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Abstract—Mobile devices become popular with the help of 

hardware improvements and new functions supported by many 

sensors. In this paper, we propose a mobile and multi-sensing 

fusion platform to integrate the unstructured streaming sensing 

data collecting as well as processing technology and build a 

QoS (quality of service) performance model to estimate the 

computing resource of the platform. We also demonstrate three 

mobile and multi-sensing fusion applications as the examples on 

the platform. Besides, we discuss the trend and challenges of 

combining the mobile as well as multi-sensing fusion 

technology and signal and information processing in mobile 

cloud computing in great detail. 
 
Index Terms—Mobile cloud computing, multi-sensing fusion 

technology 

 

I. INTRODUCTION 

Mobile devices consist of many sensors, which collect 

huge amount of data from each person. Sensors on 

mobile devices such as Global Positioning System (GPS) 

and camera sensors generate unstructured sensing data 

continuously. To analyze multiple source streaming 

sensing data, complex event processing technology which 

combines data from multiple sources to decide whether 

there are events or patterns is proposed [1]. However, 

streaming sensing data collecting and analyzing 

technology have not been integrated and implemented on 

a platform in the literature. Thus, we propose mobile and 

multi-sensing fusion platform which continuously 

collects multiple unstructured streaming sensing data, 

preprocesses data to specific programming type and 

integrates complex event processing technology to 

analyze streaming sensing data in real-time. 

Fig. 1 shows the mobile and multi-sensing fusion 

platform architecture. We divide platform into three parts. 

The first part is clients such as smartphones and tablets 

which include many sensors. Clients generate 

continuously sensor data such as location data, preprocess, 

compress and send the data to the second part. The 

second part is cloud servers which use multi-sensing 

fusion technology to analyze the sensor data. Since sensor 

data are generated continuously and have to be analyzed 

in real-time, InfoSphere Streams computing platform [2]–
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[5] is adopted to analyze streaming sensor data on cloud 

servers. Furthermore, most of applications on mobile and 

multi-sensing fusion platform are real-time applications, 

so we design a quality of service ensured (QoS-ensured) 

performance model as the third part to analyze the 

performance and allocate the computing resource. 

Besides, Google App Engine [6] as well as Windows 

Azure [7] provide the computing platform as a service 

(PaaS) and Amazon Elastic Compute Cloud (Amazon 

EC2) [8] provide the computing infrastructure as a 

service (IaaS) for mobile and multi-sensing fusion 

platform. We also give three different workload multi-

sensing applications includes education cloud, rescue 

cloud and business cloud to be the examples on the 

mobile and sensing fusion platform. 

 
Fig. 1. System architecture of mobile and multi-sensing fusion platform. 

In this paper, we not only propose mobile and multi-

sensing fusion platform, but also point out the key 

challenges of mobile and multi-sensing research. Owing 

to sensing data are generated continuously, how to 

manage and process unstructured, intensive and 

streaming sensing data in real-time is the first challenge. 

The second challenge is QoS issue of streaming data 

analysis system. Streaming data analysis result should 

respond to users in real-time. Therefore, designing a 

queueing model to predict and adjust computing resource 

becomes critical. If we sent all the sensing data to cloud 

servers to analyze, we would cost a lot of bandwidths and 

time to transfer data. Thus, multi-sensing application 

partitioning between clients and cloud servers is the third 

challenge. The fourth challenge is data fault tolerance 

technologies of multi-sensing applications. Analyzing 
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sensing data without storing technology is proposed to 

increase the performance of sensing data analysis. 

However, if the computation nodes are broken or failed, 

the sensing data could be lose. Therefore, how to replay 

continuously sensing data is important for multi-sensing 

applications. 

The paper is organized as follows. Section II 

introduces mobile and multi-sensing fusion platform. 

Section III details mobile and multi-sensing fusion 

applications. Section IV discusses the challenges of 

multi-sensing fusion research. We conclude the paper in 

Section V. 

II. MOBILE AND MULTI-SENSING FUSION PLATFORM 

Clients, cloud servers and QOS-ensured performance 

model are three parts of mobile and multi-sensing fusion 

platform. Following are the details of every part. 

