative event detection method for WSAN in 

this paper is a three-tiered framework, which consists of 

CEDBAS, CEDBSC and CEDBCA. By the coordination 

between sensor nodes, cluster-head nodes and actor nodes, 

the types of happening events in the surrounding 

environment can be detected and related strategies are 

implemented to control the development of happening 

events in WSAN applications. The proposed framework 

should meet the requirements of real-time, low energy 

consumption and mobility in practice. The validity of 

event detection framework will be analyzed via 

simulation in Section 7. 

A. Computational Complexity 

In CEDBAS, sensor node is  can get ( )
is jtp  by Eq. (1) 

at time 
jt , and its computational complexity is 

( )s sO d W . Its computational complexity of calculating 

the similarity between two sequences by Eq. (6) is 

(2 )s sO d   . If node is  wants to get ( )
is vtq  by Eq. (2), 

it needs to send data to cluster-head node at time vt , and 

its computational complexity is ( )s sO d W . So the 

maximum computational complexity of sensor node 
is  is 

(2 )s sO d W  . From the above, it can be seen that the 

computational complexity of sensor node will be high if 

sW  is too big and the data information contained in 

( )
is jtp  will be too little to match correct pattern if sW  is 

too small. 

In CEDBSC, cluster-head node ic  can uses Eq. (7) to 

do clustering at time t  in order to get ad  classifications 

and its computational complexity is 

(3 ( ))s s a s c aO d d n n d      . When using K-means 

for clustering, Eq. (8) is used to find the center point of 

each classification and its computational complexity is 

(3 ( ))s s s c aO d n n d     . In CEDBSC, Eq. (9) is 

used to do event type matching after clustering, and its 

computational complexity is 2((2 1) )s s aO m d d    , 

in which m  is the computational complexity of 

probability distribution function , {1,2,..., }( )
av v dF x  of event 

attribute. After event type matching, Eq. (8) is used to 

combine classification center points of the same event 

type, and its computational complexity is 

(3 ( 1))s s aO d d    . So the maximum computational 

complexity of cluster-head node ic  at time t  is 

( (3 ( ) 2 ))s s a s c aO d d n n m d         . Considering 

the step size of sliding window on cluster-head node is 

sW , the average maximum computational complexity of 

cluster-head node is (( (3 ( ) 2 )) )s a s c a sO d d n n m d g        

in CEDBSC. From the above, it can be seen that the 

computational complexity of cluster-head node and the 

sensitivity of divided subsequences will be low if sg  is 
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too big. However, if sg  is too small, the pattern of 

subsequences will be disrupt easily, and its computational 

complexity will be high. Besides, normal sensor nodes 

can use cluster-head election algorithm to take turns to be 

cluster-head nodes and prolong their working life. 

In CEDBCA, actor node 
ja  can uses Eq. (5) to 

transform received boundary vector sequences into slope 

vector sequences, and its computational complexity is 

(4 ( 1) )s sO d   . The computational complexity of 

calculating the similarity between slope vector sequences 

by Eq. (10) is ((2 1) ( 1))s s c cO d n n      , and its 

computational complexity of calculating the average 

similarity by Eq. (11) is ( )cO k n . So the maximum 

computational complexity of actor node 
ja  at time t is 

((2 ) )s s cO d k n    . Because the step size of the 

sliding window belonging to actor node 
ja  is cW , the 

average maximum computational complexity of actor 

node is (((2 ) ) / )s s c cO d k n W     in CEDBCA. 

Considering actor nodes in WSAN application have 

enough energy, they can work long enough. 

B. Real-Time 

To make event detection meet the requirement of real-

time for WSAN applications, the proposed algorithms 

can be adjusted further in practice. Considering the 

demand of real-time, sensor node is  does not request 

each neighbor node to return its voting result when node 

is  calculates support rate 
isv  in CEDBAS. Node is  just 

waits time vt  and counts the voting value received from 

neighbor nodes to realize the real-time event detection of 

sensor nodes. 

The number 
icn  of boundary vector sequences received 

by cluster-head node ic  from sensor nodes change over 

time. Considering the demand of real-time, the size cW  

of sliding window can be adjusted dynamically in 

CEDBSC. If node ic  receives 1( )
icn t  sequences at time 

1t  and 1( )
ic an t p d  , in which p  is a positive integer, 

then the size of sliding window belonging to node ic  can 

be adjusted to (1 1/ ) cp W   at time 
sWt . But if 

1( )
ic an t d , then the size of sliding window belonging to 

node ic  can be adjusted to cW . 

