
Availability-Aware Energy-Efficient Virtual Machine

Placement Algorithm

Zhouhan Yang
1
, Liu Liu

2
, Sanjukta Das

3
, Ram Ramesh

3
, Anna Ye Du

3
, and Chunming Qiao

1

1
Department of Computer Science and Engineering, University at Buffalo (SUNY), Buffalo, 14228, USA

2
Key Lab of Optical Fiber Sensing and Communications, Ministry of Education, UESTC, Chengdu, 610000 China

3
Management Science and Systems Department, University at Buffalo (SUNY), Buffalo, 14228, USA

Email: {zhouhany, sdsmith4, rramesh, yedu, qiao}@buffalo.edu; liuliu27@uestc.edu.cn

Abstract—Availability, as a part of Service Level Agreement

(SLA), is a critically important issue in cloud services, which

are affected by server or network failures in datacenters. Cloud

service providers seek to not only fulfill the SLA, but also

simultaneously minimize their operating costs, which are

dominated by the energy consumption. In order to minimize the

impact of a server/switch failure on a single application, one

spread out the VMs for the application across different racks.

Although a higher availability can be achieved, the power

consumption may increase significantly. In this paper, we

develop a variance-based metric to measure the risk of either

over provisioning or under provisioning availability by means

of VM placement. We then propose algorithms to place VMs in

online and offline manners, respectively. These algorithms aim

to strike a balance between maximizing the availability and

minimizing the energy, in order to reduce the operating cost for

the service providers.

Index Terms—Cloud, availability, energy consumption, risk,

dual

I. INTRODUCTION

As cloud computing technologies continue to advance,

clients increasingly rent Virtual Machines (VM) on

demand from Service Providers (SPs). Such a “pay as

you go” model serves as a more economical and flexible

alternative to retaining in-house IT infrastructure by

saving on capital and operating cost. However,

availability of these rented VMs become critically

important, due to frequent failures within a datacenter,

and several recent protracted service outages has already

caused billions of dollars in lost productivities and

revenues for these clients, who are expected to demand a

more stringent Service Level Agreement (SLA) to meet

their availability requirements. For SPs, failure to fulfill

the availability requirement SLA may lead to loss of

reputation in addition to SLA-specified penalties.

Availability typically refers to the uptime percentage

of a service in a given (often finite) duration. We focus

on cases where an application requires a minimum

Manuscript received March 31, 2015; revised September 3, 2015.
This work was supported by the NSF under Grant No. CSR-1409809

and Google’s Research Award HDTRA1-09-1-0032.
Corresponding author email: zhouhany@buffalo.edu.

doi:10.12720/jcm.10.9.647-658

number of VMs (e.g. S) to be up and running for a high

percentage of time (e.g. 99.9%). In order not to violate

the availability requirement in the SLA, an SP needs to

allocate a sufficient number of redundant VMs and place

them strategically across different servers/racks to deal

with correlated failures.

More specifically, in order to minimize the impact of

the failures of servers and Top-of-Rack (ToR) switches

on an application, one would like to spread out the VMs

for the application to as many different servers/racks as

possible. Of course doing so may result in significant

energy consumption and is against the principle of most

of the previous work on server/rack consolidation which

ignores the impact of failures on the availability

requirement.

In this paper, we approach the problem from the

perspectives of a SP, who would like to reduce its total

cost, dominated by the server cost and the energy cost,

while providing a good availability guarantee by e.g.,

allocating a minimal number of redundant VMs in order

to minimize the number of servers it needs to use to run

all the applications, which helps to significantly reduce

the capital and operating expenses of the SP. In particular,

we will focus on availability-aware and energy-efficient

VM placement, as a good VM placement can not only

achieve a low risk of SLA violation without requiring a

large number of redundant servers by spreading the VMs

for one application across different servers/racks, but also

reduce the energy consumption by appropriately

consolidating the VMs belonging to different applications

onto as a few server/racks as possible without increasing

the risk of SLA violation.

Previous work has not studied VM placement in order

to reduce energy consumption while considering the risk

of violating the availability requirement of the

applications due to possible server/switch failures. For

example, a large body of papers have studied the VM

placement problem with multiple objectives including

energy saving [1], [2], bandwidth and computing resource

utilization [3], [4], QoS or a combination of multiple

objectives [2], [4], [5], but none of them specifically

considered the impact of server/switch failures. A few

studies have sought to improve fault tolerance by placing

the duplicate data in close proximity to the computing

647

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

resources. Both [6] and [7] proposed VM migration

strategies assuming inter-rack server failures. The most

closely related work is [8], which considered the impact

of ToR switch failures, but focused on how to spread out

the VMs to minimize an overall cost which includes the

bandwidth cost, and a cost associated with VM failures.

