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Abstract—In this paper we study network coding based 

wireless broadcast scheduling problem in real time applications 

under the memory model, aiming at minimizing the number of 

transmissions. In the memory model, receiver has enough 

memory, and a receiver will buffer all received encoded packets 

and decode out their “wanted” packets when enough packets are 

received. We prove that the coding based scheduling problem 

under memory model is NP-hard. Based on the graph model and 

the matrix transformation, we propose an effective heuristic 

algorithm consisting of a two stage code construction. 

Simulation results show that our algorithm can significantly 

reduce the number of transmissions in most cases, which is an 

important performance metric in real time applications. 
 
Index Terms—Network coding, broadcast scheduling, real time, 

memory 

 

I. INTRODUCTION 

In wireless applications, broadcasting data to multiple 

users is commonly used, such as satellite communications, 

WiFi networks, etc. By coding multiple original packets 

into a single coded packet, network coding can improve 

transmission efficiency and throughput over broadcast 

channels [1]-[3]. The works in [4], [5] studied coding 

based broadcast schemes for loss recovery that allow 

instantaneous decoding, where sender decides how to 

encode and transmit based on the cached information at 

receivers. These coding schemes are also known as 

Instantly Decodable Network Codes (IDNC). Previous 

work on IDNC focused on minimizing the completion 

time and decoding delay. However, there are few works 

considering the delay guarantee of data packets, which is 

an important aspect of quality of service.  

Recent development of commercial wireless services 

has created large scale demands for real time applications 

such as video streaming or interactive gaming. These real 

time applications have a distinct characteristic: they have 

strict and urgent deadlines, and a packet is useless (or less 

useful) after a short amount of time [6], [7]. Inspired by 

the above observations, the work in [8] studied the coding 

schemes for real time applications based on IDNC and 

found a code that is instantly decodable by the maximum 

number of users to minimize the number of transmissions. 
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However, in the existing IDNC scheme, receivers are 

forced to discard all packet combinations that cannot be 

immediately decoded, which means that the memory of 

receivers cannot be utilized efficiently. The two-user 

broadcast scenario with memory was analyzed in [9], it is 

shown that using the memory of receivers can increase 

the capacity region, however the work did not consider 

the encoding strategy for multiple users.  
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Fig. 1. An example 

Consider a single hop broadcast scenario with a sender 

s and six receivers r1,r2,…,r6 as shown in Fig. 1. Suppose 

that s needs to send six packets p1,p2,…,p6 to the 

receivers. Due to overhearing or prior transmission, 

receivers already have some packets and inform these 

information to sender according to feedback. As shown in 

Fig. 1, r1 has packets {p2,p3,p4,p5,p6}, r2 has packets 

{p1,p5,p6}, r3 has packets {p1,p2,p3}, r4 has packets 

{p1,p4,p6}, r5 has packets {p1,p3,p5}, and r6 has packets 

{p1,p2,p4}.  

TABLE I: PACKET INFORMATION AT RECEIVERS 

 p1 p2 p3 p4 p5 p6 

r1 1 0 0 0 0 0 

r2 0 1 1 1 0 0 

r3 0 0 0 1 1 1 

r4 0 1 1 0 1 0 

r5 0 1 0 1 0 1 

r6 0 0 1 0 1 1 

 

The buffered packet information at the receivers is 

shown in Table I, where 0 indicates that the 

corresponding packet is already received at the receivers 
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and 1 represents that the corresponding packet is needed 

at the receivers. 

According to the feedback information, s needs 6 

transmissions by the traditional way, i.e. transmitting 

p1,p2,…,p6 at each time slot respectively. However, by the 

encoding strategy introduced in [8], all needed packets 

can be recovered at all receivers by transmitting the 

following 4 encoded transmission packets p4⊕p5, p2⊕p4, 

p3⊕p5 and p1⊕p6 in sequence. For example, with p4⊕p5, 

r2 and r5 can recover p4, r4 and r6 can recover p5. With p2

⊕p4, r2 can recover p2 according to p4⊕(p2⊕p4) using 

p4 which is recovered before.  