Similar to the adjustment method of sliding window in 

CEDBSC, the size aW  of sliding window belonging to 

actor node ja  can be adjusted dynamically to meet the 

demands of real-time in CEDBCA. If node ja  receives 

1( )
jan t  sequences at time 1t  and 1( )

jan t p k  , then the 

size of sliding window belonging to node ja  can be 

adjusted to (1 1/ ) ap W   at time 
cWt . But if 1( )

jan t k , 

then the size of sliding window belonging to node ia  can 

be adjusted to aW . 

C. Mobility 

Compared with the existing WSN applications, there 

are actor nodes in WSAN applications, which have 

mobility. Cluster-head node ic  needs to send processing 

request to related actor node 
ia  after detecting the event 

type. With the development of events, node 
ic  may send 

the same request repeatedly to the same actor node. At 

the same time, actor node 
ia  may receive event-related 

boundary vector sequences from several cluster-head 

nodes when it move to process the event reported by node 

ic . This brings new challenges to the requirements of 

real-time and accuracy for event detection algorithms. In 

CEDBCA, actor node ia  only transforms the latest 

boundary vector sequence into slope vector sequence at 

time 
cWt , if ia  receives more than one processing request 

from the same cluster-head node in sliding window 

1,
aWt t 

  . Because the step size of sliding window on 

node ia  is cW , node ia  will still implement current 

control strategies during time interval 1,
a a cW W Wt t 

 
  , 

even if it receives requests from several cluster-head 

nodes. However, actor node ia  begins to receive new 

processing requests and get the priority of event handling 

at time 1a cW Wt   . If new event processing request is 

prioritized, actor node ia  will stop processing the current 

event and turn to handle the new processing request.
 

VIII. SIMULATION EVALUATION 

In this paper, Matlab is used to build the simulation 

environment to evaluate the performance of 3-CEDF. In 

the simulation, event area R is 
2400 400m , in which 

there are 441 normal sensor nodes, 16 cluster-head nodes 

and 4 actor nodes. All the normal sensor nodes and 

cluster-head nodes are deployed evenly in the event area. 

Sensor nodes will find their corresponding cluster-head 

nodes according to their geographic location when the 

clustering phase of sensor nodes has been completed. 

There are 3 kinds of sensors on normal sensor nodes and 

the sampling frequency is 1Hz. The window size sW  and 

the partitioning granularity sg  of normal sensor nodes 

are 16 and 4 respectively. In addition, the window size 

cW  of cluster-head nodes is 24. When normal sensor 

node finds some event happening, cluster-head node will 

detect the event type and select corresponding actor node 

to process the event. The window size aW  and movement 

speed of actor nodes are 36 and 2m/s. Each actor node 

can only deal with one type of event. 

In the simulation, there are 4 kinds of events in R. The 
probability distribution functions of 3 dimension 
attributes of each event obey normal distribution 

2( , )N   , in which   is the expect value and 
2  is the 

standard deviation. In all, there are 12 kinds of 
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independent distribution functions 2( , ( ) )d d

i iN   , in 

which event type i=1,2,3,4 and attribute dimension 

d=1,2,3. d

i  and d

i  are randomly assigned in interval 

[1,10] separately.  

Different types of events will occur randomly in R at 

every moment during the simulation. The perceived 

radius R of sensor nodes is 10m and the sensor reading 

( )
is

m t  changes with the distance   between sensor node 

is  and the event location as /2( ) ( )
i

R

sm t e m t  , in 

which ( )m t  is the actual attribute value of the event. If 

actor nodes move to the location of the happening events, 

they will process the events. However, the happening 

events will exist till the end of the simulation if no actor 

nodes come. Considering the existence of error and 

disturbance when sensor nodes work, the errors of sensor 

readings obey normal distribution (0,1)N  independently. 

The current researches on event detection algorithms 

mostly focus on WSN applications. The cooperative 

detection algorithms applied in WSAN are not presented 

yet. The simulation experiments aim at analyzing the 

performance of effectiveness, real-time, mobility and 

communication traffic for 3-CEDF, as well as the 

influence of different key parameters to its performance. 

To compare with the proposed detection methods in this 

paper, the simulation constructs a centralized event 

detection algorithm, in which cluster-head nodes send the 

data perceived by sensor nodes to sink node and 

corresponding actor nodes are called by sink node to 

handle the events. 
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Fig. 2. Effectiveness of 3-CEDF affected by the detection threshold on 
sensor node. 

A. Effectiveness 

The simulation examines the effectiveness of the 

proposed event detection method in this paper, including 

accurate rate and false rate. The accurate rate can be 

calculated as the times of detecting the right event type 

by cluster-head nodes divided by the total number of the 

events reported by cluster-head nodes. The false rate 

includes false positive rate and false negative rate. The 

false positive rate can be calculated as the times of 

detecting the types of some events wrong and of detecting 

the types of non-existing events divided by the total 

number of the events reported by cluster-head nodes. The 

false negative rate refers to the undetected events, which 

actually happen. The simulation also analyzes the impact 

of parameters s  and v  on the effectiveness of the 

algorithms. The simulation results are displayed in Fig. 2 

and Fig. 3. 

