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Abstract—Availability, as a part of Service Level Agreement 

(SLA), is a critically important issue in cloud services, which 

are affected by server or network failures in datacenters. Cloud 

service providers seek to not only fulfill the SLA, but also 

simultaneously minimize their operating costs, which are 

dominated by the energy consumption. In order to minimize the 

impact of a server/switch failure on a single application, one 

spread out the VMs for the application across different racks. 

Although a higher availability can be achieved, the power 

consumption may increase significantly. In this paper, we 

develop a variance-based metric to measure the risk of either 

over provisioning or under provisioning availability by means 

of VM placement. We then propose algorithms to place VMs in 

online and offline manners, respectively. These algorithms aim 

to strike a balance between maximizing the availability and 

minimizing the energy, in order to reduce the operating cost for 

the service providers. 
 
Index Terms—Cloud, availability, energy consumption, risk, 

dual 

 

I. INTRODUCTION 

As cloud computing technologies continue to advance, 

clients increasingly rent Virtual Machines (VM) on 

demand from Service Providers (SPs). Such a “pay as 

you go” model serves as a more economical and flexible 

alternative to retaining in-house IT infrastructure by 

saving on capital and operating cost. However, 

availability of these rented VMs become critically 

important, due to frequent failures within a datacenter, 

and several recent protracted service outages has already 

caused billions of dollars in lost productivities and 

revenues for these clients, who are expected to demand a 

more stringent Service Level Agreement (SLA) to meet 

their availability requirements. For SPs, failure to fulfill 

the availability requirement SLA may lead to loss of 

reputation in addition to SLA-specified penalties. 

Availability typically refers to the uptime percentage 

of a service in a given (often finite) duration. We focus 

on cases where an application requires a minimum 
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number of VMs (e.g. S) to be up and running for a high 

percentage of time (e.g. 99.9%). In order not to violate 

the availability requirement in the SLA, an SP needs to 

allocate a sufficient number of redundant VMs and place 

them strategically across different servers/racks to deal 

with correlated failures. 

More specifically, in order to minimize the impact of 

the failures of servers and Top-of-Rack (ToR) switches 

on an application, one would like to spread out the VMs 

for the application to as many different servers/racks as 

possible. Of course doing so may result in significant 

energy consumption and is against the principle of most 

of the previous work on server/rack consolidation which 

ignores the impact of failures on the availability 

requirement.  

In this paper, we approach the problem from the 

perspectives of a SP, who would like to reduce its total 

cost, dominated by the server cost and the energy cost, 

while providing a good availability guarantee by e.g., 

allocating a minimal number of redundant VMs in order 

to minimize the number of servers it needs to use to run 

all the applications, which helps to significantly reduce 

the capital and operating expenses of the SP. In particular, 

we will focus on availability-aware and energy-efficient 

VM placement, as a good VM placement can not only 

achieve a low risk of SLA violation without requiring a 

large number of redundant servers by spreading the VMs 

for one application across different servers/racks, but also 

reduce the energy consumption by appropriately 

consolidating the VMs belonging to different applications 

onto as a few server/racks as possible without increasing 

the risk of SLA violation. 

Previous work has not studied VM placement in order 

to reduce energy consumption while considering the risk 

of violating the availability requirement of the 

applications due to possible server/switch failures. For 

example, a large body of papers have studied the VM 

placement problem with multiple objectives including 

energy saving [1], [2], bandwidth and computing resource 

utilization [3], [4], QoS or a combination of multiple 

objectives [2], [4], [5], but none of them specifically 

considered the impact of server/switch failures. A few 

studies have sought to improve fault tolerance by placing 

the duplicate data in close proximity to the computing 
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resources. Both [6] and [7] proposed VM migration 

strategies assuming inter-rack server failures. The most 

closely related work is [8], which considered the impact 

of ToR switch failures, but focused on how to spread out 

the VMs to minimize an overall cost which includes the 

bandwidth cost, and a cost associated with VM failures. 

Our work in this paper differs from all the previous work 

by considering not only concurrent server and ToR 

switch failures, but also the minimization of an overall 

cost that is based on the energy consumption and the risk 

of violating the availability requirements (which, as 

mentioned earlier, is related to the server cost). Such an 

overall cost is more inline with the SP’s perspective than 

any other existing cost functions in previous VM 

placement studies, as each of the energy cost and server 

cost accounts for about 50% of the entire cost of a 

datacenter [9]. 

Our contribution of this paper can be summarized as 

below: 

 We propose a novel concept to characterize the risk of 

violating the availability requirement of applications 

in the situation where we have both ToR switch 

failures and individual server failures. We 

mathematically define the risk by using expectation 

and standard deviation of the number of VMs 

available to a given application. 

 Based on a popular energy consumption model, we 

also establish a mathematical model combining the 

objectives to minimize the total energy cost and the 

risk of violating the availability requirement. 

 Based on the mathematical model, we establish the 

dual model of the primal problem. We come up with 

an offline algorithm and an online algorithm to place 

the VMs efficiently. We also develop an online 

algorithm based on the primary-dual model, and prove 

that the online solution and optimal offline solution 

are within a bounded ratio to each other. 