If each receiver can buffer its received encoded 

packets, it can accumulate the useful information to 

recover all its needed packets, which can reduce the 

number of transmission packets. Under such a strategy, 

for the example given in Fig. 1, we only need to transmit 

the following 3 encoded packets, namely, p1⊕p2⊕p6, p3

⊕p5⊕p6 and p4⊕p5. When r5 receives the first encoded 

packet, the packet is useless for r5 because r5 needs both 

p2 and p6. If r5 can buffer this received packet, when it 

receives the second encoded packet, it can recover p6 

since it already has p3 and p5. After p6 is recovered at r5, 

r5 can use the first encoded packet to recover p2 since it 

has p6 and p1 by now. 

Inspired by the above examples, our aim in this paper 

is to determine the encoding strategy at the sender to 

minimize the number of transmissions under the receiver 

model which is referred to memory model. In the memory 

model, receiver has enough memory, and a receiver will 

buffer all received encoded packets and decode out their 

“wanted” packets when enough packets are received. Our 

contributions are summarized as follows:  

 We study the coding based scheduling problem under 

memory model and prove that the scheduling problem 

is NP-hard. 

 Based on graph model and matrix transformation, we 

propose an effective heuristic encoding algorithm 

using a two stage code construction scheme.  

 Simulation results show that the proposed 

transmission strategy can significantly reduce the 

number of transmissions in most cases.  

The remainder of this paper is organized as follows. In 

Section II, we will give the problem statement. The 

coding based scheduling problem under memory model is 

proved to be NP-Hard in Section III. In Section IV, we 

will propose our encoding algorithm based on the graph 

model. Decoding algorithm will be proposed in Section V.  

Simulation results will be shown in Section VI. Finally, 

we will conclude the paper in Section VII. 

II. NETWORK MODEL AND PROBLEM DESCRIPTION 

Consider a single hop wireless broadcast scenario 

where there are a sender s and n receivers R={r1,r2,…,rn}. 

s needs to transmit m packets P={p1,p2,…,pm} to the n 

receivers. Due to the overhearing or prior transmissions, 

receivers may have some packets in their caches. Each 

receiver only needs a subset of packets in P since it 

already had some packets in their caches. Set N(ri) 

denotes the packets needed at receiver ri and set H(ri) 

denotes the packets already had at receiver ri,  so we 

have ( ) ( )i iN r H r  , ( ) ( )i iN r H r P . We assume 

that time is slotted, and at each time slot,  the sender 

transmits one coded packet.  

The problem is that given the set of stored packets H(ri) 

at the receiver ri, the set of packets N(ri) needed by the 

receiver ri, 1 i n  , how to encode and transmit packets 

in each time slot to minimize the number of transmissions 

under memory model. In the memory model, a receiver 

will buffer all received encoded packets and decode them 

when enough encoded packets are received. This model is 

suitable for the nodes which have enough memory size 

such as mesh network and vehicular network nodes. Such 

an encoding decision problem is referred to as Memory 

Encoding (ME) problem. In this paper, we consider XOR 

coding since it is easy to be implemented with trivial 

overhead. 

III. MEMORY ENCODING 

A. Memory Encoding Problem 

In the memory model, receivers store packets which 

cannot be decoded immediately, and decode until enough 

encoded packets are received. Our Memory Encoding 

(ME) problem is to decide how to encode and transmit 

packets in each time slot to minimize number of 

transmissions with the assumption that receivers can 

decode until enough encoded packets are received. In the 

following, we will prove that ME problem is NP-hard by 

reducing the simultaneous matrix completion problem 

which is a well-known NP-complete problem, to ME 

problem.  

A simultaneous matrix completion problem is defined 

as follows. Given a set of mixed matrices, each matrix 

contains a mixture of numbers and variables, and each 

particular variable can only appear once per matrix but 

may appear in several matrices. The objective of the 

simultaneous matrix completion problem is to find values 

for these variables such that all resulting matrices 

simultaneously have full rank. It was shown in [10] that 

simultaneous matrix completion problem over GF(2) is 

NP-complete problem.  

