

Manuscript received April 15, 2015; revised September 9, 2015.
Corresponding author email: fangzy@jlu.edu.cn.

doi:10.12720/jcm.10.9.734-739

734

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

Design of an Instant Messaging System Based on the IaaS

Cloud Platform

Miaofan Sun, Shengsheng Wang, Zhiyi Fang, and Mengjiao Zhang
College of Computer Science and Technology Jilin University, Changchun, 130012, P.R. China

Email: fangzy@jlu.edu.cn

Abstract—Instant messaging product is one of the most

important social network products. It promotes the development

of communication, business and mobile networks. However,

with the development of instant messaging system, some of the

disadvantages gradually are showed out, such as the proprietary

is too strong, repetitive development cycle is too long, and the

safety is not ideal. In order to better solve these problems, we

designed an instant messaging system based on the cloud

platform. Firstly, we built IaaS (Infrastructure as a Service)

cloud platform of the instant messaging service and

implemented the function interface. Secondly, we built the

Opnifre server which is a Real Time Collaboration (RTC)

server licensed under the Open Source Apache License, realized

the data conversion between XMPP (Extensible Messaging and

Presence Protocol) and HTTP (HyperText Transfer Protocol),

and developed the extension function plug-ins. Finally, we

implemented the Android client based on the above platform.

The Instant messaging system based on IaaS has a good

performance which can be independently introduced to other

business areas, extends the function of Openfire server and

shortens development cycle.

Index Terms—instant messaging, Infrastructure as a Service

(IaaS), openstack, openfire, android

I. INTRODUCTION

Instant Messaging (IM) system [1], [2] has rapid

development in recent years, however, IM system at

present has some limitations. It cannot be introduced to

other areas of commerce, and cannot guarantee safety and

maintainability. IM which is implemented based on

Infrastructure as a Service (IaaS) [3], [4] cloud platform

can solve the above problems.

IaaS [5] is an infrastructure and service. It provides a

service which includes using of all computing

infrastructure to consumers, such as CPU, memory,

storage, networks, and other basic computing resources.

The consumer does not manage or control any cloud

computing infrastructure, but can choose operating

system, storage space, deployment of application, and can

also possible to obtain the limit control of the network

components. OpenStack [6], [7] is a cloud computing

management software which was researched and

developed cooperatively by the U.S. National

Aeronautics and Space Administration (NASA). On IaaS

platform, Openstack mainly includes three major projects

[8]: operation project of Nova, oriented object data

storage project of swift and image file transfer service of

glance. Application development of IM based on IaaS

platform has become a new research direction in recent

years. IM system based on IaaS cloud platform can be

independent to other areas of Commerce, which can solve

the IM system of proprietary strong problem. Expansion

function of Openfire on open source servers can widen

the domain functionality. And the development of IM

based on the platform has a shorter development cycle.

In this paper our main contribution is as follows.

1. We built a private Iaas cloud platform with

OpenStack. On the platform we implemented and

encapsulated IM function interfaces which can solve the

existing problem of IM system.

2. Based on the platform, we built Openfire server

which implemented the communication between clients

and the Openfire server.

3. We implemented data conversion between XMPP

and HTTP protocol on Openfire server.

4. On the Openfire, we developed extension plug ins

which made up the insufficient function of the Openfire

server.

5. We implemented the Android client on the platform

and verified the interface instances.

The remainder of this paper is structured as follows. In

Section 2 we introduce the related work about IM system.

In Section 3 we describe the system requirement analysis.

In Section 4 we design the system. In Section 5 we

implement and evaluate the system. In Section 6 we

present the conclusions of this work and the next step

work in future.

II. RELATED WORK

In recent years, IM system technique is mainly as

follows. Loesing Karsten et al. [9] proposed an IM

system, which is explicitly designed to protect user

presence without the need of a trusted central registry.

Zhang weize et al. [10] employed an open instant

messaging protocol called XMPP to build a web instant

messaging system in browser/server structure for distance

education. Bin Zhang et al. [11] designed and integrated a

secure add-in seamlessly into the MSN client utilizing

interfaces of the MSN client. Gao yunxiang et al. [12]

proposed a new service model and implementation

mechanism based on Jabber/XMPP. Zhao Sheng et al. [13]

http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bLoesing%2C+Karsten%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bZhang%2C+Weize%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bZhang%2C+Weize%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bBin%2C+Zhang%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bGao%2C+Yunxiang%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bZhao%2C+Sheng%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bLiu%2C+Xiufeng%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

735

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

proposed a universal architecture that supports

broadcasting of messages to users in a particular physical

region. Liu Xiufeng et al. [14] presented a new approach

of location service system which realizes location-based

mobile IM chatting functions. Wei Ya Kun et al. [15]

Applied Java language, MySQL database to develop an

IM software on the basis of cross-platform Qt

development framework and Android operating system.

