
Memory Aware Wireless Real Time Broadcast with

Network Coding

Cheng Zhan and Fuyuan Xiao
School of Computer and Information Science, Southwest University, ChongQing, 400715 P.R.China.

Email: zhanc@swu.edu.cn, fyuanxiao@tom.com

Abstract—In this paper we study network coding based

wireless broadcast scheduling problem in real time applications

under the memory model, aiming at minimizing the number of

transmissions. In the memory model, receiver has enough

memory, and a receiver will buffer all received encoded packets

and decode out their “wanted” packets when enough packets are

received. We prove that the coding based scheduling problem

under memory model is NP-hard. Based on the graph model and

the matrix transformation, we propose an effective heuristic

algorithm consisting of a two stage code construction.

Simulation results show that our algorithm can significantly

reduce the number of transmissions in most cases, which is an

important performance metric in real time applications.

Index Terms—Network coding, broadcast scheduling, real time,

memory

I. INTRODUCTION

In wireless applications, broadcasting data to multiple

users is commonly used, such as satellite communications,

WiFi networks, etc. By coding multiple original packets

into a single coded packet, network coding can improve

transmission efficiency and throughput over broadcast

channels [1]-[3]. The works in [4], [5] studied coding

based broadcast schemes for loss recovery that allow

instantaneous decoding, where sender decides how to

encode and transmit based on the cached information at

receivers. These coding schemes are also known as

Instantly Decodable Network Codes (IDNC). Previous

work on IDNC focused on minimizing the completion

time and decoding delay. However, there are few works

considering the delay guarantee of data packets, which is

an important aspect of quality of service.

Recent development of commercial wireless services

has created large scale demands for real time applications

such as video streaming or interactive gaming. These real

time applications have a distinct characteristic: they have

strict and urgent deadlines, and a packet is useless (or less

useful) after a short amount of time [6], [7]. Inspired by

the above observations, the work in [8] studied the coding

schemes for real time applications based on IDNC and

found a code that is instantly decodable by the maximum

number of users to minimize the number of transmissions.

Manuscript received July 7, 2015; revised December 8, 2015.
This work was supported by the Fundamental Research Funds for

the Central Universities (No. SWU115002, No. XDJK2015C104).
Corresponding author email: zhanc@swu.edu.cn

doi:10.12720/jcm.10.12.997-1003

However, in the existing IDNC scheme, receivers are

forced to discard all packet combinations that cannot be

immediately decoded, which means that the memory of

receivers cannot be utilized efficiently. The two-user

broadcast scenario with memory was analyzed in [9], it is

shown that using the memory of receivers can increase

the capacity region, however the work did not consider

the encoding strategy for multiple users.

s

r 1

r 2

r 3

r 4

r 5
r 6

p 3

Received packets

p 4 p 5 p 6p 2

p 1

Received packets

p 5 p 6

p 1

Received packets

p 2 p 3

p 1

Received packets

p 4 p 6

p 1

Received packets

p 3 p 5

p 1

Received packets

p 2 p 4

p 3 p 4 p 5 p 6p 2p 1

Fig. 1. An example

Consider a single hop broadcast scenario with a sender

s and six receivers r1,r2,…,r6 as shown in Fig. 1. Suppose

that s needs to send six packets p1,p2,…,p6 to the

receivers. Due to overhearing or prior transmission,

receivers already have some packets and inform these

information to sender according to feedback. As shown in

Fig. 1, r1 has packets {p2,p3,p4,p5,p6}, r2 has packets

{p1,p5,p6}, r3 has packets {p1,p2,p3}, r4 has packets

{p1,p4,p6}, r5 has packets {p1,p3,p5}, and r6 has packets

{p1,p2,p4}.

TABLE I: PACKET INFORMATION AT RECEIVERS

 p1 p2 p3 p4 p5 p6

r1 1 0 0 0 0 0

r2 0 1 1 1 0 0

r3 0 0 0 1 1 1

r4 0 1 1 0 1 0

r5 0 1 0 1 0 1

r6 0 0 1 0 1 1

The buffered packet information at the receivers is

shown in Table I, where 0 indicates that the

corresponding packet is already received at the receivers

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 997

and 1 represents that the corresponding packet is needed

at the receivers.