Our work in this paper differs from all the previous work

by considering not only concurrent server and ToR

switch failures, but also the minimization of an overall

cost that is based on the energy consumption and the risk

of violating the availability requirements (which, as

mentioned earlier, is related to the server cost). Such an

overall cost is more inline with the SP’s perspective than

any other existing cost functions in previous VM

placement studies, as each of the energy cost and server

cost accounts for about 50% of the entire cost of a

datacenter [9].

Our contribution of this paper can be summarized as

below:

 We propose a novel concept to characterize the risk of

violating the availability requirement of applications

in the situation where we have both ToR switch

failures and individual server failures. We

mathematically define the risk by using expectation

and standard deviation of the number of VMs

available to a given application.

 Based on a popular energy consumption model, we

also establish a mathematical model combining the

objectives to minimize the total energy cost and the

risk of violating the availability requirement.

 Based on the mathematical model, we establish the

dual model of the primal problem. We come up with

an offline algorithm and an online algorithm to place

the VMs efficiently. We also develop an online

algorithm based on the primary-dual model, and prove

that the online solution and optimal offline solution

are within a bounded ratio to each other.

The paper is organized as follow. The availability-

aware energy efficient VM placement problem is first

described in Section II. A formal problem definition is

presented in Section III, where we first define the

expectation and standard deviation of the number of VMs

available to an application in the presence of concurrent

failures of a server and a ToR switch, and then

characterize the risk of violating the availability

requirement of an application accordingly. We also

propose an overall cost inline with the SP's perspective

that considers the minimization of both risk and energy

consumption, we develop the objective function of the

optimization problem under consideration. In Section IV

and Section V, two heuristic algorithms, one offline and

one online, to place VMs are presented. In Section VI, we

establish the dual model and the online dual algorithm

based on the model. In Section VII, we present the

simulation results to compare the performance of the

algorithms with that in [3]. Section VIII presents the

conclusion and future work.

II. AVAILABILITY-AWARE PROBLEM

The topology of datacenter in this paper is as Fig. 1

shows. There are three layers of switches: core switch,

aggregate switch and ToR switch. All switches, racks and

servers are identical. We consider two types of failures in

this paper: the physical server failure and ToR switch

failure. The former will cause all VMs mapped on the

failed server also fail, while the latter results the involved

VMs being rendered inaccessible. In any single slot, we

assume that there will be a ToR switch failure, along with

at most one physical server failure.

We use {1,2, }m M to represent racks,

{1,2, }n N to represent the nth server in each

rack, and {1,2, }i I stands for application set in

the system. We consider a VM is available if it functions

correctly and can be accessed by other VMs as needed.

We use (,)p i to denote the expected number of

available VMs belonging to application i under

placement p when both ToR and physical server may

fail. Let (,)Var p i be the standard deviation of the

number of available VMs belonging to i under placement

p . The actual available VM number will vary

from (,) (,)p i Var p i to (,) (,)p i Var p i . Note that

a significant fluctuation in the number of available VMs

indicate high instability of the VM provisioning schemes,

in that if the application requires (,)p i VM to be

available, then a larger value of (,) (,)p i Var p i

means over-provisioning and a higher cost, while a

smaller value of (,) (,)p i Var p i means under-

provisioning and increased SLA violation risk. Therefore,

it is desirable to minimize the fluctuation range, which in

turn lower risk of over provisioning and SLA violation in

terms of availability.

Different number of VMs requested by applications

will lead to the difference in the value of (,)p i

and (,)Var p i . Therefore, in this paper, we use the

metrics
(,)

(,)
(,)

Var p i
risk p i

p i
 , which denotes the

normalized standard deviation of the number of available

VMs, to identify the risk faced by application i under

placement p .

Suppose the failure probabilities of each rack and

server are rP and sP , respectively. Then (,)p i can be

obtained by computing the expected number of VMs

available to application i under the following two

possible events: (1) when the system have zero server

failure and one ToR switch failure (defined as event B1);

and (2) when the system has one server failure and one

ToR switch failure (defined as event B2). We call the

event B when the system has one server failure or one

server failure along with a ToR switch failure. The

648

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

649

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

probabilities of event B, B1 and B2 denoted by ()P B ,

(1)P B and (2)P B respectively are:

 0 0

1 1

() (1) (2)

(1) (1)

(1) (1)

MN

MN s s

MN

MN s s

P B P B P B

P B C P P

P B C P P

 (1)

In addition, we use the metrics E to represent the total

energy cost of the whole system. Based on the commonly

used linear model [10], 11], the energy consumption of

ToRs and physical servers can be separated into two parts:

the static part produced once they are switching on, and

the dynamic part varying depending on their workload.