The paper is organized as follow. The availability-

aware energy efficient VM placement problem is first 

described in Section II. A formal problem definition is 

presented in Section III, where we first define the 

expectation and standard deviation of the number of VMs 

available to an application in the presence of concurrent 

failures of a server and a ToR switch, and then 

characterize the risk of violating the availability 

requirement of an application accordingly. We also 

propose an overall cost inline with the SP's perspective 

that considers the minimization of both risk and energy 

consumption, we develop the objective function of the 

optimization problem under consideration. In Section IV 

and Section V, two heuristic algorithms, one offline and 

one online, to place VMs are presented. In Section VI, we 

establish the dual model and the online dual algorithm 

based on the model. In Section VII, we present the 

simulation results to compare the performance of the 

algorithms with that in [3]. Section VIII presents the 

conclusion and future work. 

II. AVAILABILITY-AWARE PROBLEM 

The topology of datacenter in this paper is as Fig. 1 

shows. There are three layers of switches: core switch, 

aggregate switch and ToR switch. All switches, racks and 

servers are identical. We consider two types of failures in 

this paper: the physical server failure and ToR switch 

failure. The former will cause all VMs mapped on the 

failed server also fail, while the latter results the involved 

VMs being rendered inaccessible. In any single slot, we 

assume that there will be a ToR switch failure, along with 

at most one physical server failure.  

We use {1,2, }m M    to represent racks, 

{1,2, }n N    to represent the nth server in each 

rack, and {1,2, }i I    stands for application set in 

the system. We consider a VM is available if it functions 

correctly and can be accessed by other VMs as needed. 

We use ( , )p i  to denote the expected number of 

available VMs belonging to application i  under 

placement p  when both ToR and physical server may 

fail. Let ( , )Var p i  be the standard deviation of the 

number of available VMs belonging to i  under placement 

p . The actual available VM number will vary 

from ( , ) ( , )p i Var p i   to ( , ) ( , )p i Var p i  . Note that 

a significant fluctuation in the number of available VMs 

indicate high instability of the VM provisioning schemes, 

in that if the application requires ( , )p i  VM to be 

available, then a larger value of ( , ) ( , )p i Var p i   

means over-provisioning and a higher cost, while a 

smaller value of ( , ) ( , )p i Var p i   means under-

provisioning and increased SLA violation risk. Therefore, 

it is desirable to minimize the fluctuation range, which in 

turn lower risk of over provisioning and SLA violation in 

terms of availability. 

Different number of VMs requested by applications 

will lead to the difference in the value of ( , )p i  

and ( , )Var p i . Therefore, in this paper, we use the 

metrics
( , )

( , )
( , )

Var p i
risk p i

p i
 , which denotes the 

normalized standard deviation of the number of available 

VMs, to identify the risk faced by application i  under 

placement p . 

Suppose the failure probabilities of each rack and 

server are rP  and sP , respectively. Then ( , )p i  can be 

obtained by computing the expected number of VMs 

available to application i  under the following two 

possible events: (1) when the system have zero server 

failure and one ToR switch failure (defined as event B1); 

and (2) when the system has one server failure and one 

ToR switch failure (defined as event B2). We call the 

event B when the system has one server failure or one 

server failure along with a ToR switch failure. The 
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probabilities of event B, B1 and B2 denoted by ( )P B , 

( 1)P B  and ( 2)P B   respectively are: 

 0 0

1 1

( ) ( 1) ( 2)

( 1) (1 )

( 1) (1 )

MN

MN s s

MN

MN s s

P B P B P B

P B C P P

P B C P P 

 

 

 

  (1) 

In addition, we use the metrics E  to represent the total 

energy cost of the whole system. Based on the commonly 

used linear model [10], 11], the energy consumption of 

ToRs and physical servers can be separated into two parts: 

the static part produced once they are switching on, and 

the dynamic part varying depending on their workload. 

To better understand the concepts, let us look at an 

example in Fig. 1. In this example, we have an 

application requests for three VMs. In Fig. 1, we placed 

the VMs to three servers in one rack. In Fig. 1(b), we 

place the three VMs to three different racks. Assuming 

sP  is 0.02, 
rP  is 0.02. For Placement one, by the 

definition of   and Var , we can get   is 2.16003 while 

Var is 1.1459. For placement two, the result of   is 2.1, 

and Var  is 0.4426. We can see from the example that, a 

wide distribution of VMs among different racks can 

much lower the risk computed by Var


.   

     
(a)                                            (b) 

Fig. 1. Example of VM placement. 