According to the feedback information, s needs 6

transmissions by the traditional way, i.e. transmitting

p1,p2,…,p6 at each time slot respectively. However, by the

encoding strategy introduced in [8], all needed packets

can be recovered at all receivers by transmitting the

following 4 encoded transmission packets p4⊕p5, p2⊕p4,

p3⊕p5 and p1⊕p6 in sequence. For example, with p4⊕p5,

r2 and r5 can recover p4, r4 and r6 can recover p5. With p2

⊕p4, r2 can recover p2 according to p4⊕(p2⊕p4) using

p4 which is recovered before.

If each receiver can buffer its received encoded

packets, it can accumulate the useful information to

recover all its needed packets, which can reduce the

number of transmission packets. Under such a strategy,

for the example given in Fig. 1, we only need to transmit

the following 3 encoded packets, namely, p1⊕p2⊕p6, p3

⊕p5⊕p6 and p4⊕p5. When r5 receives the first encoded

packet, the packet is useless for r5 because r5 needs both

p2 and p6. If r5 can buffer this received packet, when it

receives the second encoded packet, it can recover p6

since it already has p3 and p5. After p6 is recovered at r5,

r5 can use the first encoded packet to recover p2 since it

has p6 and p1 by now.

Inspired by the above examples, our aim in this paper

is to determine the encoding strategy at the sender to

minimize the number of transmissions under the receiver

model which is referred to memory model. In the memory

model, receiver has enough memory, and a receiver will

buffer all received encoded packets and decode out their

“wanted” packets when enough packets are received. Our

contributions are summarized as follows:

 We study the coding based scheduling problem under

memory model and prove that the scheduling problem

is NP-hard.

 Based on graph model and matrix transformation, we

propose an effective heuristic encoding algorithm

using a two stage code construction scheme.

 Simulation results show that the proposed

transmission strategy can significantly reduce the

number of transmissions in most cases.

The remainder of this paper is organized as follows. In

Section II, we will give the problem statement. The

coding based scheduling problem under memory model is

proved to be NP-Hard in Section III. In Section IV, we

will propose our encoding algorithm based on the graph

model. Decoding algorithm will be proposed in Section V.

Simulation results will be shown in Section VI. Finally,

we will conclude the paper in Section VII.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

Consider a single hop wireless broadcast scenario

where there are a sender s and n receivers R={r1,r2,…,rn}.

s needs to transmit m packets P={p1,p2,…,pm} to the n

receivers. Due to the overhearing or prior transmissions,

receivers may have some packets in their caches. Each

receiver only needs a subset of packets in P since it

already had some packets in their caches. Set N(ri)

denotes the packets needed at receiver ri and set H(ri)

denotes the packets already had at receiver ri, so we

have () ()i iN r H r , () ()i iN r H r P . We assume

that time is slotted, and at each time slot, the sender

transmits one coded packet.

The problem is that given the set of stored packets H(ri)

at the receiver ri, the set of packets N(ri) needed by the

receiver ri, 1 i n , how to encode and transmit packets

in each time slot to minimize the number of transmissions

under memory model. In the memory model, a receiver

will buffer all received encoded packets and decode them

when enough encoded packets are received. This model is

suitable for the nodes which have enough memory size

such as mesh network and vehicular network nodes. Such

an encoding decision problem is referred to as Memory

Encoding (ME) problem. In this paper, we consider XOR

coding since it is easy to be implemented with trivial

overhead.

III. MEMORY ENCODING

A. Memory Encoding Problem

In the memory model, receivers store packets which

cannot be decoded immediately, and decode until enough

encoded packets are received. Our Memory Encoding

(ME) problem is to decide how to encode and transmit

packets in each time slot to minimize number of

transmissions with the assumption that receivers can

decode until enough encoded packets are received. In the

following, we will prove that ME problem is NP-hard by

reducing the simultaneous matrix completion problem

which is a well-known NP-complete problem, to ME

problem.

A simultaneous matrix completion problem is defined

as follows. Given a set of mixed matrices, each matrix

contains a mixture of numbers and variables, and each

particular variable can only appear once per matrix but

may appear in several matrices. The objective of the

simultaneous matrix completion problem is to find values

for these variables such that all resulting matrices

simultaneously have full rank. It was shown in [10] that

simultaneous matrix completion problem over GF(2) is

NP-complete problem.

Theorem 1. The Memory Encoding problem is NP-

hard.