Wang Xiao-Yuan et al. [16] described the implementation

in C# of a Client/Server pattern, and the design of an

instant message application in LAN. Neviarouskaya

Alena et al. [17] research addresses the tasks of

recognition, interpretation and visualization of affect

communicated through text messaging.

The above papers mainly concerning the function and

structure of IM system, however, how to design an ideal

platform, overcome the proprietary of IM system, avoid

long repetitive development cycle, and improve the

efficiency of the communication is still to be researched.

III. SYSTEM REQUIREMENT ANALYSIS

In order to implement IM system based on IaaS

platform, we should build a cloud platform, develop the

IM function, and deploy the IM function to the cloud

platform which includes good external interfaces. On the

client, the system should have the ability of processing

local storage and data transmission. On the server, the

system should have the ability of accepting connections,

parsing protocol and connecting to the cloud platform.

According to the functional requirements, we planned

seven interface modules. In the system, these seven

modules of Openfire correspond to the interfaces of IaaS

platform. The specific design of the seven modules is

shown in IV section.

IV. SYSTEM DESIGN

A. System Target

The target of IM system based on IaaS platform is as

follows:

 Our cloud platform server is build based on

OpenStack, and the interfaces of IM function should

be encapsulated.

 The multi-clients communicate normally through

connecting the server. And the client’s account and

password should be safe and reliable.

 Openfire should be optimized. In view of requirement

analysis of IM function, we should expand its

functions, realize the protocol conversion on the

server, and make up the deficiency of Openfire

function.

 The communication between Openfire and cloud

platform should be implemented and the platform

interfaces should be called correctly.

B. System framework

IM system based on the IaaS platform is divided into

three parts: the cloud platform, Server and Clients. The

architecture of the IM system is shown in Fig. 1.

X
M

P
P

X
M

P
P

Conversation between

XMPP and HTTP

Openfire

H
T

T
P

H
T

T
P

IaaS Cloud Platform

Conversation between

XMPP and HTTP

Fig. 1. The architecture of the IM system.

 Cloud platform: We build a cloud platform based on

OpenStack, and at the same time, we implemented

and encapsulated the function interfaces of IM system.

The composition of OpenStack project is as shown in

Fig. 2. Openstack compute is cloud computing

controller which provides a management tool for the

cloud platform. It can run virtual machine instances,

control project and user access to the cloud, and

manage network at al. OpenStack Object Storage is an

object storage system which is extensible. It can store

a variety of data. Image service (Glance) is an virtual

machine image service which can storage, query and

detect on the virtual machines.

Dashboard

Compute

Identity

ObjectImage
retrieves/stores

images in

retrieves/stores

disk files in

Provides UI for Provides UI forProvides UI for

authenticates

with

authenticates

with

authenticates

with

Fig. 2. The composition of OpenStack project

The step of building the cloud platform based on

OpenStack is as follows.

Step 1: Three networks are defined in Virtual box.

NET1 is management network, NET2 is public network,

and NET3 is object storage network.

Step 2: Three virtual machines are created and started.

One is controller virtual machine, and the others are fuel

virtual machines.

Step 3: The nodes are configured as cloud computing

nodes and the control nodes.

 Client: Client implements the interface functions of

the cloud platform, which including user login

management, friend management, one to one chat,

http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bLiu%2C+Xiufeng%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bWei%2C+Ya+Kun%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bWang%2C+Xiao-Yuan%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bNeviarouskaya%2C+Alena%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

736

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

chat room, state management, footprint sharing and

other modules. We propose specific design in Section

IV-D.

 Server: According to the requirement of the platform,

server extends functions, encapsulates the protocol

interface of HTTP, and implements conversion

between HTTP and XMPP [18]. The implement of

protocol conversion is shown in Section V-D.