 

Fig. 2. Technology overview of mobile and multi-sensing fusion 
platform. 

 
Fig. 3. Complex event processing flow. 

 

Fig. 4. InfoSphere streams computation model. 

A. Clients 

Mobile phones consist of many sensors, which can 

collect huge amount of data from each person. After 

sensing data are processed and analyzed, valuable 

information can be created for customers. Fig. 2 shows 

that visual, audio, motion, location sensors, etc. can 

identify local environments and the behavior as well as 

location of users, thereby providing information such as 

augmented reality or 3D maps. Sensing data are 

continuously generated by smart devices “seeing” and 

“interacting” with users. This is the object detection step 

of complex event processing as shown in Fig. 3. The 

second step of complex event processing is object 

estimation. In this step, sensing data are rotated and 

translated by Kalman Filter or Particle Filter. After 

Kalman Filter or Particle Filter filters the sensing data, 

complex event processing step estimates whether 

updating the new event and discovers the things relevant 

to users. Object detection and estimation are executed on 

clients’ devices, but the decision step as the third step of 

complex event processing is executed in cloud servers. 

The estimating and discovering result are sent to cloud 

servers. Cloud servers execute learning technology which 

finds the information inciting users’ interests and 

knowing technology which notifies users about the 

information relevant to them. 

 
Fig. 5. Example of InfoShpere streams. 

B. Cloud Servers 

Cloud servers execute the decision step of complex 

event processing. Since sensing data are generated 

continuously, InfoSphere Streams which can analyze data 

in real time with micro-latency [2]–[5] is adopted in 

cloud servers. InfoSphere Streams is a parallel and high 

performance stream processing software platform that 

can scale over a range of hardware environments and also 

can automatically deploy stream processing applications 

on configured hardware and extend stream processing 

application without restarting. In Info Sphere Streams, 

data flows through operators which manipulate the data 

stream, and execute in-flight analysis on the data as 

shown in Fig. 4. Fig. 5 is an example of InfoSphere 

Streams. Functor operator transforms incoming data in 

some programmatic manner and sends data to next 

operator. In this example, the next operator is split 

operator. Data are classified to either a file sink or a 

database in split operator. From the example, we can find 

that InfoSphere Streams can analyze data and get result 

without storing data. All in all, InfoSphere Streams can 

intensively enhance performance of analyzing data in 

motion and achieve the Service Level Agreement (SLA) 
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of real time multi-sensing applications on mobile and 

multi-sensing fusion platform. 

 

Fig. 6. The example of QoS-ensured performance model. 

 

Fig. 7. The example of QoS-ensured performance model. 

C. QoS-Ensured Performance Model 

Applications on mobile and multi-sensing fusion 

platform are interactive with users and have to respond to 

users in real-time. Besides, the applications are mashup 

services which integrate the outcomes from multiple 

sensing data. For example, a location-based augmented 

reality application combines the location data and the 

camera data to create an augmented reality environment 

[9]. Thus, we propose a QoS-ensured performance model 

for mashup sensing applications. The QoS-ensured 

performance model analyzes the computation 

performance and allocates the computing resource to 

avoid violating the QoS of applications. We consider a 

mapper and reducer cloud model and adopt the FIFO 

policy as well as priority queueing model as shown in Fig. 

6. The mashup center is composed of mapper server and 

reducer sever. When a request enters the mapper server, 

the service request will be forwarded to three different 

sensing data processing servers, such as audio processing 

server, image processing and location processing server 

with probability 1P , 2P , and 3P , respectively. The traffic 

will leave the mashup system with a probability of outP  if 

the service does not require the cloud server. The reducer 

server will integrate the outcomes of three different 

sensing servers and reply the integrated results to the 

users. There are single- and two-class traffic loads. 

In single class traffic, as shown in Fig. 6, the mapper 

server and reducer server are modeled as the M/M/c 

queue, and three different sensing data processing servers 

are modeled as an M/M/1 queue. All the servers, 

including mapper, reducer and three different sensing 

data processing servers adopt First in First Out (FIFO) 

queue discipline, Poisson distributed arrival process, and 

the exponential distributed service time. 