TABLE I: DEFINITION OF NOTIONS 

Notation   Definitation 

 
iA  The ith application in I , 1 i I   

 ( , , , )A i p m n  The number of VMs belonging to 
iA  deployed at server m  in rack n  

 iS  
Total number of VMs required by application i  

 
,i jV  The jth VM  belongs to application i , 1

ij S   

 
iV  The set of VMs belongs to application i , | |i iV S  

 
iR  The size of the VM belonging to application i  

 ( , )C m n  Total capacity of server n  in rack m , 1 n N, 1 m M 

 

III. PROBLEM FORMULATION 

We start the problem formulation by defining several 

notations in Table I. Note that the formulation below is 

applicable to the general case where an application may 

require several VMs of different sizes
,i jR , (e.g., small, 

medium or large instances), and different servers may 

also have different capacities ( , )C m n . In later sections, 

we will however describe algorithms assuming that all 

the VMs required by each application i  have the same 

size (i.e, 
, ,i i j i kR R R  ) for any i , j  and k . And all 

the servers have the same capacity C  

(i.e., ( , ) ( , )C C m n C p q  ) for any m , n , p  and q . 

We use notation 
i

pX  to represent the placement of VM 

for each application. 

 
 1 if VMs belonging to application  

     are placed by configuration 

0   Otherwise

i

p

i

X p




 



  (2) 

For application i  requiring 
iS  VMs, we use 

,0i  to 

denote the expected number of VMs that are available 

when distributing 
iS  VMs to as many different 

servers/racks (up to 
iS  racks) as possible, also let 

,0iVar  

denote the standard deviation of available VMs under this 

placement. As described before, we only have at most 

one rack failure together with a server failure in a single 

slot, such a VM placement should yield the smallest 

,0iVar  and largest
,0i .Hence, we define ,0

,0

,0

i

i

i

Var
risk


 , 

which should be close to the smallest risk (in terms of 

either SLA violation or over achieving the availability 

beyond the requirement) application i  can possibly 

suffering. Note that with the lowest degree of server/rack 

consolidation, the system's overall risk computed by 

0 ,0i

i

risk risk  is close to the minimum. However, the 

energy consumption under this VM placement is 

maximized. 

On the other hand, by consolidating all the VMs to as 

few racks as possible, we can achieve an overall energy 

cost 0E  close to the minimum energy usage. However, 

the risk as defined above, including that of SLA violation, 

under this placement is close to the maximum. This 

means that more backup servers are needed to satisfy the 

SLA requirement, which leads to the increase in the 

overall server cost and energy consumption. Therefore, 

there is a tradeoff to be carefully considered between 
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decreasing the average risks of applications and reducing 

the energy consumption when placing VMs in datacenters.   

In this paper, we develop efficient algorithms to 

address this issue by carefully choosing the VM 

placement solutions. 

Based on the tradeoff described above, we formulate 

the objective function as a multiple-objective problem 

given by: 

 
0 0

0 0

( , ) ( , )

min( )

i i

p p

i p P i p P

risk p i X risk E p i X E

risk E


 

 



 
  (3) 

where ( , )E p i  

application i  under placement p  (which will be Full-

computed in Eq. (11) later), and ( , )
p P i

E p i
   is the 

overall energy cost of the system. 

In addition,   is a parameter that can be used to allow 

a flexible trade off between E and risk, by setting   to 

different value, assuming a value less than one if risk 

reduction is more important and larger than one if energy 

reduction is more important. 

The objective function can be converted to: 

 
0 0min( ( , ) ( , ) )i i

p p

i p P i p P

E risk p i X risk E p i X
 

    (4) 

For each server, we should constrain that the total size 

of the VMs mapped on it can't exceed its capacity: 

 ( , , , ) ( , )i i

i p

i

A i p m n R X c m n   (5) 

And for each VM, we can only place it on one server, 

which can be given as: 

 1i

p

p P

X i


    (6) 

We use ,

B

i m , 
1

,

B

i m  and 
2

,

B

i m  to represent the expected 

number of unavailable VMs in iV  due to events B, B1 

and B2, respectively, when the failed rack is m . Based 

on the definition of these events in Section II, we have: 

 
1 2

, , ,

B B B

i m i m i m      (7) 

where ( 1) ( 1)
( 1| )

( ) ( )

P B B P B
P B B

P B P B


  , and ( )P B  

and ( 1)P B  are defined in Eq. (1). 

For Event B2, which is defined as when the system has 

one ToR failure and one server failure, we consider two 

possible situations: The failed server is inside the failed 

rack m , or the failed server is outside rack m .  The 

expected number of unavailable VMs due to event B2 

(represented by 
2

,

B

i m ), should be the number of VMs 

mapped on failed rack m , plus the expected number of 

VMs that are unavailable due to a server failure outside 

rack m . It can be obtained by: 

2 ,

, ,

,

,

( 2 | )

1
( 2 | )

B m n

i m i j

n j

m n

i j s

m n j

X P B B

M
X P P B B

M

 








 

where ( 2) ( 2)
( 2 | )

( ) ( )

P B B P B
P B B

P B P B


  . And ( 2)P B  is 

also defined in Eq. (1). 

The expected number of available VMs in 
iV  can then 

be computed by subtracting 
iS  from the expected number 

of unavailable VMs due to event B as follows. 

,

1 2

, ,

B

i i r i m

m

B B

i r i m r i m

m m

S P

S P P

 

 

 

  



 
 

Before deriving 
iVar , we first define 

,i mN , which 

stands for the expected number of available VMs in 
iV  

when a specific rack m  fails, as below: 

, ,

1 2

, ,

B

i m i i m

B B

i i m i m

N S

S



 

 

  
 

The iVar  can be computed based on i  and ,i mN  

using the definition of standard deviation as follows. 