C. Communication Protocol of IM System

 Communication architecture of XMPP protocol:

XMPP [19] which is client-server architecture does

not combine with the specific network. The abstract

of the architecture is shown as follows (The symbol

“−” means XMPP communication, and the symbol

“=” means arbitrary communication protocol).
1 1 2 3

2 1 1 1

1, 2, 3

1, 2

1

1

1

C S S C

C G FN FC

C C C Clientof XMPP

S S Serverof XMPP

G AGatewaybetween XMPP and anexternal messagenetwork

FN Anexternal messagenetwork

FC AnClient of external messagenetwork

XMPP address structure: An entity in the network

structure is considered to be a node. It has a unique

identifier JID that is entity address which is used to

identify a user or the other content, such as a chat

room. An effective JID should include some elements

such as domain identifier, node identifier, and

resource identifier.

 XMPP message format: XMPP includes three top-

level XML elements: Message, Presence, and IQ.

Message represents the transmission message. When

the user sends a message, the Message element will be

inserted in the context of the flow. Presence represents

the state of the user, such as online, offline, etc. When

the user changes his state, a Presence element will be

inserted in the context of the data flow. IQ represents

a request-response mechanism which an entity sends a

request, and another entity accepts the request and

responds.

D. The Design of the Function Modules

 User management: it includes operation of login,

registration, and exit. We wrote the server domain

name on Openfire [20]. When the user registers, the

module determines whether the domain name of the

server can be connected to the Openfire. If the domain

name can be connected, the registration information

will be sent to Openfire. Then Openfire will receive

the XML format messages, and parse the message into

an HTTP data flow which is sent to the cloud platform.

The cloud platform will check processing, and encrypt

the password which will be stored to the database.

Then, the cloud platform returns successfully

registered information to Openfire. Finally, protocol

conversion will be finished, and sent to Client. User

management interaction diagram is shown in Fig. 3.

 Friend management: It includes adding, deleting,

finding friends and friends list. Client sends the

request to Openfire which sends the request to the

cloud platform through the interface. Cloud platform

based on the Client request for processing. The Friend

management interaction diagram is shown in Fig. 4.

Client Application Server Platform server

Send Registration Request

Response Registration Request

Send Registration Message

Process Registration Message
Return Registration Result

Send Login Request

Call LBS Location Interface

Return Location Message

Set present state

The State

Obtain Contact Person List

Contact Person List

Return Location/User State/Contact Person

Fig. 3. User management interaction diagram

Client Application Server Platform Server

Search Contact Person Requset

Search Appointed Contact Person

Return Search Result Search

Return Search Result

Add Contact Person Add Appointed Contact Person

Add the Contact Person to the List
Add Successfully

Return Result

Delete Appointed Contact Person

Delete Appointed Contact Person

Delete Appointed Contact Person
Delete Successfully

Return Result

Fig. 4. Friend management interaction diagram

Client Application Server Platform Server

Send the Message to Client B

Request Client B to show the State

Return the State Check Information of B

Process the Return Result

B is Online,Send the IM to B

Send Successfully

B is not Online,Check Message Settings of B

If not Receive the Message on B,Store the List

If Receive the Message on B,Send Request to B

Process the Requst
Notice success

Return the Result,the Message has been sent

Return the Result,B is not Online

Fig. 5. One-to-one chat interaction diagram

737

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

 One-to-one chat: It is a communication between two

clients. “A” sends the instant messages to “B”, at this

time, “A” sends the request to Openfire which

receives the request, formats the data, and sends the

request to the cloud platform. After receiving the

message, the cloud platform judges whether “B” is

online. If “B” is online, the cloud platform will

directly send the message to “B”, and “B” will receive

the message to process. If “B” is not online, then the

cloud platform will store the message to the offline

message list, send the message to “B” when “B” is

online, and delete the offline records. One to one chat

interaction diagram is shown in Fig. 5.

 Group management: It mainly includes creating

groups, updating group information, adding and

deleting group members. The Group management

interaction diagram is similar to figure4, so it not to

be detailed here.

 Chat room: It is a process of a one-to-many chat. If a

client speaks, Openfire will send the message to

others clients in the chat room. This client sends the

message to Openfire which receives the message,

formats the data and sends the message to the cloud

platform. After receiving the message, the cloud

platform sends the message to the contact person, and

this is one-to-one processing. After the clients return

the feedback information, Openfire sends the

information back to the user. The chat room

interaction diagram is shown in Fig. 6.