Theorem 1. The Memory Encoding problem is NP-

hard.   

Proof. Since a receiver can at most recover one 

original packet upon receiving an encoded (xor) packet, 

any receiver needs at least ( )
ir R il max N r    encoded 

packets. In order to minimize the number of 

transmissions, we should construct at least l encoded 

packets from which the receivers can decode all the 

needed packets. Assume that the encoded packets are 

1 2
…

l
p p p       we can construct a l m  coefficient 
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matrix 
l mM 

 which contains 0,1 entries from the encoding 

vector of these packets. For receiver ri, if ( )j ip N r , we 

keep the j-th column in 
l mM 

, otherwise, we remove it 

from 
l mM 

. After such transformation, we get a l l  sub-

matrix i

l lM 
. i

l lM 
 can be used to illustrate the encoded 

packets containing only the packets in N(ri). If 

( )i

l lrank M l  , then ri  can decode all the needed packets 

in N(ri). Thus, given the matrix 
l mM 

 whose elements are 

variables and sub-matrix set { } 1i

l lM i n    , we want to 

find a value assignment of 
l mM 

 over GF(2) to make sure 

that all matrices in { }i

l lM   are full rank. Thus, we find that 

the memory encoding problem is equivalent to the 

simultaneous completion problem over GF(2) which is 

NP-complete shown in [10], thus the Memory Encoding 

problem is NP -hard. 

B. Graph Model 

Given the information about the "Have" and "Need" 

sets of receivers, we form an IDNC graph as in [4]:  

Definition 1. Given 1 2{ ... }nR r r r    , 

1 2{ ... }mP p p p    , ( )iN r P , ( )iH r P   

( ) ( )i iN r H r  , we construct a graph G(V,E) as:  

{ packet needed by }ij j iV v p r   , 

1 1 2 2 2 1 1 21 2{( ) ( ) ( )}i j i j j i j iE v v j j p H r p H r          

1 1 2 2 1 2{( ) }i j i jv v j j   .  

For each packet ( )j ip N r , there is a corresponding 

vertex ( )ijv V G . Table II shows the notations to be used 

in the constructed graph model and the proposed 

encoding algorithm. Fig. 2 is the corresponding graph of 

the aforementioned example in Section I. 
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Fig. 2. A graph example 

TABLE II: NOTATION 

Symbol  Description  

s  The sender  

ri  Receiver i  

n  Number of receivers  

H(ri)  The set of packets already had at receiver ri  

N(ri)  The set of packets needed at receiver ri  

P  The set of packets to be transmitted  

pj  The j-th packets to be transmitted  

m  Number of packets to be transmitted  

G  The constructed graph  

V(G)  The vertex set of graph G  

E(G)  The edge set of graph G  

vij  A vertex corresponds to packet pj  needed by ri  in graph G  

C  A clique in graph G  

 

In Fig. 2, v11 represents that r1 needs packet p1. Since 

1 6( )p H r  and
6 1( )p H r , there is an edge (v11,v66). r2 and 

r6 need the same packet p3, then there is an edge (v23,v63).  

It was shown in [4] that one encoded packet 

corresponding to a clique ( )C V G  can help some 

receivers recover their needed packets immediately. 

Intuitively, finding the clique containing maximum 

vertices will serve more receivers. The work in [8] used 

the maximum clique of IDNC graph to reduce the number 

of transmissions, under the assumption that instantly 

decoding is conducted at the receivers, i.e. once the 

encoded packet p  arrives at receiver ri, if ri cannot 

decode p  immediately, ri just drops packet p . However, 

if we allow receivers to store packets which cannot be 

decoded immediately, we can further reduce the number 

of transmissions. In our memory model, receivers store 

packets which cannot be decoded immediately, and 

decode until enough encoded transmission packets are 

received. 