Proof. Since a receiver can at most recover one

original packet upon receiving an encoded (xor) packet,

any receiver needs at least ()
ir R il max N r encoded

packets. In order to minimize the number of

transmissions, we should construct at least l encoded

packets from which the receivers can decode all the

needed packets. Assume that the encoded packets are

1 2
…

l
p p p we can construct a l m coefficient

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 998

matrix
l mM

 which contains 0,1 entries from the encoding

vector of these packets. For receiver ri, if ()j ip N r , we

keep the j-th column in
l mM

, otherwise, we remove it

from
l mM

. After such transformation, we get a l l sub-

matrix i

l lM
. i

l lM
 can be used to illustrate the encoded

packets containing only the packets in N(ri). If

()i

l lrank M l , then ri can decode all the needed packets

in N(ri). Thus, given the matrix
l mM

 whose elements are

variables and sub-matrix set { } 1i

l lM i n , we want to

find a value assignment of
l mM

 over GF(2) to make sure

that all matrices in { }i

l lM are full rank. Thus, we find that

the memory encoding problem is equivalent to the

simultaneous completion problem over GF(2) which is

NP-complete shown in [10], thus the Memory Encoding

problem is NP -hard.

B. Graph Model

Given the information about the "Have" and "Need"

sets of receivers, we form an IDNC graph as in [4]:

Definition 1. Given 1 2{ ... }nR r r r ,

1 2{ ... }mP p p p , ()iN r P , ()iH r P

() ()i iN r H r , we construct a graph G(V,E) as:

{ packet needed by }ij j iV v p r ,

1 1 2 2 2 1 1 21 2{() () ()}i j i j j i j iE v v j j p H r p H r

1 1 2 2 1 2{() }i j i jv v j j .

For each packet ()j ip N r , there is a corresponding

vertex ()ijv V G . Table II shows the notations to be used

in the constructed graph model and the proposed

encoding algorithm. Fig. 2 is the corresponding graph of

the aforementioned example in Section I.

v11

v22

v23

v24

v34

v35

v36

v42

v43 v45

v52

v54

v56

v63

v65

v66

V1

V2

V3

V4

V5

V6

Fig. 2. A graph example

TABLE II: NOTATION

Symbol Description

s The sender

ri Receiver i

n Number of receivers

H(ri) The set of packets already had at receiver ri

N(ri) The set of packets needed at receiver ri

P The set of packets to be transmitted

pj The j-th packets to be transmitted

m Number of packets to be transmitted

G The constructed graph

V(G) The vertex set of graph G

E(G) The edge set of graph G

vij A vertex corresponds to packet pj needed by ri in graph G

C A clique in graph G

In Fig. 2, v11 represents that r1 needs packet p1. Since

1 6()p H r and
6 1()p H r , there is an edge (v11,v66). r2 and

r6 need the same packet p3, then there is an edge (v23,v63).

It was shown in [4] that one encoded packet

corresponding to a clique ()C V G can help some

receivers recover their needed packets immediately.

Intuitively, finding the clique containing maximum

vertices will serve more receivers. The work in [8] used

the maximum clique of IDNC graph to reduce the number

of transmissions, under the assumption that instantly

decoding is conducted at the receivers, i.e. once the

encoded packet p arrives at receiver ri, if ri cannot

decode p immediately, ri just drops packet p . However,

if we allow receivers to store packets which cannot be

decoded immediately, we can further reduce the number

of transmissions. In our memory model, receivers store

packets which cannot be decoded immediately, and

decode until enough encoded transmission packets are

received.

IV. ENCODING ALGORITHM

We propose an encoding algorithm which aims to

satisfy all all needed packets at the receivers with

minimum number of transmissions. Let

()
imax r R il max N r , where |N(ri)| is the cardinality of

N(ri). Since a receiver can at most recover one original

packet upon receiving an encoded (xor) packet, any

encoding algorithm needs at least lmax transmission

packets. Therefore, lmax is the lower bound of the number

of transmissions under the ideal case where all packets

are successfully received by all receivers. The proposed

encoding algorithm consists of two stages. At the first

stage, we construct lmax encoded packets. Each encoded

packet is the xor of some original packets, of which, at

most one is selected from the needed packets of a

receiver. With these lmax encoded packets, some receivers

may not decode out all needed packets. Therefore, at the

second stage, we need to append more necessary packets

to complete the service.

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 999

At the first stage, we construct lmax encoded packets.

According to the definition of G above, for any

1i i n , if j k , (,) ()ij ikv v E G . We can partition

V into n subsets {V1,V2,…,Vn}, where

{ () 1 }i ij j iV v p N r j m is the set of needed

packets of receiver ri. The main idea of our construction

algorithm is that, we select a needed packet

corresponding to a vertex in every Vi and xor them

together as one encoded transmission packet. For every Vi,

we select
mijv , { }m ij ij min j v V . After encoded packet

being decided, we delete
mijv in G. At the end of the

construction algorithm, we get lmax encoded packets. This

stage constructs a partial solution for Memory Encoding

problem. The initial partial solution construction

algorithm is given in Fig. 3.