In two class traffic, the users are classified into payers 

and free users. The payers have higher priority to be 

served than the free users. When a payer asks for mashup 

service, his request will be placed in front of free users’ 

requests, and follow the FIFO queueing discipline within 

the same class users. When a free user asks for the 

service, he will line up at the end of the queue if other 

users are waiting for serving. As mentioned before, the 

service request will enter into the cloud servers or leave 

the system with the probability 1P , 2P , 3P  and outP . The 

queueing model is changed from Fig. 6 to Fig. 7. The 

external arrivals are divided into two classes. The high 

priority users are payers. The low priority users are free 

users. We also assume mapper and reducer are M/M/c 

queues and three different sensing data processing servers 

are M/M/1 queue. The service of mapper server discipline 

is non-preemptive priority and the other discipline is 

FIFO. The arrival rates for the high priority request and 

the low priority request is Poisson distribution. The 

service time at the servers are all exponentially 

distributed. The work of QoS-ensured performance model 

has published in [10]. 

III. MOBILE AND MULTI-SENSING FUSION APPLICATIONS  

We design three multi-sensing applications includes 

education cloud, rescue cloud and business cloud on 

mobile and multi-sensing fusion platform. Three 

applications can represent clients’ workload is heavier, 

clients’ and servers’ workload is equivalent and servers’ 

workload is heavier. 

 
Fig. 8. The computation steps of education cloud. 
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Fig. 9. The AR interaction of education cloud. 

A. Education Cloud 

In education cloud, we implement augmented reality 

(AR) technology on a book to interactive with users. If 

the sensors on the client devices detect the specific image, 

eagle will be shown on the screen as shown in Fig. 9(a). 

If the sensors detect users’ hands, the caterpillar which 

lives in the house in the corner of the screen can be 

controlled by users’ hands as shown in Fig. 9(b). Once 

the object is detected, the object estimation step is 

executed to update the hands’ state. If the location of 

hands is too close to the eagle, the eagle will attack the 

caterpillar as shown in Fig. 9(c)(d). 

TABLE I: COMPARISON OF MARAIS AND MARAIS-L 

 
 

In education cloud, we propose Mobile Augmented 

Reality Interactive System (MARAIS) to detect feature, 

describe feature and match feature points as shown in Fig. 

8. Clients’ devices are responsible for feature detection, 

feature description and rendering 3-D object onto the 

camera view to interactive with users. If we also execute 

feature points matching in local environments 

(MARAISL), the complex event processing delay is long 

as shown in Table I. Therefore, we divide MARAIS into 

MARAIS at mobile device (MARAIS-D) and MARAIS 

at cloud servers (MARAIS-C) to separate working load. 

Clients’ devices capture color frames by camera and 

execute feature detection as well as description to find 

feature points. These feature points and descriptors are 

sent to MARAIS-C. MARAIS-C matches feature 

between captured image and target image in database and 

send the result back to MARAIS-D. After receiving 

information from MARAIS-C, MARAIS-D renders the 

corresponding 3-D object onto the camera view and 

execute particle-based hand tracking to provide user 

interaction with the 3-D object. From Table I, we can see 

that executing feature matching on cloud servers decrease 

process delay intensively. The detail of education cloud is 

described in [11]–[13]. In education cloud, clients’ 

devices collect image data and build 3-D objects, so 

clients’ workload is much heavier. 

 
Fig. 10. The system architecture of rescue cloud. 

B. Rescue Cloud 

The second application is rescue cloud [14]. Owing to 

the increasing of elderly people falling down, we design a 

rescue cloud which can monitor the state of elderly 

people. If elderly people fall down, the rescue cloud call 

911 and notify their family immediately. Fig. 10 shows 

the architecture of rescue cloud. A motion sensor which 

can transfer motion data into skeleton points effectively is 

chosen to detect falls as shown in Fig. 11(a). 

 
Fig. 11. The rescue cloud. 