 

IV. ENCODING ALGORITHM 

We propose an encoding algorithm which aims to 

satisfy all all needed packets at the receivers with 

minimum number of transmissions. Let 

( )
imax r R il max N r   , where |N(ri)| is the cardinality of 

N(ri). Since a receiver can at most recover one original 

packet upon receiving an encoded (xor) packet, any 

encoding algorithm needs at least lmax transmission 

packets. Therefore, lmax is the lower bound of the number 

of transmissions under the ideal case where all packets 

are successfully received by all receivers. The proposed 

encoding algorithm consists of two stages. At the first 

stage, we construct lmax encoded packets. Each encoded 

packet is the xor of some original packets, of which, at 

most one is selected from the needed packets of a 

receiver. With these lmax encoded packets, some receivers 

may not decode out all needed packets. Therefore, at the 

second stage, we need to append more necessary packets 

to complete the service.  
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At the first stage, we construct lmax encoded packets. 

According to the definition of G above, for any 

1i i n   , if j k , ( , ) ( )ij ikv v E G . We can partition 

V into n subsets {V1,V2,…,Vn}, where 

{ ( ) 1 }i ij j iV v p N r j m       is the set of needed 

packets of receiver ri. The main idea of our construction 

algorithm is that, we select a needed packet 

corresponding to a vertex in every Vi and xor them 

together as one encoded transmission packet. For every Vi, 

we select 
mijv , { }m ij ij min j v V   . After encoded packet 

being decided,  we delete 
mijv  in G. At the end of the 

construction algorithm, we get lmax encoded packets. This 

stage constructs a partial solution for Memory Encoding 

problem. The initial partial solution construction 

algorithm is given in Fig. 3.  

 
Fig. 3. Initial partial solution construction algorithm for memory 
encoding problem 

For example, suppose that sender s needs to transmit 

packets P={p1,p2,p3,p4,p5,p6}, r1 needs {p1,p2}, r2 needs 

{p1,p3}, r3 needs {p1,p4}, r4 needs {p2,p3}, r5 needs 

{p2,p4}, r6 needs {p3,p4}. Accordingly, 

( ) ( ) 1 6i iH r P\ N r i    . From the definition of graph 

G, we get the vertex subsets V1={v11,v12}, V2={v21,v23}, 

V3={v31,v34}, V4={v42,v43}, V5={v52,v54}, V6={v63,v64}. The 

initial partial solution is 

1 2 3 2 3 4{ }P p p p p p p       .  

Given P  constructed at the first stage, we need to find 

out whether P  is enough and what else are needed for 

completing the service. At the second stage, we append 

necessary packets based on the initial partial solution 

such that all receivers can recover their needed packets.  

For receiver ri, when it receives an encoded packet 
k

p , 

let kP  be the set of packets used to encode 
k

p , we 

define a receiving vector vik=(a1,a2,…,am), aj=1 if 

( )j ip N r  and 
kjp P  , else aj=0, 1 1i n j m     . 

Assume that ri  needs k packets and it has received l 

encoded packets, l k . Let 
1 2

( ) { ... }
ki i i iN r p p p    . ri 

can construct a matrix i

l mM 
 based on receiving vectors. 

If ( )j ip N r , we keep the j-th column in i

l mM 
, 

otherwise, we remove it from i

l mM 
. After such 

transformation, we get a l k  sub-matrix i

l kM 
.  

The following transformation can find out whether the 

j-th needed packet at ri can be recovered or not. We apply 

Gaussian elimination on i

l kM 
, if l>k, there exists some 

all-zero rows. After randomly deleting some all-zero 

rows, we can transform i

l kM 
 from a l k  matrix to a 

k k  upper triangular matrix ( )i

k k tj k kM a  . Based on 

i

k kM 
, considering the set J={j | atj is the first non-zero 

element of row t}. From the following lemma, we know 

that if 
1 11j J j k    , the j1-th needed packet at ri  

cannot be recovered.  