Client Application Server Platform ServerOthers Clients

Obtain Contact Person in Chat room

Process RequestReturn Contact Person List

Send Message to Appoined Contact Person

Send Message in Chat Room

Receive the Message

Send Successfully

Fig. 6. Chat room interaction diagram

Client A Application Server Platform Server

Set the State

Update the Information

Process the RequestReturn Processing Result

Update the state of Users

Friend Client

Update the State of User A

Response

Save the Information

Fig. 7. State management interaction diagram

 State management: Users have their own login status

which is online, off-line, and busy, etc. State

management can modify the state of the users. If

Openfire receives the request of modification, the

request will be sent to the cloud platform which will

modify and store the user’s state. Then, cloud

platform will return back the results to the Openfire,

and Openfire will push the state to the others clients

by broadcasting. The State management interaction

diagram is shown in Fig. 7.

 Footprint sharing: When the user shares the micro-

blog information to platform, Openfire will receive

the request and send the request to the cloud platform.

Cloud platform will return the processing result to

Openfire according to the request. The Footprint

sharing interaction diagram is shown in Fig. 8.

Client Application Server Platform Server

Release Request including State

Suggest that has been Release

Update Request of User's State

Return Information of User's State

Send Sharing Request

Return Sharing Successfully

Request of User ID and State

Process the Request of Releasing
Return the Request State

Request of Update User's ID and State

Return User's State Process the Request of Updating

Permit User Sharing the Information

Upload Sharing Information Request

Server Processes the Sharing Information

Fig. 8. Footprint sharing interaction diagram

ConnectionHandler

Recieve the Message

StanzaHandler

Initialization/Close session/Authentication

PacketRouterImpl

Classify the Router according to Message type

Message Router IQ Router Presence Router

RoutingTableImpl MulticastRouter

Same domain name

LocalClientSession

Sub domain name

Distribute to related components

RemotePacketRouter

others nodes

RoutableChannelHandler

same nodes
Fig. 9. Data flows parsing of Openfire

E. Openfire Sever Design

The design steps of Openfire sever is as follows:

Step 1: Openfire source code deployment. We packed

the plug-ins of Openfire , Set running data and configured

database.

Step 2: Openfire source codes parse. When Openfire

running, it receives messages by ConnectionHandler, and

processes the message by StanzaHandler. Openfire parses

the message according to the nodes of XML’s byte flows.

The result of parsing is sent to PacketRouterImpl which

classify the messages. The detailed data flow of parsing is

shown in Fig. 9.

738

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

V. SYSTEM IMPLEMEMNTATION AND EVALUATION

A. Openstack Build

In this study, we used Openstack to build cloud

platform which need to use three PC. If conditions are

limited, the environment can also be instead of the virtual

machine. The detailed environment deployment

configuration: at least for dual core processor, memory

more than 4G, and disk more than 200G. We used fuel file

to deploy the Openstack.

B. Instant Messaging Interface Implementation

In order to implement the instant messaging interface,

we wrote the compute function modules by secondary

development. The steps are as follows.

Step 1: We created instant messaging interface file. In

the interface file, we verified the sending data from the

client and stored the data in the database.

Step 2: Call the interface needs a display page. We

added the layout of the page and the display of obtained

data according the requirement.

Step 3: We created the access address of the interface

and configuration of the router. We created the interface

resource, and determined the interface for GET or POST.

Through the above steps, we implemented and

encapsulated the instant messaging interface. If the

interface is updated on openstack, we should restart the

Nova.

C. Mobile Client Implemention

The logic structure of application implementation

module for client is shown in Fig. 10. We took the

footprint sharing module as an example. And the others

modules are not to be detailed here. On Openfire, the

footprint sharing is an extension function which client

can send message and share their tracks. On the map, the

client can also show the location and the content of the

release information. The user interface of footprint

sharing is shown in Fig. 11, the user interface of chat

room is shown in Fig. 12. The others user interfaces are

not to be displayed here.

Client

Function List
Group

management

State

management

Footprint

sharing

User

management

Friend

management

One-to-one

chat
Chat room

Fig. 10. Logic structure of application module for client

Fig. 11. The user interface of footprint sharing

Fig. 12. The user interface of group member and chat room

D. Openfire Protocol Conversion Implementation

On Openfire, data flow received from the client is

XML data format. However, IaaS platform olny uses the

HTTP protocol. So the Openfire needs conversion

between XMPP and HTTP protocol. We implemented the

interface of protocol conversion. The steps are as follows.