Fig. 3. Initial partial solution construction algorithm for memory
encoding problem

For example, suppose that sender s needs to transmit

packets P={p1,p2,p3,p4,p5,p6}, r1 needs {p1,p2}, r2 needs

{p1,p3}, r3 needs {p1,p4}, r4 needs {p2,p3}, r5 needs

{p2,p4}, r6 needs {p3,p4}. Accordingly,

() () 1 6i iH r P\ N r i . From the definition of graph

G, we get the vertex subsets V1={v11,v12}, V2={v21,v23},

V3={v31,v34}, V4={v42,v43}, V5={v52,v54}, V6={v63,v64}. The

initial partial solution is

1 2 3 2 3 4{ }P p p p p p p .

Given P constructed at the first stage, we need to find

out whether P is enough and what else are needed for

completing the service. At the second stage, we append

necessary packets based on the initial partial solution

such that all receivers can recover their needed packets.

For receiver ri, when it receives an encoded packet
k

p ,

let kP be the set of packets used to encode
k

p , we

define a receiving vector vik=(a1,a2,…,am), aj=1 if

()j ip N r and
kjp P , else aj=0, 1 1i n j m .

Assume that ri needs k packets and it has received l

encoded packets, l k . Let
1 2

() { ... }
ki i i iN r p p p . ri

can construct a matrix i

l mM
 based on receiving vectors.

If ()j ip N r , we keep the j-th column in i

l mM
,

otherwise, we remove it from i

l mM
. After such

transformation, we get a l k sub-matrix i

l kM
.

The following transformation can find out whether the

j-th needed packet at ri can be recovered or not. We apply

Gaussian elimination on i

l kM
, if l>k, there exists some

all-zero rows. After randomly deleting some all-zero

rows, we can transform i

l kM
 from a l k matrix to a

k k upper triangular matrix ()i

k k tj k kM a . Based on

i

k kM
, considering the set J={j | atj is the first non-zero

element of row t}. From the following lemma, we know

that if
1 11j J j k , the j1-th needed packet at ri

cannot be recovered.

Lemma 1. Consider n variables x1, x2,…, xn and n

equations,
n nM

 is the coefficient matrix. After Gaussian

elimination on M, J={j | atj is the first non-zero element

of row t}, if
1j J , we cannot solve for

1j
x .

Proof. After the Gaussian elimination, M is

transformed to an upper triangular matrix M . J={j | atj is

the first non-zero element of row t}, if
1j J , then

1tja is

not the first non-zero element of row t, 1 t n . That

means
1 1

0j ja if M is an upper triangular matrix.

1 1

1 1

1 1

10

0

0

j j

j j

a

a

According to the upper triangular matrix M , we

cannot solve for
1j

x .

With Lemma 1, we can easily identify which packet of

N(ri) cannot be recovered and determine the necessary

packets to be transmitted. If
1 11j J j k ,

1j
ip will

be sent as a transmission packet from the sender. The

appending process of the second stage is given in Fig. 4.

Fig. 4. Appending algorithm for memory encoding problem

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 1000

Combining results of the first stage and the second

stage, we can get the encoded packets from P Q ,

where P is the set of encoded packets from stage 1 and

Q is the set of original packets from stage 2.

Considering the above example, at the second stage,

based on P , we can find out that all receivers can

recover their needed packets expecting r4. Based on the

receiving vectors of r4, v41=(0,1,1,0),v42= (0,1,1,0), r4 can

construct matrix M

1 1

1 1

After Gaussian elimination, we get the upper triangular

matrix

1 1

0 0

We find that J={1}. Since N(r4)={p2,p3}, and 2 J ,

we get 3{ }Q p . Finally, the set of packets to be

transmitted is 1 2 3 2 3 4 3{ }P Q p p p p p p p .

V. DECODING ALGORITHM

Similarly, each receiver can determine how to decode

each needed packet by the operations of Gauss-Jordan

elimination. Upon receiving l encoded packets and with

its received original data packets, each receiver can

construct a matrix as follows.

 Suppose that a receiver ri receives l encoded packets,

denoted by
1 2

…
lp p p . For each

jp , the packet

head can specify which original packets are encoded.