To better understand the concepts, let us look at an

example in Fig. 1. In this example, we have an

application requests for three VMs. In Fig. 1, we placed

the VMs to three servers in one rack. In Fig. 1(b), we

place the three VMs to three different racks. Assuming

sP is 0.02,
rP is 0.02. For Placement one, by the

definition of and Var , we can get is 2.16003 while

Var is 1.1459. For placement two, the result of is 2.1,

and Var is 0.4426. We can see from the example that, a

wide distribution of VMs among different racks can

much lower the risk computed by Var

.

(a) (b)

Fig. 1. Example of VM placement.

TABLE I: DEFINITION OF NOTIONS

Notation Definitation

iA The ith application in I , 1 i I

 (, , ,)A i p m n The number of VMs belonging to
iA deployed at server m in rack n

 iS
Total number of VMs required by application i

,i jV The jth VM belongs to application i , 1

ij S

iV The set of VMs belongs to application i , | |i iV S

iR The size of the VM belonging to application i

 (,)C m n Total capacity of server n in rack m , 1 n N, 1 m M

III. PROBLEM FORMULATION

We start the problem formulation by defining several

notations in Table I. Note that the formulation below is

applicable to the general case where an application may

require several VMs of different sizes
,i jR , (e.g., small,

medium or large instances), and different servers may

also have different capacities (,)C m n . In later sections,

we will however describe algorithms assuming that all

the VMs required by each application i have the same

size (i.e,
, ,i i j i kR R R) for any i , j and k . And all

the servers have the same capacity C

(i.e., (,) (,)C C m n C p q) for any m , n , p and q .

We use notation
i

pX to represent the placement of VM

for each application.

 1 if VMs belonging to application

 are placed by configuration

0 Otherwise

i

p

i

X p

 (2)

For application i requiring
iS VMs, we use

,0i to

denote the expected number of VMs that are available

when distributing
iS VMs to as many different

servers/racks (up to
iS racks) as possible, also let

,0iVar

denote the standard deviation of available VMs under this

placement. As described before, we only have at most

one rack failure together with a server failure in a single

slot, such a VM placement should yield the smallest

,0iVar and largest
,0i .Hence, we define ,0

,0

,0

i

i

i

Var
risk

 ,

which should be close to the smallest risk (in terms of

either SLA violation or over achieving the availability

beyond the requirement) application i can possibly

suffering. Note that with the lowest degree of server/rack

consolidation, the system's overall risk computed by

0 ,0i

i

risk risk is close to the minimum. However, the

energy consumption under this VM placement is

maximized.

On the other hand, by consolidating all the VMs to as

few racks as possible, we can achieve an overall energy

cost 0E close to the minimum energy usage. However,

the risk as defined above, including that of SLA violation,

under this placement is close to the maximum. This

means that more backup servers are needed to satisfy the

SLA requirement, which leads to the increase in the

overall server cost and energy consumption. Therefore,

there is a tradeoff to be carefully considered between

650

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

decreasing the average risks of applications and reducing

the energy consumption when placing VMs in datacenters.

In this paper, we develop efficient algorithms to

address this issue by carefully choosing the VM

placement solutions.

Based on the tradeoff described above, we formulate

the objective function as a multiple-objective problem

given by:

0 0

0 0

(,) (,)

min()

i i

p p

i p P i p P

risk p i X risk E p i X E

risk E

 (3)

where (,)E p i

application i under placement p (which will be Full-

computed in Eq. (11) later), and (,)
p P i

E p i
 is the

overall energy cost of the system.

In addition, is a parameter that can be used to allow

a flexible trade off between E and risk, by setting to

different value, assuming a value less than one if risk

reduction is more important and larger than one if energy

reduction is more important.

The objective function can be converted to:

0 0min((,) (,))i i

p p

i p P i p P

E risk p i X risk E p i X

 (4)

For each server, we should constrain that the total size

of the VMs mapped on it can't exceed its capacity:

 (, , ,) (,)i i

i p

i

A i p m n R X c m n (5)

And for each VM, we can only place it on one server,

which can be given as:

 1i

p

p P

X i

 (6)

We use ,

B

i m ,
1

,

B

i m and
2

,

B

i m to represent the expected

number of unavailable VMs in iV due to events B, B1

and B2, respectively, when the failed rack is m . Based

on the definition of these events in Section II, we have:

1 2

, , ,

B B B

i m i m i m (7)

where (1) (1)
(1|)

() ()

P B B P B
P B B

P B P B

 , and ()P B

and (1)P B are defined in Eq. (1).

For Event B2, which is defined as when the system has

one ToR failure and one server failure, we consider two

possible situations: The failed server is inside the failed

rack m , or the failed server is outside rack m . The

expected number of unavailable VMs due to event B2

(represented by
2

,

B

i m), should be the number of VMs

mapped on failed rack m , plus the expected number of

VMs that are unavailable due to a server failure outside

rack m . It can be obtained by:

2 ,

, ,

,

,

(2 |)

1
(2 |)

B m n

i m i j

n j

m n

i j s

m n j

X P B B

M
X P P B B

M

where (2) (2)
(2 |)

() ()

P B B P B
P B B

P B P B

 . And (2)P B is

also defined in Eq. (1).