 
2

,

1
( )

| |
i i m i

m

Var N
M

    (8) 

To establish the energy model, we introduce two 

notations 
,m nZ  and 

mZ  to indicate whether a server and 

a rack respectively, is active or not as follows: 

 ,

1  if server  belonging to rack 

    is active

0  otherwise

m n

n m

Z




 



  (9) 

     
1  if rack  is active

0  otherwise

m
m

Z


 


                         (10) 

Note that a server and a rack are considered active 

when it has at least one VM loaded on it. We now 

compute the total energy consumption ( , )
i p P

E p i


  in 

Eq. (3) as follows: the overall energy is from two parts: 

the racks and the servers. We build the model based on 

the most common linear model [10], [11]. As mentioned 

earlier, rack and server's energy usage consists of static 

part and dynamic part. We use 0

Re  and 0

Se  to denote the 

static energy consumption of active racks and servers 

respectively. The dynamic power consumption of a rack 

varies depending on the number of active ports, which is 

equal to the number of active servers in it. Let 1

Re  be the 

maximum dynamic power consumption of a rack. And 

maxe  be the maximum dynamic power consumption of a 

denotes the energy  consumption  of 
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server, which can be reached when the server's load is 

100%. The energy usage of the system can be obtained by 

the following equations: 

 ( , ) rack server

i p P

E p i E E


    (11) 

where 

 

,

0 1( )

m n

R m R n
rack

m

Z

E e Z e
N

 


   (12) 

 

,

, ,

,

0 ,
( )

m n

i j i j

i jm n S

server max m n
m n

X R

E Z e e
C

 


   (13) 

IV. OFFLINE VM PLACEMENT ALGORITHM 

As the optimization problem defined above is NP-hard, 

we first describe a heuristic offline algorithm called 

“Packing Then Distribute” (PTD) to solve the problem. 

As in any offline algorithm, we assume that a set of 

application requests are given. As mentioned earlier, we 

will assume that all the VMs required by one application 

i  has the same size
iR , although 

i jR R  for i j .  

Without loss of generality, let
1 2 , IR R R  , and 

denote the corresponding set of VMs by 
1 2, IV V V , 

where | |i iV S  is the number of VMs requested by 

application i .  

The offline PTD algorithm has two phases: VM 

packing and VM distribution, respectively. In the first 

phase, it will try to place the VMs in set 
1V  first, 

followed 
2V  and so on. For each application, it assigns its 

VMs into as few servers/racks as possible to minimize the 

energy consumption. This can be accomplished by e.g. 

the first-fit server selection strategy, which tries to place 

the next requested VM in the first server in the first rack 

as long as the server has a sufficient capacity left, and 

otherwise, it will try the next serve in the same rack, and 

eventually if no server in the same rack can be used, the 

algorithm will try the (server in the) next rack. Other 

server selection strategies that results in a maximum 

server/rack consolidation can also be used.  After all the 

VMs in 
IV  for the last application have been placed, the 

packing phase ends, and the algorithm calculates the 

corresponding energy consumption as 0E , which should 

be close to the minimum needed due to the nature of the 

VM packing strategy used so far. 

In the second phase of PTD, the algorithm will try to 

distribute the VMs in 
iV  among different servers/racks in 

order to reduce the risk for application i  due to either 

server or ToR switch failures, and in turn, reduce the 

overall risk as well. This is accomplished by changing the 

initial placement of some VMs in 
iV  from a more 

consolidated server/rack to less consolidated ones. This 

takes multiple iterations, and in each iteration, the 

algorithm changes the placement of one VM. This will 

result in a possibly lower
irisk , but a higher overall 

energy cost E . The algorithm recalculates the value of 

the objective function in Eq. (3), and will terminate if 

after the current iteration, this value doesn't differ from 

the value of the previous iteration by more than a pre-

determined threshold. 

Below, we describe how to determine the "source" and 

"destination" in each iteration during which the algorithm 

makes change the initial placement of a VM.  

Finding the source: for each "active" rack m , and 

each application i  whose VMs have been placed in this 

rack, we count the number of VMs in 
iV  and denote by 

i iS S  , and choose the maximum 
iS   over all i , and use 

this maximum number, denoted by 
mD  to represent the 

degree of consolidation of the rack m . The algorithm 

then randomly chooses a VM currently placed in the rack 

having the maximum 
mD  and moves the VM to a 

different rack. 

Finding the destination: Suppose the VM to be 

moved belongs to application i , that is
iV . The 

algorithm first chooses a rack from all active racks whose 

iS   is zero or the smallest. Within this rack, it chooses 

from all the active servers with sufficient capacity left the 

one that currently host zero or the least number of VMs 

iV . If no such active server can be found, the algorithm 

considers two strategies: one is to power up an inactive 

server within this rack to host this VM, and the other is to 

go to another active rack having the second smallest 
iS  , 

and choose an active server in the same way as what has 

been described above. If it can succeed in placing the VM 

either way, the algorithm will compute the objective 

function in Eq. (3) corresponding to these two strategies 

and go with the better approach. On the other hand, if 

none of the above strategies works, since none of the 

servers in any active rack has sufficient capacity to 

accommodate the VM, the algorithm will eventually 

power up an inactive rack and a server within that rack to 

host the VM.  