TABLE II: FALL DETECTION ACCURACY AND TIME 
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This is the process of data collector. Once the skeleton 

points are detected, the skeleton points estimation step is 

executed to update, compress and send the skeleton 

points to the cloud servers. This is the process of data 

parser. In the cloud servers, support vector machine-

based (SVM-based) intelligent clustering algorithm is 

designed and implemented in parallel to decide whether 

users are falling down as shown in Fig. 11(b). Table II 

shows falling detection accuracy and time by different 

kernel model of SVM. According to Table II, we adopt 

polynomial as kernel model and 0.5 second as input data 

update period in rescue cloud since polynomial has 

highest accuracy and shorter falling detection time. In 

rescue cloud, clients collect motion sensor data 

continuously and compress the sensing data to capture the 

feature of sensing data. Cloud servers execute complex 

event processing algorithm in parallel to decide whether 

there is an event. Therefore, the clients’ workload and 

cloud servers’ workload is equivalent in rescue cloud. 

C. Business Cloud 

The third application is business cloud [15]. 

Advertisements and coupons forwarding among mobile 

devices and social platforms to increase the consuming 

benefit become popular in recent years. However, 

sending same advertisements and coupons to every user 

cannot increase business benefit effectively. Thus, we 

design a personal consuming recommendation system as 

shown in Fig. 12 for customers by mining location data, 

social data and consuming data of customers. The input 

data includes consumers’ information and shops’ 

information will be collected by data collector. Attribute 

layer defines the attributes of every shop. The attributes 

of shops will be the input of social layer. Social layer 

shows the consumers’ friend lists and compare the 

similarity of consumer behavior. Shop layer computes the 

relation between shops and use shop information to find 

the similarity of consumer behavior. 

 
Fig. 12. The system architecture of business cloud. 

We implement business cloud in the advertising 

system of shopping malls to find potential customers. The 

algorithm is called interest-aware opportunistic 

advertising by mining social and consuming information 

(ISC). We compare ISC with an interest aware 

PeopleRank (IPeR) algorithm, a fully distributed interest 

aware social-based algorithm to enable soft real-time 

opportunistic advertisement delivery in mobile networks 

[16]. In Fig. 13 and Fig. 14, we send one advertisement to 

one target user and ten advertisements to ten target users 

as two cases. In Fig. 13, hop count represents the number 

of intermediate nodes of forwarding advertisements to 

target customers. We can see that the hop counts of ISC 

are larger than IPeR. That is, ISC makes more interested 

customers receive the advertisements. The effect of 

advertisements is larger. Fig. 14 shows that the 

transmission delay of ISC is much shorter than IPeR even 

if the advertisements in ISC algorithm are delivered by 

many customers. All in all, ISC can achieve increasing 

total quantity of sales and making the advertisement 

receive by the target users in the limited time. In business 

cloud, clients execute object detection step to collect 

location data, social data and consuming data and send 

data to cloud servers. Cloud servers execute complex 

event processing to analyze the sensing data and decide a 

real-time recommendation result for customers. Therefore, 

the workload of cloud servers is much heavier than 

clients. 
Three applications represent different workload 

between clients and cloud servers. Thus, realizing the 

pattern of different workload of clients and cloud servers 

and combining the result of QoS-ensured performance 

model to adjust the platform computing resource can 

decrease the probability of violating the QoS of different 

applications on mobile and multi-sensing fusion platform. 

IV. CHALLENGE 

In this section, we will discuss the challenges and the 

future trend of mobile and sensing fusion platform. 

A. Challenge 1 

The mobile and sensing fusion platform we propose 

can be extended to internet of things (IOT). In the IOT 

environment, there are many sensors instead of single 

sensor generate complex sensing data. The sensing data 

includes longitude as well as latitude, image data, audio 

data, accelerometer sensor data, etc. The data are 

unstructured data instead of structured data. Besides, 

sensing data are generated continuously and have to be 

analyzed in real-time. Therefore, how to design a real-

time complex event processing flow for streaming 

sensing data becomes the most challenge issue in the 

multi-sensing environment. 

B. Challenge 2 

From previous challenge, we can know that sensing 

data has to be analyzed in real-time. The QoS issue 

becomes critical during designing real-time complex 

event processing flow for streaming data. In the 

traditional QoS analysis, we usually build system first 
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and then we design the experiment to analyze system 

performance and QoS. The computing resource is 

allocated and static in the system. However, the 

computing resource of cloud platform is dynamic. 