The expected number of available VMs in
iV can then

be computed by subtracting
iS from the expected number

of unavailable VMs due to event B as follows.

,

1 2

, ,

B

i i r i m

m

B B

i r i m r i m

m m

S P

S P P

Before deriving
iVar , we first define

,i mN , which

stands for the expected number of available VMs in
iV

when a specific rack m fails, as below:

, ,

1 2

, ,

B

i m i i m

B B

i i m i m

N S

S

The iVar can be computed based on i and ,i mN

using the definition of standard deviation as follows.

2

,

1
()

| |
i i m i

m

Var N
M

 (8)

To establish the energy model, we introduce two

notations
,m nZ and

mZ to indicate whether a server and

a rack respectively, is active or not as follows:

 ,

1 if server belonging to rack

 is active

0 otherwise

m n

n m

Z

 (9)

1 if rack is active

0 otherwise

m
m

Z

 (10)

Note that a server and a rack are considered active

when it has at least one VM loaded on it. We now

compute the total energy consumption (,)
i p P

E p i

 in

Eq. (3) as follows: the overall energy is from two parts:

the racks and the servers. We build the model based on

the most common linear model [10], [11]. As mentioned

earlier, rack and server's energy usage consists of static

part and dynamic part. We use 0

Re and 0

Se to denote the

static energy consumption of active racks and servers

respectively. The dynamic power consumption of a rack

varies depending on the number of active ports, which is

equal to the number of active servers in it. Let 1

Re be the

maximum dynamic power consumption of a rack. And

maxe be the maximum dynamic power consumption of a

denotes the energy consumption of

651

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

server, which can be reached when the server's load is

100%. The energy usage of the system can be obtained by

the following equations:

 (,) rack server

i p P

E p i E E

 (11)

where

,

0 1()

m n

R m R n
rack

m

Z

E e Z e
N

 (12)

,

, ,

,

0 ,
()

m n

i j i j

i jm n S

server max m n
m n

X R

E Z e e
C

 (13)

IV. OFFLINE VM PLACEMENT ALGORITHM

As the optimization problem defined above is NP-hard,

we first describe a heuristic offline algorithm called

“Packing Then Distribute” (PTD) to solve the problem.

As in any offline algorithm, we assume that a set of

application requests are given. As mentioned earlier, we

will assume that all the VMs required by one application

i has the same size
iR , although

i jR R for i j .

Without loss of generality, let
1 2 , IR R R , and

denote the corresponding set of VMs by
1 2, IV V V ,

where | |i iV S is the number of VMs requested by

application i .

The offline PTD algorithm has two phases: VM

packing and VM distribution, respectively. In the first

phase, it will try to place the VMs in set
1V first,

followed
2V and so on. For each application, it assigns its

VMs into as few servers/racks as possible to minimize the

energy consumption. This can be accomplished by e.g.

the first-fit server selection strategy, which tries to place

the next requested VM in the first server in the first rack

as long as the server has a sufficient capacity left, and

otherwise, it will try the next serve in the same rack, and

eventually if no server in the same rack can be used, the

algorithm will try the (server in the) next rack. Other

server selection strategies that results in a maximum

server/rack consolidation can also be used. After all the

VMs in
IV for the last application have been placed, the

packing phase ends, and the algorithm calculates the

corresponding energy consumption as 0E , which should

be close to the minimum needed due to the nature of the

VM packing strategy used so far.

In the second phase of PTD, the algorithm will try to

distribute the VMs in
iV among different servers/racks in

order to reduce the risk for application i due to either

server or ToR switch failures, and in turn, reduce the

overall risk as well. This is accomplished by changing the

initial placement of some VMs in
iV from a more

consolidated server/rack to less consolidated ones. This

takes multiple iterations, and in each iteration, the

algorithm changes the placement of one VM. This will

result in a possibly lower
irisk , but a higher overall

energy cost E . The algorithm recalculates the value of

the objective function in Eq. (3), and will terminate if

after the current iteration, this value doesn't differ from

the value of the previous iteration by more than a pre-

determined threshold.

Below, we describe how to determine the "source" and

"destination" in each iteration during which the algorithm

makes change the initial placement of a VM.

Finding the source: for each "active" rack m , and

each application i whose VMs have been placed in this

rack, we count the number of VMs in
iV and denote by

i iS S , and choose the maximum
iS over all i , and use

this maximum number, denoted by
mD to represent the

degree of consolidation of the rack m . The algorithm

then randomly chooses a VM currently placed in the rack

having the maximum
mD and moves the VM to a

different rack.