The pseudo-code of the algorithm is as follows: 

Algorithm 1 Offine Packing Then Distribution: PTD 

1: Input: V : the set of VMs; threshold 

2: Output: T : The placement of VMs; 

3: Let 
1 2{ , , , }IV V V V   be the set of VMs sorted in 

ascending order of 
iR . 

4: Place VMs of 
iV  from V  onto a physical server 

sequentially; 

5: while difference in the value Eq. (3) between this 

iteration and previous iteration threshold  
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6: choose the VM j  to move out as described in Finding 

the source; 

7: choose the server n  VM j  move to as described in 

Finding the destination, move VM j  to server n ; 

8: end while 

9: Return: The placement T; 

Remarks: Intuitively, VM packing reduces energy 

consumption but increases risk, while VM distribution 

does just the opposite. The overall objective in Eq. (3) is 

minimized at some degree of server/rack consolidation 

with some degree of risks. The above PTD algorithm 

starts at one extreme of having the highest degree of 

server/rack consolidation and risk, and then tries to move 

towards the middle (optimal) point by reducing the 

degree of server/rack consolidation and risk. One can 

envision another heuristic algorithm, called "distribute 

then pack" or DTP, which starts at the other extreme of 

having the lowest degree of server/rack consolidation and 

risk, and then tries to move towards the middle (optimal) 

point by increasing the degree of server/rack 

consolidation and risk. Similarly, one can also envision 

another heuristic which starts with a random VM 

placement (somewhere in between the two extremes) and 

then uses Tabu-search to find the optimal point. Due to 

space limitation, these and other offline heuristics will be 

omitted from this paper. Instead, we will describe an 

"online" algorithm that could also be used to process a 

given set of application requests as in the offline case. 

V. O PLACEMENT ALGORITHM 

In this section, we describe an online algorithm which 

is useful when application requests come one at a time, 

and each time, we need to decide VM placement for the 

current request based on the current status of the 

servers/racks, without any knowledge about future 

application requests. We will focus on an online 

algorithm that does not involve any reconfiguration of the 

existing VMs. That is, once the VMs for an application 

are placed, no changes to their placement will be made 

(unless the application completes). 

Our online algorithm works in two phases as follows. 

In the first phase, for application i  requiring 
iS  VMs, we 

first estimate the number of servers needed for this 

application, denoted by 
iM , to host these 

iS  VMs. More 

specifically, we estimate the frequency distribution (or in 

general, probabilistic distribution) of the ratio 

1x
x

x

M
Ratio

S
   for any application x . Once such a 

distribution is known, then when a request for 
iS  VMs 

arrives, the online algorithm will first generate a random 

number and then use it to determine the appropriate ratio 

to apply based on the known distribution and finally, 

determine the number of servers needed 
iM . 

The above estimation is based on statistically 

analyzing (as well as learning) the (ideal) relationship 

between 
jM  and 

jS  for a large number application j’s.  

These application requests can either be based on the 

actual ones we have processed, or are synthesized (or 

generated via simulation). The basic idea is to use these 

requests as an input to an optimal or near optimal offline 

algorithm such as the PTD described above in order to 

find out the iratio  used by such algorithm. 

In our experiments, we have generated six types of 

application requests, each including 5,000 requests for a 

total of 30,000 application requests. A request in Type 

0 5t   needs10 t  VMs (the number of VMs requested 

thus varies from 10 to 15). The goal of this exercise is to 

obtain, for each type of requests, what is the frequency 

(or in general probabilistic) distribution of the ratio of the 

number of servers. We run our PTD algorithm using all 

the 30,000 requests as input. These requests are processed 

in the order dictated by the algorithm, and not by their 

types. At the end of the run, we found that the PTD 

algorithm assigns 5 servers for 14 Type 2 requests, 6 

servers for 55 Type 1 requests, and 10 servers for 1083 

Type 1 requests, etc. 

Fig. 2 shows the histogram for three types of 

application requests obtained by running our PTD 

algorithm. As can be seen, the trend is the same for each 

type. 

 

Fig. 2. Note how the caption is centered in the column. 

The second phase of our online algorithm starts once 

iM  is determined. The basic idea is to try to find 
iM  

active servers in as many (up to 
iM ) different racks as 

possible, and then evenly distribute the 
iS  VMs among 

these 
iM  servers as evenly as possible (by using e.g., a 

round-robin assignment strategy). This is to minimize the 

risk without affecting the overall energy consumption 

(given the energy consumption model we used). If there 

are only 
ih M  active servers, we will choose from two 

possible placement strategies as following: the first is 

distributing them in these h  servers as evenly as possible 

and the other is to power up one or more currently 

inactive servers in different racks. The second strategy 

may result in a higher energy cost and a lower risk. The 

algorithm will compare values of the objective function 

in Eq. (3) corresponding to these two strategies, and 

choose the better one. 