As can be seen from Fig. 2, the accuracy of the 

algorithm increases from 48% to 71% when parameter 

s  increases from 0.6 to 1.4. This is because the number 

of events perceived by normal sensor nodes decreases 

gradually as 
s  increases and the total number of events 

reported by cluster-head nodes decreases correspondingly.  

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
δs=1 gs=4 Ws=16 Wc=24 Wa=36 Va=2

Vote threshold on sensor node

E
ff

ec
ti

ve
ne

ss

accuracy

false positive

false negative

 
Fig. 3. Effectiveness of 3-CEDF affected by the vote threshold on 
sensor node 

At the same time, the influence of the noise on sensor 

readings weakens gradually, and the times of detecting 

the event type correctly by cluster-head nodes increase 

correspondingly. So the accuracy of the algorithm will be 

improved with the increase of s . In Fig. 2, the false 

positive rate decreases from 45% to 14%. This is because 

as s  increases, the times of detecting event types wrong 

by cluster-head nodes decrease gradually and the 

influence of the noise on sensor readings lessens 

correspondingly. Moreover, the times of detecting the 

types of non-existing events decrease. So the false 

positive rate will be reduced gradually with the increase 

of s . In the simulation, the false negative rate of the 

algorithm increase by 8% with s . As can be seen from 

Fig. 3, the accuracy of the algorithm increases from 55% 

to 74% when parameter v  increases from 0.5 to 0.8. 

This is because with the increase of v , normal sensor 

nodes which report event data need to be closer to the 

event sources and the influence of the distance on sensor 

readings attenuation weakens correspondingly. At the 

same time, the times of detecting event types correctly by 

cluster-head nodes increase and the number of the events 

reported by normal sensor nodes reduces. Therefore, the 

accuracy of the algorithm will be improved as v  

increases. In Fig. 3, the false positive rate decreases from 
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40% to 20%. This is because as 
v  increases, the times of 

detecting event types wrong by cluster-head nodes 

decrease gradually and the influence of the distance on 

sensor readings attenuation weakens correspondingly. At 

the same time, the times of detecting the types of non-

existing events decrease. So the false positive rate of the 

algorithm will reduce gradually with the increase of v . 

In the simulation, the false negative rate increases to 11% 

with v . 

B. Real-Time 

The simulation evaluates the influence of sliding 

window size on the real-time of the cooperative event 

detection method proposed in this paper. The following 

figures show the average delay from events occurrence to 

receiving processing requests by actor nodes with 

different values of cW  and aW . 
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Fig. 4. Real-time performance of 3-CEDF affected by the size of sliding 

window on cluster-head node. 
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Fig. 5. Real-time performance of 3-CEDF affected by the size of sliding 
window on actor node. 

As can be seen from Fig. 4, the average delay increases 

from 86s to 95.69s and the amplitude also increases 

gradually with the increase of cW  and aW . However, 

considering the change of sliding windows, the increase 

amplitude of the average delay is smaller than the one of 

sliding window. This is because cluster-head nodes can 

collect more event-related sequences and the type 

matching of center points is more accurate when the 

sliding window size of cluster-head nodes increases 

gradually. Therefore, the event types can be detected and 

reported to actor nodes more quickly. In Fig. 5, the 

average delay increases from 81.32s to 93.84s and the 

amplitude changes uniformly when cW  doesn't change 

and aW  increases gradually. However, considering the 

change of aW , the increase amplitude of average delay is 

similar to the one of sliding window. This is because 

actor nodes only judge whether the reported events are 

prior to process when receiving new event data sent by 

cluster-head nodes, and the change of average delay is 

slightly affected.  

C. Mobility 

The movement speed of actor nodes and parameters 

,c aW W  can affect the priority judgment of event handing. 

The simulation estimates the influence of movement 

speed and ,c aW W  on the controllability of event area with 

the cooperation between all kinds of nodes in WSAN. In 

the simulation, the duration of all events happened in R is 

set as aT , when actor nodes process events. If there is no 

actor node coming to handle events, the lasting time of all 

events in R is set as T . Moreover, the ratio between aT  

and T  can be used to evaluate the controllability for 

WSAN with the proposed event detection algorithm. 
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Fig. 6. Controllability of 3-CEDF affected by the movement speed of 

actor node when the size of sliding window on cluster-head node equal 
to the one on actor node. 