Finding the destination: Suppose the VM to be

moved belongs to application i , that is
iV . The

algorithm first chooses a rack from all active racks whose

iS is zero or the smallest. Within this rack, it chooses

from all the active servers with sufficient capacity left the

one that currently host zero or the least number of VMs

iV . If no such active server can be found, the algorithm

considers two strategies: one is to power up an inactive

server within this rack to host this VM, and the other is to

go to another active rack having the second smallest
iS ,

and choose an active server in the same way as what has

been described above. If it can succeed in placing the VM

either way, the algorithm will compute the objective

function in Eq. (3) corresponding to these two strategies

and go with the better approach. On the other hand, if

none of the above strategies works, since none of the

servers in any active rack has sufficient capacity to

accommodate the VM, the algorithm will eventually

power up an inactive rack and a server within that rack to

host the VM.

The pseudo-code of the algorithm is as follows:

Algorithm 1 Offine Packing Then Distribution: PTD

1: Input: V : the set of VMs; threshold

2: Output: T : The placement of VMs;

3: Let
1 2{ , , , }IV V V V be the set of VMs sorted in

ascending order of
iR .

4: Place VMs of
iV from V onto a physical server

sequentially;

5: while difference in the value Eq. (3) between this

iteration and previous iteration threshold

652

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

6: choose the VM j to move out as described in Finding

the source;

7: choose the server n VM j move to as described in

Finding the destination, move VM j to server n ;

8: end while

9: Return: The placement T;

Remarks: Intuitively, VM packing reduces energy

consumption but increases risk, while VM distribution

does just the opposite. The overall objective in Eq. (3) is

minimized at some degree of server/rack consolidation

with some degree of risks. The above PTD algorithm

starts at one extreme of having the highest degree of

server/rack consolidation and risk, and then tries to move

towards the middle (optimal) point by reducing the

degree of server/rack consolidation and risk. One can

envision another heuristic algorithm, called "distribute

then pack" or DTP, which starts at the other extreme of

having the lowest degree of server/rack consolidation and

risk, and then tries to move towards the middle (optimal)

point by increasing the degree of server/rack

consolidation and risk. Similarly, one can also envision

another heuristic which starts with a random VM

placement (somewhere in between the two extremes) and

then uses Tabu-search to find the optimal point. Due to

space limitation, these and other offline heuristics will be

omitted from this paper. Instead, we will describe an

"online" algorithm that could also be used to process a

given set of application requests as in the offline case.

V. O PLACEMENT ALGORITHM

In this section, we describe an online algorithm which

is useful when application requests come one at a time,

and each time, we need to decide VM placement for the

current request based on the current status of the

servers/racks, without any knowledge about future

application requests. We will focus on an online

algorithm that does not involve any reconfiguration of the

existing VMs. That is, once the VMs for an application

are placed, no changes to their placement will be made

(unless the application completes).

Our online algorithm works in two phases as follows.

In the first phase, for application i requiring
iS VMs, we

first estimate the number of servers needed for this

application, denoted by
iM , to host these

iS VMs. More

specifically, we estimate the frequency distribution (or in

general, probabilistic distribution) of the ratio

1x
x

x

M
Ratio

S
 for any application x . Once such a

distribution is known, then when a request for
iS VMs

arrives, the online algorithm will first generate a random

number and then use it to determine the appropriate ratio

to apply based on the known distribution and finally,

determine the number of servers needed
iM .

The above estimation is based on statistically

analyzing (as well as learning) the (ideal) relationship

between
jM and

jS for a large number application j’s.

These application requests can either be based on the

actual ones we have processed, or are synthesized (or

generated via simulation). The basic idea is to use these

requests as an input to an optimal or near optimal offline

algorithm such as the PTD described above in order to

find out the iratio used by such algorithm.

In our experiments, we have generated six types of

application requests, each including 5,000 requests for a

total of 30,000 application requests. A request in Type

0 5t needs10 t VMs (the number of VMs requested

thus varies from 10 to 15). The goal of this exercise is to

obtain, for each type of requests, what is the frequency

(or in general probabilistic) distribution of the ratio of the

number of servers. We run our PTD algorithm using all

the 30,000 requests as input. These requests are processed

in the order dictated by the algorithm, and not by their

types. At the end of the run, we found that the PTD

algorithm assigns 5 servers for 14 Type 2 requests, 6

servers for 55 Type 1 requests, and 10 servers for 1083

Type 1 requests, etc.

Fig. 2 shows the histogram for three types of

application requests obtained by running our PTD

algorithm. As can be seen, the trend is the same for each

type.

Fig. 2. Note how the caption is centered in the column.