Step 1: We parsed the XML data flow, found the

corresponding key information, and called protocol

conversion interface which encapsulated the information

to JSON format.

Step 2: When the interface is called, we used the

get/post method in HTTP to call the corresponding

interface of the IaaS platform. And the JSON data

information is sent to the platform, then waiting for the

feedback results of the authentication.

Step 3: The feedback results is HTTP format which are

parsed and encapsulated for XML format to the client.

E. System Performence Evaluation

In order to test the performance of the system based on

the IaaS cloud platform, we compared the processing

time in a single machine environment and IaaS

environment. According to the comparison, the advantage

of IaaS platform is very obvious with the increase of the

amount of data. The performance of comparison is shown

in Fig. 13.

0 300 600 900 1200 1500 1800 2100 2400

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
ro

c
e

s
s
in

g
 t
im

e
(s

e
c
o

n
d

)

File size(MB)

 single machine environment

 IaaS

Fig. 13. The processing time of a single machine environment and IaaS

VI. CONCLUSIONS

In this paper, we designed and implemented an IM

system based on IaaS cloud platform. We fist built a

private Iaas cloud platform with OpenStack, and on this

platform, we implemented and encapsulated IM function

http://dict.cnki.net/dict_result.aspx?searchword=%e5%af%b9%e6%af%94&tjType=sentence&style=&t=comparison
http://dict.cnki.net/dict_result.aspx?searchword=%e5%af%b9%e6%af%94&tjType=sentence&style=&t=comparison

739

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

interfaces. Secondly, we built Openfire server which

implements the communication between clients and the

Openfire server, and implemented data conversion

between XMPP and HTTP protocol on Openfire server.

Thirdly, on the Openfire, we developed plug ins which

made up the insufficient function of the Openfire server,

and implemented the Android client on the platform.

Finally, we compared the processing time in a single

machine environment and IaaS environment. According

to the comparison, the advantage of our IM system based

on IaaS cloud platform is very obvious.

Our IM system based on the IaaS cloud platform has

some follow-up work to do. In order to promote the

performance of the system, we will optimize the

performance of the cloud platform, continue to develop

the IOS client and web version.

REFERENCES

[1] B. Y. Han, X. Y. Liu, J. Wang, et al., “Extending an instant

messaging system with data services and mashups thereof,” in

Proc. IEEE International Conference on Services Computing,

October 2014, pp. 848-849.

[2] X. F. Gu and L. Yan, “Instant messaging system based on Jabber,”

in Proc. 10th International Computer Conference on Wavelet

Active Media Technology and Information, 2013, pp. 214-217.

[3] P. Xu, R. Hu, and S. Su, “Research on resource management in

PaaS based on IaaS environment,” Communications in Computer

and Information Science, vol. 401, pp. 145-157, 2013.

[4] J. F. Jiang, X. S. Chen, and L. Chen, “A vulnerability scanning

framework based on monitoring agents for IaaS Platforms,”

Journal of Sichuan University (Engineering Science Edition), vol.

46, pp. 116-121, July 2014.

[5] C. A. Alexandra, D. Djawida, A. C. Orgerie, and P. Guillaume,

“Towards energy-aware IaaS-PaaS Co-design,” in Proc. 3rd

International Conference on Smart Grids and Green IT Systems,

2014, pp. 203-208.

[6] K. R. Hassan, Y. Jukka, and A. A. Shohel, “OpenID

authentication as a service in OpenStack,” in Proc. 7th

International Conference on Information Assurance and Security,

2011, pp. 372-377.

[7] W. C. David, S. Kristy, L. Craig, F. Yann, and G. Damien,

“Adding federated identity management to openstack,” Journal of

Grid Computing, vol. 12, no. 1, pp. 3-27, March 2014.

[8] S. S. Suhas and S. S. Shilpa, “Comparing openstack and

VMware,” in Proc. International Conference on Advances in

Electronics, Computers and Communications, January 2015.

[9] L. Karsten, R. Maximilian, W. Christian, and W. Guido,

“Implementation of an instant messaging system with focus on

protection of user presence,” in Proc. 2th International

Conference on Communication System Software and Middleware

and Workshops, 2007.