Lemma 1. Consider n variables x1, x2,…, xn and n 

equations, 
n nM 

 is the coefficient matrix. After Gaussian 

elimination on M, J={j | atj is the first non-zero element 

of row t}, if 
1j J , we cannot solve for 

1j
x .   

Proof. After the Gaussian elimination, M is 

transformed to an upper triangular matrix M  . J={j | atj is 

the first non-zero element of row t}, if 
1j J , then 

1tja  is 

not the first non-zero element of row t, 1 t n  . That 

means 
1 1

0j ja   if M   is an upper triangular matrix.  

1 1

1 1

1 1

10

0

0

j j

j j

a

a

  

 

 
 
 
 
 
 
 
 

 

According to the upper triangular matrix M  , we 

cannot solve for 
1j

x .    

With Lemma 1, we can easily identify which packet of 

N(ri) cannot be recovered and determine the necessary 

packets to be transmitted. If 
1 11j J j k    , 

1j
ip  will 

be sent as a transmission packet from the sender. The 

appending process of the second stage is given in Fig. 4.  

 
Fig. 4. Appending algorithm for memory encoding problem 
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Combining results of the first stage and the second 

stage, we can get the encoded packets from P Q  , 

where P  is the set of encoded packets from stage 1 and 

Q  is the set of original packets from stage 2. 

Considering the above example, at the second stage, 

based on P  , we can find out that all receivers can 

recover their needed packets expecting r4. Based on the 

receiving vectors of r4, v41=(0,1,1,0),v42= (0,1,1,0), r4 can 

construct matrix M  

1 1

1 1

 
 
 

 

After Gaussian elimination, we get the upper triangular 

matrix  

1 1

0 0

 
 
 

 

We find that J={1}. Since N(r4)={p2,p3}, and 2 J , 

we get 3{ }Q p  . Finally, the set of packets to be 

transmitted is 1 2 3 2 3 4 3{ }P Q p p p p p p p         . 

V. DECODING ALGORITHM 

Similarly, each receiver can determine how to decode 

each needed packet by the operations of Gauss-Jordan 

elimination. Upon receiving l encoded packets and with 

its received original data packets, each receiver can 

construct a matrix as follows. 

 Suppose that a receiver ri receives l encoded packets, 

denoted by 
1 2

…
lp p p     . For each 

jp , the packet 

head can specify which original packets are encoded. 

' jP  denotes the original packets set used to encode 

jp . With such packet head information, we can 

construct a m-dimension vector v = (a1,a2,…,am) 

where ak is 1 if jkp P  , otherwise ak is 0.  

 For each received original data packet pj where 

( )j ip H r , we can also construct a m-dimension 

vector v=(0,…,aj,…,0) where only aj = 1. 

As a result, ri constructs a ( | ( ) |)il H r m   matrix M, 

where |H(ri)| is the cardinality of H(ri). For each row of M, 

we maintain the correspondent packet information in an 

array B. 

For example, if the vector correspondent to 
jp  is row 

k1 of M, we set B[k1] = 
jp  . Similarly, if the vector 

correspondent to ( )j ip H r  is row k2 of M, we set B[k2] 

= pj. 

We then conduct Gauss-Jordan elimination on M to 

transform M to an m m  diagonal matrix by xoring rows 

and exchanging rows. We record the decoding operation 

by changing the packet information in B correspondingly. 

 If we xor row j1 to row j2, then B[j2] = B[j2]⊕B[j1].  

 If we exchange row j1 with row j2, we exchange the 

information in B[i1] with the information in B[i2]. 

After M is transformed to an m m  diagonal matrix, 

B[j] records how to decode and recover needed packet pj. 