NLINE VM
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The pseudo-code of the online algorithm is described 

as Algorithm 2 

Algorithm 2 Online Algorithm 

1: Input: A: the set of applications to be mapped; 

2: Output: T: The placement of VMs; 

3: while i I do 

4: For 
iA A , using frequency distribution of ratio to 

determine the number of servers needed to place VMs by 

i i iM Ratio S ; 

5 if a server j  is active and has enough capacity left to 

accommodate the VMs, put it into set C , find all such 

servers; 

6: If | | iC M  then 

7: Evenly place the VMs to the servers from set C  that 

locates in as many as possible racks, 1i i  ; 

8: else 

9: Compute the value of Eq.(3) e  for two strategies: 

Distribute VMs in these |C| servers as evenly as possible; 

or power up one or more currently inactive servers in 

different racks. Choose the one can minimize the value 

1i i  ; 

10: end if 

11: end while 

12: Return: The placement T ; 

VI.  DUAL ONLINE ALGORITHM 

To develop an online approximation algorithm, we 

first take a linear relation on the condition (0,1)i

pX  , 

and convert it to 0i

pX  . Then the dual problem can be 

described as: 

 

,

max ( , ) ( , )i

i m n

c m n m n      (14) 

which can be converted eq. (14) to: 

 

,

min ( , ) ( , )i

i m n

c m n m n     (15)  

with the constraints: 

  

0 0

,

( , ) ( , ) ( , , , ) ( , ) 0i

i i

m n

E risk p i risk E p i A i p m n R m n                                          (16) 

 

 
i R i     (17) 

 ( , ) 0m n    (18) 

It's obvious that when 0i  , the dual constrain can 

always be satisfied. Since the inequality for i  holds for 

all mapping P, we can set 

 

0 0

,

0 0

,

max( ( , ) ( , )

( , , , ) ( , ))

min( ( , ) ( , )

( , , , ) ( , ))

i

i

m n

i

m n

E risk p i risk E p i

A i p m n R m n

E risk p i risk E p i

A i p m n R m n

 







  



  







  (19) 

According to the weak dual theory, any feasible 

solution associated with the dual problem is a lower 

bound to the primal optimal solution. Based on this 

conclusion, we develop an efficient online algorithm to 

be used when we don't have any information about the 

application requests arrived in the future. Furthermore we 

can prove that the performance obtained through our 

proposed online algorithm will be at worst no more than 

r  times of the optimal solution. 

For each arriving application request, the dual online 

algorithm computes a primal solution and a 

corresponding dual solution. As any feasible dual 

solution produces a lower bound of the optimal offline 

solution, we can show that the primal solution is also 

within a as small as possible factor of the optimal offline 

solution if we carefully design the algorithm. In the 

proposed dual online algorithm, the dual variable 

( , )m n  is initialized to 0, we design the update of 

( , )m n  in each iteration to ensure the dual to primal 

ratio is as small as possible. In the following subsections, 

we first describe the update of the dual variable, then we 

compute the primal to dual ratio. Finally, the dual online 

approximation algorithm is given, and the feasibilities of 

the dual and primal solutions are proved. 

A. Primal to Dual Ratio 

Let *Z  denote the optimal offline solution of the 

primal problem, 
onZ  denotes the online solution of the 

primal problem. Note that *

onZ Z  since the online 

solution can at best match the optimal offline solution. 

There exists a ratio 1r   such that: 

 *

onZ rZ   (20) 

for all input. So * *

onZ Z rZ  . In general, we would 

like to get the ratio r  as closely as possible to one.  

Suppose *p  is the placement that minimizes 

0 0

,

( , ) ( , ) ( , , , ) ( , )i

m n

E risk p i risk E p i A i p m n R m n   . In 

the online algorithm, we set 
*

( , )

( , , , ) i

C m n
B

A i p m n R
 , 

1
(1 ) 1Ba

B
   . The initial value of ( , )m n  is 0, when 

there is an arriving application i , we will update the 

value of ( , )m n  to 

* *

0 0

*

( , ) ( , )1 1
( , )(1 )

( , , , ) i

E risk p i risk E p i
m n

B A i p m n R aB





  .  

Let ( , )m n  denote the increment in ( , )m n . Let   

stand for the increment in the dual objective when we 

currently have an arriving application i . We have: 
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,

* *

0 0

( , ) ( , )

1
( ( , ) ( , ))

i

m n

m n c m n

a
E risk p i risk E p i

a

OPT

  



 


 





 

where OPT is the optimal solution of the primal problem. 

Note that * *

0 0( , ) ( , )E risk p i risk E p i  is the 

increment in the primal objective. As the way ( , )m n  

updates, the dual to primal ratio is 1a

a

 . Furthermore, we 

have * *

0 0( , ) ( , )
1

a
E risk p i risk E p i OPT

a
 


. So the 

primal to optimal ratio 
1

a
r

a



. 