[10] W. Z. Zhang, “Distance education oriented web instant messaging

system,” WIT Transactions on Information and Communication

Technologies, vol. 58, pp. 943-952, 2014.

[11] B. Zhang, M. Feng, H. R. Xiong, and D. Y. Hu, “Design and

implementation of secure instant messaging system based on

MSN,” in Proc. International Symposium on Computer Science

and Computational Technology, 2008, pp. 38-41.

[12] Y. X. Gao, C. B. Xiao, C. Q. Gao, and H. G. Chen, “A study on

jabber-based instant messaging system for mobile networks,” in

Proc. IEEE International Symposium on Knowledge Acquisition

and Modeling Workshop Proceedings, 2008, pp. 884-887.

[13] S. Zhao, X. Feng, Z. Chen, Z. Li, and J. H. Ma, “MobiMsg: A

resource-efficient location-based mobile instant messaging

system,” in Proc. 2nd International Conference on Cloud and

Green Computing and 2nd International Conference on Social

Computing and Its Applications, 2012, pp. 466-471.

[14] X. F. Liu, L. G. Zhang, X. J. Zhan, and P. P. Chen, “Location-

based mobile instant messaging system,” in Proc. 2nd

International Conference on Consumer Electronics,

Communications and Networks, 2012, pp. 1886-1889.

[15] Y. K. Wei, L. X. Zuo, C. B. Shao, Y. Fu, and Y. Wan, “The

design of instant messaging system based on Qt-Android system,”

Advanced Materials Research, vol. 834-836, pp. 1915-1918, 2013.

[16] X. Y. Wang, X. Feng, and D. L. Wang, “Research for key

technologies of internal instant messaging system development,”

in Proc. International Conference on Mechatronic Science,

Electric Engineering and Computer, 2011, pp. 326-329.

[17] N. Alena, P. Helmut, and I. Mitsuru, “User study of affect IM, an

emotionally intelligent instant messaging system,” Lecture Notes

in Computer Science, vol. 5208, pp. 29-36, 2008.

[18] X. F. Bai and M. Yang, “Design and implementation of web

instant message system based on XMPP,” in Proc. IEEE 3rd

International Conference on Software Engineering and Service

Science, 2012, pp. 83-88.

[19] F. G. Wang, X. W. Yang, L. Zhang, and Y. B. Zhang, “Design of

environmental monitoring system based on XMPP,” in Proc. 2nd

International Conference on Measurement, Information and

Control, vol. 1, pp. 509-512, 2013.

Miaofan Sun is currently a Ph.D. candidate in

Computer science and Technology of Jilin

University. Her research interests include the

areas of distributed computing system and

parallel computing.

Shengsheng Wang received his PhD degree in

computer science from Jilin University in 2003.

From 2004 to 2007, he worked with the

Mathematics Institute of Jilin University as a

postdoctoral researcher. From 2009 to 2010, he

worked with the national lab NCGIA at the

University of Maine in US as a visiting

professor. His research interests include spatio-

temporal reasoning, computer vision and pattern recognition. He

published more than 80 papers including 12 indexed by SCI, nearly 70

indexed by EI. As a key member, he has accomplished 5 National 863

Projects and 5 NSFC projects (including one Major Research Program).

He has received 1st prize of Science & Technology Progress Award of

Jilin Province twice and 2nd prize of Science & Technology Progress

Award of Jilin Province once.

Zhiyi

Fang

received

the

PhD

degree

in

computer

science

from

Jilin

University,

Changchun,

China,

in

1998,

where

he

is

currently

a

professor

of

computer

science.

He

was

a

senior

visiting

scholar

of

the

University

of

Queensland,

Australia,

from

1995

to

1996,

and

the

University

of

California,

Santa

Barbara,

from

2000

to

2001.

He

is

a

member

of

China

Software

Industry

Association

(CSIA)

and

a

member

of

Open

System

Committee

of

China

Computer

Federation

(CCF).

His

research

interests

include

distributed/parallel

computing

system,

mobile

communication,

and

wireless

network.

http://dict.cnki.net/dict_result.aspx?searchword=%e5%af%b9%e6%af%94&tjType=sentence&style=&t=comparison
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bLee%2C+Craig%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bBin%2C+Zhang%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bXia%2C+Feng%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&searchtype=Quick&searchWord1=%7bNeviarouskaya%2C+Alena%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