The second phase of our online algorithm starts once

iM is determined. The basic idea is to try to find
iM

active servers in as many (up to
iM) different racks as

possible, and then evenly distribute the
iS VMs among

these
iM servers as evenly as possible (by using e.g., a

round-robin assignment strategy). This is to minimize the

risk without affecting the overall energy consumption

(given the energy consumption model we used). If there

are only
ih M active servers, we will choose from two

possible placement strategies as following: the first is

distributing them in these h servers as evenly as possible

and the other is to power up one or more currently

inactive servers in different racks. The second strategy

may result in a higher energy cost and a lower risk. The

algorithm will compare values of the objective function

in Eq. (3) corresponding to these two strategies, and

choose the better one.

NLINE VM

653

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

The pseudo-code of the online algorithm is described

as Algorithm 2

Algorithm 2 Online Algorithm

1: Input: A: the set of applications to be mapped;

2: Output: T: The placement of VMs;

3: while i I do

4: For
iA A , using frequency distribution of ratio to

determine the number of servers needed to place VMs by

i i iM Ratio S ;

5 if a server j is active and has enough capacity left to

accommodate the VMs, put it into set C , find all such

servers;

6: If | | iC M then

7: Evenly place the VMs to the servers from set C that

locates in as many as possible racks, 1i i ;

8: else

9: Compute the value of Eq.(3) e for two strategies:

Distribute VMs in these |C| servers as evenly as possible;

or power up one or more currently inactive servers in

different racks. Choose the one can minimize the value

1i i ;

10: end if

11: end while

12: Return: The placement T ;

VI. DUAL ONLINE ALGORITHM

To develop an online approximation algorithm, we

first take a linear relation on the condition (0,1)i

pX ,

and convert it to 0i

pX . Then the dual problem can be

described as:

,

max (,) (,)i

i m n

c m n m n (14)

which can be converted eq. (14) to:

,

min (,) (,)i

i m n

c m n m n (15)

with the constraints:

0 0

,

(,) (,) (, , ,) (,) 0i

i i

m n

E risk p i risk E p i A i p m n R m n (16)

i R i (17)

 (,) 0m n (18)

It's obvious that when 0i , the dual constrain can

always be satisfied. Since the inequality for i holds for

all mapping P, we can set

0 0

,

0 0

,

max((,) (,)

(, , ,) (,))

min((,) (,)

(, , ,) (,))

i

i

m n

i

m n

E risk p i risk E p i

A i p m n R m n

E risk p i risk E p i

A i p m n R m n

 (19)

According to the weak dual theory, any feasible

solution associated with the dual problem is a lower

bound to the primal optimal solution. Based on this

conclusion, we develop an efficient online algorithm to

be used when we don't have any information about the

application requests arrived in the future. Furthermore we

can prove that the performance obtained through our

proposed online algorithm will be at worst no more than

r times of the optimal solution.

For each arriving application request, the dual online

algorithm computes a primal solution and a

corresponding dual solution. As any feasible dual

solution produces a lower bound of the optimal offline

solution, we can show that the primal solution is also

within a as small as possible factor of the optimal offline

solution if we carefully design the algorithm. In the

proposed dual online algorithm, the dual variable

(,)m n is initialized to 0, we design the update of

(,)m n in each iteration to ensure the dual to primal

ratio is as small as possible. In the following subsections,

we first describe the update of the dual variable, then we

compute the primal to dual ratio. Finally, the dual online

approximation algorithm is given, and the feasibilities of

the dual and primal solutions are proved.

A. Primal to Dual Ratio

Let *Z denote the optimal offline solution of the

primal problem,
onZ denotes the online solution of the

primal problem. Note that *

onZ Z since the online

solution can at best match the optimal offline solution.

There exists a ratio 1r such that:

 *

onZ rZ (20)

for all input. So * *

onZ Z rZ . In general, we would

like to get the ratio r as closely as possible to one.

Suppose *p is the placement that minimizes

0 0

,

(,) (,) (, , ,) (,)i

m n

E risk p i risk E p i A i p m n R m n . In

the online algorithm, we set
*

(,)

(, , ,) i

C m n
B

A i p m n R
 ,

1
(1) 1Ba

B
 . The initial value of (,)m n is 0, when

there is an arriving application i , we will update the

value of (,)m n to

* *

0 0

*

(,) (,)1 1
(,)(1)

(, , ,) i

E risk p i risk E p i
m n

B A i p m n R aB

 .

Let (,)m n denote the increment in (,)m n . Let

stand for the increment in the dual objective when we

currently have an arriving application i . We have:

654

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

,

* *

0 0

(,) (,)

1
((,) (,))

i

m n

m n c m n

a
E risk p i risk E p i

a

OPT

where OPT is the optimal solution of the primal problem.