We use | ( , , ) |R i m n  to represent the total size of 

resources requested by application i  on server m  in rack 

n , then 

 
( . )

| ( , , )|

1
(1 ) 1

| ( , , ) |
(1 ) 1

( , ))

B

C m n

R i m n

a
B

R i m n

C m n

  

  

  

the value of r  depends on the value of , ,

,

| |

)

i m n

m n

R

C
. In our 

simulation, | ( , , ) |

( , )

R i m n

C m n
 is ranging from 10%-30%. Fig. 3 

shows the value of the primal online algorithm to optimal 

ratio r  when sizes of VMs range from 10%-30%.  

  
Fig. 3. Primal to optimal ratio. 

B. Online Approximation Algorithm 

As defined before, for an arriving application request i , 

we need to determine a mapping 
*p P  such that 

*

0 0

,

( ( , ) ( , )

( , , , ) ( , ))i

m n

p argmin E risk p i risk E p i

A i p m n R m n





 


 at 

the first step. We are trying to find the mapping in a 

heuristic way. We first consolidate the VMs to as less 

servers/racks as possible, then we start to move the VMs 

belonging to application i  to other servers as the way 

described in the distribution phrase of PTD offline 

algorithm. Then we will update the ( , )m n  in the 

manner we designed before. The complexity of this 

algorithm depends on the size of the placement set P .  

The online VM allocation algorithm is shown in 

Algorithm 3. 

Algorithm 3 Dual Online VM Allocation Algorithm 

1: Initialize: ( , ) 0m n  ; 

2: For current arriving request i , Find a mapping 
*

0 0

,

( ( , ) ( , )

( , , , ) ( , ))i

m n

p argmin E risk p i risk E p i

A i p m n R m n





 


 

3: If the size of VMs mapped on a single server exceed its 

capacity limitation, find another mapping *p  

4: Place request i  at *p  

5: Set 
* *

0 0

*

( , ) ( , )1 1
( , ) ( , )(1 )

( , , , ) i

E risk p i risk E p i
m n m n

B A i p m n R aB


 


  

 
6 Set 

* * *

0 0

,

( ( , ) ( , ) ( , , , ) ( , ))i i

m n

E risk p i risk E p i A i p m n R m n       

C. Primal and Dual Feasibility 

A solution is feasible as long as the constrains of the 

problem can be satisfied. In this subsection, we prove that 

the primal solution and dual solution obtained by 

Algorithm 3 are both feasible. Given the way the online 

algorithm is constructed, when finding a mapping
*p , the 

size of VMs mapped on a single server will not exceed its 

capacity limitation, so the primal solution is always 

feasible. Moreover, in step 2, we always choose the 

placement 
*p  that can maximize the value of i , so the 

dual solution is feasible too. Since ( , )m n  only 

increases, the solution will remain feasible subsequently. 

VII.    PERFORMANCE EVALUATION 

We first implement the offline algorithm, online 

algorithm and dual online algorithm in simulation, then 

generate a large number of application requests as input, 

and finally calculate the risk and energy consumption as 

well as the overall cost. We will evaluate the percentage 

increase from the minimum risk 
0risk  obtained by 

distributing the VMs among servers/racks to the overall 

risk, and the percentage increase from the minimum 

system energy consumption 
0E  obtained by 

consolidating the VMs to as less racks/servers as possible, 

to the overall energy consumption. We compute the 

overall percentage increase as defined in Eq. (3). We also 

implement the most relevant FT algorithm from [3], by 

minimizing one of its cost functions, termed FTC, we can 

expect the improvement in fault tolerance. 

A. Simulation Setting 

We did the simulation using the CloudSim [12] 

simulator. We simulate a datacenter with the same 
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topology as that described in Section II, consisting of 500 

racks, each having 100 physical servers. Each server has 

2GHz 1-core cpu. The size of each VM required by 

various applications ranges from 10% to 30% of the 

resource capacity of each server. When computing the 

energy consumption by a rack (excluding the power 

consumed by its servers) using Eq. (16), we set its 

parameters as follow: 
R

statice =0.75 and 
R

dynamice =0.25, 

based on the model in [13]. Similarly, When computing 

the energy consumption by a server using Eq. (17), we set 
S

statice =0.6 and 
S

dynamice =0.4. Note that since a fully 

loaded server may consume 200W while a rack can 

consume up to 60W in addition according to [9], 1 unit of 

rack's power consumption from Eq. (16) needs to be 

converted to 0.3 units of server's power consumption, 

when computing the overall energy consumption using 

Eq. (15). As we think from the SP's perspective, the 

failure rate of switch and server is known in advance. We 

set rP  as 0.05 [14] and 0.02sP  . 

 
(a) PDT algorithm  

 
(b) Online algorithm  

 
(c) Dual online algorithm  

Fig. 4. Impact of the number of applications and VM sizes on the 

performance of PTD, online, dual online algorithms. 

B. Simulation Result 

Fig. 4 plots the simulation results from the PTD 

algorithm, online algorithm and the dual online algorithm. 