' jP denotes the original packets set used to encode

jp . With such packet head information, we can

construct a m-dimension vector v = (a1,a2,…,am)

where ak is 1 if jkp P , otherwise ak is 0.

 For each received original data packet pj where

()j ip H r , we can also construct a m-dimension

vector v=(0,…,aj,…,0) where only aj = 1.

As a result, ri constructs a (| () |)il H r m matrix M,

where |H(ri)| is the cardinality of H(ri). For each row of M,

we maintain the correspondent packet information in an

array B.

For example, if the vector correspondent to
jp is row

k1 of M, we set B[k1] =
jp . Similarly, if the vector

correspondent to ()j ip H r is row k2 of M, we set B[k2]

= pj.

We then conduct Gauss-Jordan elimination on M to

transform M to an m m diagonal matrix by xoring rows

and exchanging rows. We record the decoding operation

by changing the packet information in B correspondingly.

 If we xor row j1 to row j2, then B[j2] = B[j2]⊕B[j1].

 If we exchange row j1 with row j2, we exchange the

information in B[i1] with the information in B[i2].

After M is transformed to an m m diagonal matrix,

B[j] records how to decode and recover needed packet pj.

For the example given in Section IV, the set of

transmitted packets is 1 2 3{ ' , ' , ' }p p p , where

1 1 2 3'p p p p , 2 2 3 4'p p p p , 3 3'p p ,

N(r1)={p1,p2}. After r1 has received 1 2 3' , ' , 'p p p , it can

construct M and B as follows:

3

4

1

2

3

0 0 1 0

0 0 0 1

, '1 1 1 0

'0 1 1 1

'0 0 1 0

p

p

M B p

p

p

After the Gauss-Jordan elimination,

1 2 4

3 2 4

3

4

' '1 0 0 0

'0 1 0 0
,

0 0 1 0

0 0 0 1

p p p

p p p
M B

p

p

From the information in B, we know that r1 can recover

p1 by computing
1 2 4' 'p p p , and recover p2 according

to
3 2 4'p p p .

VI. SIMULATION RESULTS

The simulation scenario consists of a sender and n

receivers. The sender needs to send m packets which we

denote as packet set P to n receivers, according to the

overhearing or the prior transmission, every receiver has

already stored some packets. The needed packets are

randomly selected from the m packets with probability ,

and the stored packets set () () 1i iH r P\ N r i n . We

are interested in the number of transmissions which is an

important performance metric in the real time

applications. In order to study the impacts of number of

packets m and the number of receivers n on the network

coding gain, we use the transmission reduction ratio

nocoding coding

nocoding

Num Num

Num

 as performance metric where

Numnocoding is the number of transmissions without

network coding, and Numcoding is the number of

transmissions with network coding. We compare

transmission reduction ratio of maximum clique scheme

in [8] with our memory encoding scheme.

With regard to the impacts of number of packets m and

the number of receivers n on the network coding gain,

similar impacts can be observed for both the case when

 is the same for all receivers and the case when is

different for different receivers. We only report the case

when is the same for different receivers in this paper

to avoid redundancy.

Fig. 5 shows the impact of number of packets m on

the network coding gain which is measured by the

transmission reduction ratio for n=5. In Fig. 5(a), is

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 1001

uniformly distributed in [0.2,1]. In Fig. 5(b), is

uniformly distributed in [0.5,1]. As shown in Fig. 5, for

fixed , the probability that a needed packet of a receiver

is stored by another receiver and vice versa increases with

increasing m. The reason is that the stored packets at each

receiver will be randomly distributed in a larger set of

original data packets while m increases. Thus, the

network coding gain becomes larger. Due to the same

reason, if we compare the results in Fig. 5(a) with the

results in Fig. 5(b), it is found that when becomes

larger, the network coding gain increases faster with

increasing m.

10 15 20 25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Packets

T
ra

n
s
m

is
s
io

n
 R

e
d

u
c
ti
n

o
 R

a
ti
o

Memory Encoding

Maximum Clique Coding

(a) in [0.2, 1]

10 15 20 25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Packets

T
ra

m
s
m

is
s
io

n
 R

e
d

u
c
ti
o

n
 R

a
ti
o

Memory Encoding

Maximum Clique Coding

(b) in [0.5, 1]

Fig. 5. Transmission reduction ratio vs. The number of packets

Fig. 6 shows the impact of the number of receivers n

on the network coding gain. The transmission reduction

ratio increases first and then decreases with increasing n.