Note that * *

0 0(,) (,)E risk p i risk E p i is the

increment in the primal objective. As the way (,)m n

updates, the dual to primal ratio is 1a

a

 . Furthermore, we

have * *

0 0(,) (,)
1

a
E risk p i risk E p i OPT

a

. So the

primal to optimal ratio
1

a
r

a

.

We use | (, ,) |R i m n to represent the total size of

resources requested by application i on server m in rack

n , then

(.)

| (, ,)|

1
(1) 1

| (, ,) |
(1) 1

(,))

B

C m n

R i m n

a
B

R i m n

C m n

the value of r depends on the value of , ,

,

| |

)

i m n

m n

R

C
. In our

simulation, | (, ,) |

(,)

R i m n

C m n
 is ranging from 10%-30%. Fig. 3

shows the value of the primal online algorithm to optimal

ratio r when sizes of VMs range from 10%-30%.

Fig. 3. Primal to optimal ratio.

B. Online Approximation Algorithm

As defined before, for an arriving application request i ,

we need to determine a mapping
*p P such that

*

0 0

,

((,) (,)

(, , ,) (,))i

m n

p argmin E risk p i risk E p i

A i p m n R m n

 at

the first step. We are trying to find the mapping in a

heuristic way. We first consolidate the VMs to as less

servers/racks as possible, then we start to move the VMs

belonging to application i to other servers as the way

described in the distribution phrase of PTD offline

algorithm. Then we will update the (,)m n in the

manner we designed before. The complexity of this

algorithm depends on the size of the placement set P .

The online VM allocation algorithm is shown in

Algorithm 3.

Algorithm 3 Dual Online VM Allocation Algorithm

1: Initialize: (,) 0m n ;

2: For current arriving request i , Find a mapping
*

0 0

,

((,) (,)

(, , ,) (,))i

m n

p argmin E risk p i risk E p i

A i p m n R m n

3: If the size of VMs mapped on a single server exceed its

capacity limitation, find another mapping *p

4: Place request i at *p

5: Set
* *

0 0

*

(,) (,)1 1
(,) (,)(1)

(, , ,) i

E risk p i risk E p i
m n m n

B A i p m n R aB

6 Set

* * *

0 0

,

((,) (,) (, , ,) (,))i i

m n

E risk p i risk E p i A i p m n R m n

C. Primal and Dual Feasibility

A solution is feasible as long as the constrains of the

problem can be satisfied. In this subsection, we prove that

the primal solution and dual solution obtained by

Algorithm 3 are both feasible. Given the way the online

algorithm is constructed, when finding a mapping
*p , the

size of VMs mapped on a single server will not exceed its

capacity limitation, so the primal solution is always

feasible. Moreover, in step 2, we always choose the

placement
*p that can maximize the value of i , so the

dual solution is feasible too. Since (,)m n only

increases, the solution will remain feasible subsequently.

VII. PERFORMANCE EVALUATION

We first implement the offline algorithm, online

algorithm and dual online algorithm in simulation, then

generate a large number of application requests as input,

and finally calculate the risk and energy consumption as

well as the overall cost. We will evaluate the percentage

increase from the minimum risk
0risk obtained by

distributing the VMs among servers/racks to the overall

risk, and the percentage increase from the minimum

system energy consumption
0E obtained by

consolidating the VMs to as less racks/servers as possible,

to the overall energy consumption. We compute the

overall percentage increase as defined in Eq. (3). We also

implement the most relevant FT algorithm from [3], by

minimizing one of its cost functions, termed FTC, we can

expect the improvement in fault tolerance.

A. Simulation Setting

We did the simulation using the CloudSim [12]

simulator. We simulate a datacenter with the same

655

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

topology as that described in Section II, consisting of 500

racks, each having 100 physical servers. Each server has

2GHz 1-core cpu. The size of each VM required by

various applications ranges from 10% to 30% of the

resource capacity of each server. When computing the

energy consumption by a rack (excluding the power

consumed by its servers) using Eq. (16), we set its

parameters as follow:
R

statice =0.75 and
R

dynamice =0.25,

based on the model in [13]. Similarly, When computing

the energy consumption by a server using Eq. (17), we set
S

statice =0.6 and
S

dynamice =0.4. Note that since a fully

loaded server may consume 200W while a rack can

consume up to 60W in addition according to [9], 1 unit of

rack's power consumption from Eq. (16) needs to be

converted to 0.3 units of server's power consumption,

when computing the overall energy consumption using

Eq. (15). As we think from the SP's perspective, the

failure rate of switch and server is known in advance. We

set rP as 0.05 [14] and 0.02sP .

(a) PDT algorithm

(b) Online algorithm

(c) Dual online algorithm

Fig. 4. Impact of the number of applications and VM sizes on the

performance of PTD, online, dual online algorithms.

B. Simulation Result

Fig. 4 plots the simulation results from the PTD

algorithm, online algorithm and the dual online algorithm.