For the example given in Section IV, the set of 

transmitted packets is 1 2 3{ ' , ' , ' }p p p , where 

1 1 2 3'p p p p   , 2 2 3 4'p p p p   , 3 3'p p , 

N(r1)={p1,p2}. After r1 has received 1 2 3' , ' , 'p p p , it can 

construct M and B as follows: 

3

4

1

2

3

0 0 1 0

0 0 0 1

, '1 1 1 0

'0 1 1 1

'0 0 1 0

p

p

M B p

p

p

  
  
  
   
  
  

   
   

 

After the Gauss-Jordan elimination, 

       

1 2 4

3 2 4

3

4

' '1 0 0 0

'0 1 0 0
,

0 0 1 0

0 0 0 1

p p p

p p p
M B

p

p

   
  

    
  
  

   

 

From the information in B, we know that r1 can recover 

p1 by computing
1 2 4' 'p p p  , and recover p2 according 

to 
3 2 4'p p p  . 

VI. SIMULATION RESULTS 

The simulation scenario consists of a sender and n 

receivers. The sender needs to send m packets which we 

denote as packet set P to n receivers, according to the 

overhearing or the prior transmission, every receiver has 

already stored some packets. The needed packets are 

randomly selected from the m packets with probability  , 

and the stored packets set ( ) ( ) 1i iH r P\ N r i n    . We 

are interested in the number of transmissions which is an 

important performance metric in the real time 

applications. In order to study the impacts of number of 

packets m and the number of receivers n on the network 

coding gain, we use the transmission reduction ratio 

nocoding coding

nocoding

Num Num

Num



  as performance metric where 

Numnocoding is the number of transmissions without 

network coding, and Numcoding is the number of 

transmissions with network coding. We compare 

transmission reduction ratio of maximum clique scheme 

in [8] with our memory encoding scheme.  

With regard to the impacts of number of packets m and 

the number of receivers n on the network coding gain, 

similar impacts can be observed for both the case when 

  is the same for all receivers and the case when   is 

different for different receivers. We only report the case 

when   is the same for different receivers in this paper 

to avoid redundancy.  

Fig. 5 shows the impact of number of packets m on 

the network coding gain which is measured by the 

transmission reduction ratio for n=5. In Fig. 5(a),  is 
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uniformly distributed in [0.2,1]. In Fig. 5(b),   is 

uniformly distributed in [0.5,1]. As shown in Fig. 5, for 

fixed  , the probability that a needed packet of a receiver 

is stored by another receiver and vice versa increases with 

increasing m. The reason is that the stored packets at each 

receiver will be randomly distributed in a larger set of 

original data packets while m increases. Thus, the 

network coding gain becomes larger. Due to the same 

reason, if we compare the results in Fig. 5(a) with the 

results in Fig. 5(b), it is found that when   becomes 

larger, the network coding gain increases faster with 

increasing m.  
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(b)  in [0.5, 1] 

Fig. 5. Transmission reduction ratio vs. The number of packets 

Fig. 6 shows the impact of the number of receivers n 

on the network coding gain. The transmission reduction 

ratio increases first and then decreases with increasing n. 

The probability that a needed packet of some receivers is 

stored by other receivers and vice versa is related to both 

 and n. Given  , the probability increased first and then 

decreased with increasing n. Thus, the network coding 

gain also increased first and then decreased with 

increasing n.  

From Fig. 5 and Fig. 6 we can also see that using 

coding can reduce about 30% of transmissions. The 

memory encoding scheme performs better than maximum 

clique coding. The reason is that using memory encoding, 

sender does not discard the encoded packets which 

cannot be decoded immediately, and leaves it for later use. 

Thus sender can further reduce the number of 

transmissions, which is an important performance metric 

in real time applications.  
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(b)   in [0.5, 1] 

Fig. 6. Transmission reduction ratio vs. The number of receivers 

VII.   CONCLUSIONS 

In this paper, we focus on network coding based 

broadcast scheduling in wireless networks with memory 

model and aim at minimizing the number of transmission 

packets. According to a two stage code construction 

based on graph model and matrix transformation, 

effective heuristic algorithm is proposed in this paper. 

Simulation results show that our algorithm significantly 

reduce the number of transmissions in most cases, which 

is an important performance metric in real time 

applications. The network coding gain of memory model 

excels IDNC scheme which is consistently better than the 

no coding scheme. 
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