Three subcases are also shown where the requested VM 

size varies from 10%-15%, 10%-20% and 10%-30%, 

respectively. The figure shows that the percentage 

increase in the overall cost (assuming 1  ) reduces with 

the number of application requests. 

Such a reduction is mainly due to the fact that with 

more applications, the minimum energy consumption 

(
0E ) needed is larger because of more number of VMs, 

hence the percentage increase calculated using Eq. (3) is 

smaller, while the risk is not much affected by the 

number of applications. 

The reason that percentage increase in the overall cost 

is lower with a larger variation in the VM size requested 

is that, larger VM size will also result in a larger
0E , 

which will lead to a smaller percentage increment. Also, 

as the VM size is larger, VMs are more likely to 

distribute among the datacenter as a server can't host that 

many numbers of VMs due to the capacity limitation. 

This will result in lower increment of risk as well. 

The results also suggest that the offline algorithm 

results in a lower overall cost increment per application 

than the online algorithm and dual online algorithm, 

which is expected. 

 
(a) PDT algorithm  

 
(b) Online algorithm  

 
(c) Dual online algorithm  

Fig. 5. Impact of   value on PTD, online and dual online algorithms. 
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The impact of   on the percentage increase in the 

overall cost using the algorithms is shown in Fig. 5 where 

the VM size varies from 10%-20%. As can be seen, when 

  varies from 0.5 to 2, the differences in the percentage 

increase in the overall cost using the online algorithm is 

more pronounced than using the offline algorithm and 

dual online algorithm. In particular, when 2  , the 

percentage increase in overall cost using the online 

algorithm reduces by 75% when the number of 

application requests increases from 200 to 600. This 

indicates that the offline algorithm and the dual online 

algorithm are particularly effective when reducing the 

energy consumption (as well as the risk) no matter how 

many applications are there, while pointing to the 

potential in reducing the energy consumption using the 

online algorithm when the number of applications is 

small. This is somewhat expected as the online algorithm 

spreads the VMs for an applications out among many 

servers/racks by modeling after what an offline algorithm 

would do when the number of applications is large. When 

the number of applications is small, such a strategy may 

end up consuming too much energy thus leading to a 

higher percentage increase in the overall cost. 

 
(a) Online algorithm  

 
(b) Dual online algorithm  

Fig. 6. The risk value per application and increment in system's energy 

cost using the online algorithm and dual online algorithm. 

To corroborate the above explanation, we first process 

100 application requests using the online and dual online 

algorithm. We then process 200 more applications, and 

plot i
i

i

Var
risk


  and the (absolute) increment in the 

system's total energy usage Energy  in watts, which is 

equal to the overall energy after the application request is 

accommodated minus the overall energy before the 

application request is accommodated. As shown in Fig. 

6(a) and Fig. 6(b), these two curves fluctuate in a very 

small range, and are not influenced by the number of 

applications currently in the system. 

We further compare our algorithms with the FT 

algorithm in [8] in Fig. 7 where the VMs size varies from 

10%-20%, and 1  . 

 
Fig. 7. Comparison result of PTD algorithm, online algorithm and FT 

algorithm under different number of applications 

From Fig. 7, we can see that since the FT algorithm 

does not pay attention to the energy saving, it results in 

the highest percentage increase in the overall cost. The 

dual online algorithm has an improvement about 30% 

compared to the heuristic online algorithm. The offline 

PTD algorithm has the best performance, which is as 

expected. 

VIII.   CONCLUSIONS 

In this paper, we have, for the first time, proposed 

available-aware and energy efficient VM placement 

algorithms to lower the risk of violating availability 

requirements of the applications while achieving as low 

energy consumption as possible. We have proposed and 

mathematically defined a measure to characterize such a 

risk taking into consideration of concurrent server and 

ToR switch failures. We have also proposed and 

mathematically established a model for the minimization 

of the overall cost including both the risk and the energy 

consumption.  As the optimization problem is NP-hard, 

we have proposed two heuristic algorithms (online and 

offline) shown through simulations that they are quite 

effective, and also we design an approximation algorithm 

by using the dual model.  

So far, we have assumed that the increase in the 

dynamic part of the energy consumption follows a linear 

function. In the future, we will extend our algorithms 

when such an energy consumption follows a nonlinear 

function. Load balancing is another factor we can take 

into consideration when placing the VMs. We will also 

explore other online algorithms which use a better (e.g., 

more adaptive) method to estimate the number of servers 

needed to host the VMs for a given application, and 

perform re-optimization through e.g., VM migration. 

Furthermore, to ensure availability guarantee, a Service 

Provider (SP) needs to jointly decide the number of 

redundant VMs to be allocated and the placement of all 

the primary and redundant VMs. It also needs to be able 

to calculate the availability in a more direct way based on 

more comprehensive model for the correlated failures 

inside a datacenter than the way used in this paper to 

calculate the risk. Finally, the SP needs to do more 
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accurate market-based cost-benefit analysis in order to 

design an appropriate SLA which stipulates the levels of 

availability guarantees, and the corresponding prices to 

be paid by the clients, and the penalties for SLA violation 

to be paid by the SP, by considering its CAPEX and 

OPEX for providing the services. 
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