Therefore, using a queueing model can estimate how 

many computing resource is needed before building the 

system in the application and adjust the computing 

resource dynamically during executing jobs to avoid 

violating QoS. In [10], we proposed a queueing model to 

analyze QoS of mashup service. [17] proposed a 

M/G/m/m queueing model to analyze the usage of storage 

space, memory and computation resource in the 

physiological streaming data collection platform, Artemis. 

From the work, we can see that queueing model can not 

only use for analyzing static data system, but also for 

dynamic streaming data system. Therefore, modeling an 

appropriate queueing model for your applications can 

intensively decrease the chance to violate QoS and 

improve system performance. 

C. Challenge 3 

Since streaming data are generated continuously on the 

mobile and multi-sensing fusion platform, sending all 

streaming data to cloud occupies lots of bandwidth and 

increases the response time. To achieve high throughput 

of processing the streaming data, partitioning solution for 

mobile data stream applications and execution offloading 

schemes to migrate a process between machines are 

proposed. [18] proposed a framework to support dynamic 

computation partitioning as well as execution of the 

application and a genetic algorithm for optimizing the 

computation partition. [19] migrated entire state including 

the existing stack as well as all reachable heap objects to 

offload the full process. In [20], the stack was set to run 

remotely and be invoked by other servers instead of 

migrating to other servers. Therefore, the usual amount of 

state transferred was the main factor to decide the 

migration efficiency. [21] which was based on [19] 

proposed a compiler code analysis to only transfer the 

essential heap objects and the stack frames actually be 

necessary by the server. [21] could maintain the state of 

the process and reduce the transferred data size 

intensively. Therefore, how to partition and migrate the 

sensing data analysis process between clients and cloud 

servers to increase the analysis performance of streaming 

sensing data still be a big issue. 

D. Challenge 4 

In order to decrease the execution time of continuously 

streaming sensing data, the streaming data is analyzed 

while data flow into the operators without storing as 

shown in Fig. 4. Without storing huge streaming data can 

decrease the access time of I/O to improve the efficiency 

of data analysis. However, without storing data may 

result in massive data loss if an operator is broken during 

the computation. Therefore, data fault tolerance 

technology is a necessary technology in streaming data 

processing. [22]-[24] proposed data duplication methods 

to guarantee that no data is lost or any inconsistency 

exists. But data duplication occupies many storage space 

and cause significant performance degradation. Thus, 

[25]–[28] proposed   Partial    Fault    Tolerance (PFT) 

technology. PFT executed partial data duplication and 

accept some data loss. [26] designed a specialized state 

serialization methods based on a stream operator 

checkpoint mechanism. When an operator failed, its 

upstream operators did not send the data to the operator 

until the operator was fixed and could generate correct 

result. This method caused much data loss of input stream 

on the operator. In order to make PFT is viable on stream 

application, understanding of the impact of faults on the 

quality of the application output is important. [29] 

injected faults into application running on the streaming 

processing platform, which called System S. They 

deigned a valuing mechanism to assess the application 

output quality and propose four metrics to evaluate the 

impact of faults in different stream operators of 

applications. According to the result, the developer could 

choose the operator to execute  Partial  Fault Tolerance 

technology (PFT). 

From the previous discussion, we find that data fault 

tolerance technology affects the streaming applications 

performance intensively. Thus, designing efficient fault 

tolerance methods and execute the methods on right 

operators are two important issues of streaming 

applications. 

V. CONCLUSION 

In this paper, we proposed mobile and multi-sensing 

fusion platform which includes clients, cloud servers and 

QoS-ensured performance model. Clients detected, 

estimated objects and sent data to cloud servers. Cloud 

servers analyzed data and decided whether there was an 

event. QoS-ensured performance model evaluated the 

computing resource of multi-sensing fusion platform. We 

also showed three different workload multi-sensing 

fusion applications as the examples on the platform. 

Besides, we discussed unstructured streaming data 

analysis, QoS issue on streaming system, partition as well 

as offloading execution process between clients and cloud 

servers and data fault tolerance as four challenges of 

mobile and multi-sensing fusion research. In mobile 

cloud computing, this paper described the trend and 

challenges of signal and information processing in great 

detail. 
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