The probability that a needed packet of some receivers is

stored by other receivers and vice versa is related to both

 and n. Given , the probability increased first and then

decreased with increasing n. Thus, the network coding

gain also increased first and then decreased with

increasing n.

From Fig. 5 and Fig. 6 we can also see that using

coding can reduce about 30% of transmissions. The

memory encoding scheme performs better than maximum

clique coding. The reason is that using memory encoding,

sender does not discard the encoded packets which

cannot be decoded immediately, and leaves it for later use.

Thus sender can further reduce the number of

transmissions, which is an important performance metric

in real time applications.

3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Receivers

T
ra

n
s
m

is
s
io

n
 R

e
d

u
c
ti
o

n
 R

a
ti
o

Memory Encoding

Maximum Clique Coding

(a) in [0.2, 1]

3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Receivers

T
ra

n
s
m

is
s
io

n
 R

e
d

u
c
ti
o

n
 R

a
ti
o

Memory Encoding

Maximum Clique Coding

(b) in [0.5, 1]

Fig. 6. Transmission reduction ratio vs. The number of receivers

VII. CONCLUSIONS

In this paper, we focus on network coding based

broadcast scheduling in wireless networks with memory

model and aim at minimizing the number of transmission

packets. According to a two stage code construction

based on graph model and matrix transformation,

effective heuristic algorithm is proposed in this paper.

Simulation results show that our algorithm significantly

reduce the number of transmissions in most cases, which

is an important performance metric in real time

applications. The network coding gain of memory model

excels IDNC scheme which is consistently better than the

no coding scheme.

ACKNOWLEDGMENT

This work was supported by the Fundamental Research

Funds for the Central Universities (No. SWU115002, No.

XDJK2015C104).

REFERENCES

[1] C. Fragouli, J. Widmer, and J. Le Boudec, “Efficient broadcasting

using network coding,” IEEE/ACM Trans. Netw., vol. 16, no. 2,

pp. 450-463, 2008.

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 1002

[2] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive network coding

for broadcast channels,” in Proc. NetCod, Lausanne, 2009, pp. 80-

85.

[3] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless broadcast

using network coding," IEEE Tran. Vehicular Tech., vol. 58, no. 2,

pp. 914-925, Feb. 2009.

[4] S. Sorour and S. Valaee, “Completion delay minimization for

instantly decodable network coding with limited feedback,” in

Proc. ICC, Kyoto, 2011, pp. 1-5.

[5] N. Aboutorab, P. Sadeghi, and S. Sorour, “Enabling a tradeoff

between completion time and decoding delay in instantly

decodable network coded systems,” IEEE Trans. Commun., vol.

62, no. 4, pp. 1296-1309, Mar. 2014.

[6] K. S. Kim, C. P. Li, and E. Modiano, “Scheduling multicast traffic

with deadlines in wireless networks,” in Proc. IEEE INFOCOM,

Apr. 2014, pp. 2193-2201.

[7] A. Le, L. Keller, C. Fragouli, and A. Markopoulou, “MicroPlay: A

networking framework for local multiplayer games,” in Proc.

SIGCOMM MobiGames Workshop, Helsinki, 2012, pp. 155-160.

[8] A. Le, A. S. Tehrani, A. G. Dimakis, and A. Markopoulou,

“Instantly decodable network codes for real-time applications,” in

Proc. International Symposium on Network Coding (NetCod),

2013, pp. 1-6.

[9] M. Heindlmaier and C. Blochl, “The two-user broadcast packet

erasure channel with feedback and memory,” in Proc. IEEE

Workshop on Network Coding, Theory, and Applications (NetCod),

2014.

[10] N. J. A. Harvey, D. R. Karger, and S. Yekhanin, “The complexity

of matrix completion,” in Proc. SIAM-ACM Symp. Discrete

Algorithms (SODA), 2006, pp. 1103-1111.

Cheng Zhan was born in ChongQing, China,

in 1985. He received the Ph.D. degree from

the University of Science and Technology of

China (USTC), Hefei, in 2011. He is currently

in the School of Computer and Information

Science, Southwest University. His research

interests include network coding, wireless

network, and distributed storage.

Fuyuan Xiao was born in Guangxi Province,

China, in 1986. She received the Ph.D. degree

from the Kumamoto University, Japan, in

2014. She is currently in the School of

Computer and Information Science,

Southwest University. Her research interests

include optimization algorithm, data analysis,

and vehicular network.

Journal of Communications Vol. 10, No. 12, December 2015

©2015 Journal of Communications 1003