As can be seen from Fig. 6 and Fig. 7, the 

controllability of event area is stronger with the increase 

of movement speed of actor nodes. This is because actor 

nodes may receive new processing requests in their way 

to handle previous events. If the actor node does not 

arrive at the position of previous event and the processing 

priority of new event is higher, the actor node will move 

to the location of new event. Faster the movement speed 

is, smaller the probability of the above problem 

happening is, and stronger the controllability of event 

area is.  
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Fig. 7. Controllability of 3-CEDF affected by the movement speed of 

actor node when the size of sliding window on sensor node equal to the 
one on cluster-head node. 

In Fig. 7, the frequency of making decision by actor 

nodes is high when cW  is small, and the controllability 

for WSAN increases greatly with the increase of the 

movement speed of actor nodes. However, when the 

speed of actor nodes is slow, the probability of the above 

problem happening increases, and the controllability for 

WSAN declines quickly. In the simulation, there are only 

4 actor nodes which process different types of events 

separately. If there are more actor nodes in the event area, 

the controllability for WSAN will increase greatly. 

D. Communication Traffic  

WSAN nodes need communicate to cooperate with 

each other. Frequent communication will lead to faster 

energy consumption of nodes. The simulation examines 

the influence of parameters sg  and sW  on the 

communication traffic of the cooperative event detection 

method proposed in this paper. The average number of 

exchanged messages per unit of simulation time is used to 

estimate the communication traffic in WSAN. Besides, 

the traffic of the centralized event detection algorithm is 

also tested in the simulation. 
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Fig. 8. Communication traffic of 3-CEDF affected by the granularity of 
time subsequence on sensor node. 
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Fig. 9. Communication traffic of 3-CEDF affected by the size of sliding 
window on sensor node. 

As can be seen from Fig. 8, the communication traffic 

of the event detection algorithm without sink node 

decreases from 0.16s
-1

 to 0.02 s
-1

 gradually with the 

increase of sg . This is because the information contained 

by the sequences decrease gradually as sg  increases and 

the probability of detecting event types correctly also 

decreases. Therefore, the traffic of reporting event data 

and mobilizing actor nodes will decreases. However, the 

above problem will interfere the effectiveness of the 

event detection algorithm. In Fig. 8, the traffic of the 

centralized event detection algorithm is slightly higher 

than the algorithm proposed in this paper. This is because 

the reporting of event data and the scheduling of actor 

nodes both need to communicate with sink node. As can 

be seen from Fig. 9, the traffic of the event detection 

algorithm without sink node decreases from 0.15s
-1

 to 

0.03s
-1

 gradually with the increase of sW . This is because 

the information contained by event data reported from 

sensor nodes increases and the number of event reports 

decreases as sW  increases. In Fig. 9, the traffic of the 

centralized event detection algorithm is still slightly 

higher than the algorithm proposed in this paper. 

IX. CONCLUSIONS 

In this paper, we propose a three-layer cooperative 

event detection framework for WSAN. Normal sensor 

nodes use PAA to do isometric segmentation on the 

received multidimensional vector time sequences. If the 

proposed detection algorithm uses non-isometric 

segmentation [30], the loss of key characteristic 

information can be avoided, and the time series are 

contractile in the time axis. However, it has higher 

complexity and spends too much time, and there are not 

good algorithms for similarity measure between the 

sequences with unequal length.  

The similarity of two sequences can be indicated by 

the distance. The smaller the distance is, the higher the 

similarity is, and vice versa. This paper used the simplest 

and the most widely used similarity measure method 
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based on the Euclidean distance [31]. Statistical feature 

extraction methods [32] or model-based methods [33] can 

also be used to improve the similarity measurement. 

However, the former has very strong application 

dependency and needs manual intervention, the latter 

needs longer time series to evaluate better model 

parameters, and it can hardly deal with short time series 

correctly[35]. 

The proposed 3-CEDF in this paper used modified K-

means algorithm to process clustering analysis. Other 

clustering methods, such as hierarchical method [36], 

density-based method [37], partitional method [38] and 

grid-based method [39], also can be used in the event 

detection framework. However, the above methods need 

to be selected according to the application data models. 

Besides, how to deal with large-scale high-dimensional 

data set is one of the hot and difficult issues in data 

mining. 

In the future application of WSAN, the data received 

by sensor nodes include audio, video and other media 

data rather than regular scalar data. Actor nodes will 

analyze multimedia data and implement complex control 

strategies. Therefore, multimedia data mining [40] is one 

of the further research directions. Besides, various needs 

of WSAN applications also put forward higher requests 

to the performance of event detection algorithms. The 

algorithm design should take into account the task 

allocation mechanisms of actor nodes in WSAN. 

Therefore, the detection algorithms need to provide 

further classification of event characteristics. Due to 

network delays, faulty readings and vandalism, the design 

of robust event detection methods should be one of the 

future research directions. 
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