Three subcases are also shown where the requested VM

size varies from 10%-15%, 10%-20% and 10%-30%,

respectively. The figure shows that the percentage

increase in the overall cost (assuming 1) reduces with

the number of application requests.

Such a reduction is mainly due to the fact that with

more applications, the minimum energy consumption

(
0E) needed is larger because of more number of VMs,

hence the percentage increase calculated using Eq. (3) is

smaller, while the risk is not much affected by the

number of applications.

The reason that percentage increase in the overall cost

is lower with a larger variation in the VM size requested

is that, larger VM size will also result in a larger
0E ,

which will lead to a smaller percentage increment. Also,

as the VM size is larger, VMs are more likely to

distribute among the datacenter as a server can't host that

many numbers of VMs due to the capacity limitation.

This will result in lower increment of risk as well.

The results also suggest that the offline algorithm

results in a lower overall cost increment per application

than the online algorithm and dual online algorithm,

which is expected.

(a) PDT algorithm

(b) Online algorithm

(c) Dual online algorithm

Fig. 5. Impact of value on PTD, online and dual online algorithms.

656

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

The impact of on the percentage increase in the

overall cost using the algorithms is shown in Fig. 5 where

the VM size varies from 10%-20%. As can be seen, when

 varies from 0.5 to 2, the differences in the percentage

increase in the overall cost using the online algorithm is

more pronounced than using the offline algorithm and

dual online algorithm. In particular, when 2 , the

percentage increase in overall cost using the online

algorithm reduces by 75% when the number of

application requests increases from 200 to 600. This

indicates that the offline algorithm and the dual online

algorithm are particularly effective when reducing the

energy consumption (as well as the risk) no matter how

many applications are there, while pointing to the

potential in reducing the energy consumption using the

online algorithm when the number of applications is

small. This is somewhat expected as the online algorithm

spreads the VMs for an applications out among many

servers/racks by modeling after what an offline algorithm

would do when the number of applications is large. When

the number of applications is small, such a strategy may

end up consuming too much energy thus leading to a

higher percentage increase in the overall cost.

(a) Online algorithm

(b) Dual online algorithm

Fig. 6. The risk value per application and increment in system's energy

cost using the online algorithm and dual online algorithm.

To corroborate the above explanation, we first process

100 application requests using the online and dual online

algorithm. We then process 200 more applications, and

plot i
i

i

Var
risk

 and the (absolute) increment in the

system's total energy usage Energy in watts, which is

equal to the overall energy after the application request is

accommodated minus the overall energy before the

application request is accommodated. As shown in Fig.

6(a) and Fig. 6(b), these two curves fluctuate in a very

small range, and are not influenced by the number of

applications currently in the system.

We further compare our algorithms with the FT

algorithm in [8] in Fig. 7 where the VMs size varies from

10%-20%, and 1 .

Fig. 7. Comparison result of PTD algorithm, online algorithm and FT

algorithm under different number of applications

From Fig. 7, we can see that since the FT algorithm

does not pay attention to the energy saving, it results in

the highest percentage increase in the overall cost. The

dual online algorithm has an improvement about 30%

compared to the heuristic online algorithm. The offline

PTD algorithm has the best performance, which is as

expected.

VIII. CONCLUSIONS

In this paper, we have, for the first time, proposed

available-aware and energy efficient VM placement

algorithms to lower the risk of violating availability

requirements of the applications while achieving as low

energy consumption as possible. We have proposed and

mathematically defined a measure to characterize such a

risk taking into consideration of concurrent server and

ToR switch failures. We have also proposed and

mathematically established a model for the minimization

of the overall cost including both the risk and the energy

consumption. As the optimization problem is NP-hard,

we have proposed two heuristic algorithms (online and

offline) shown through simulations that they are quite

effective, and also we design an approximation algorithm

by using the dual model.

So far, we have assumed that the increase in the

dynamic part of the energy consumption follows a linear

function. In the future, we will extend our algorithms

when such an energy consumption follows a nonlinear

function. Load balancing is another factor we can take

into consideration when placing the VMs. We will also

explore other online algorithms which use a better (e.g.,

more adaptive) method to estimate the number of servers

needed to host the VMs for a given application, and

perform re-optimization through e.g., VM migration.

Furthermore, to ensure availability guarantee, a Service

Provider (SP) needs to jointly decide the number of

redundant VMs to be allocated and the placement of all

the primary and redundant VMs. It also needs to be able

to calculate the availability in a more direct way based on

more comprehensive model for the correlated failures

inside a datacenter than the way used in this paper to

calculate the risk. Finally, the SP needs to do more

657

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

accurate market-based cost-benefit analysis in order to

design an appropriate SLA which stipulates the levels of

availability guarantees, and the corresponding prices to

be paid by the clients, and the penalties for SLA violation

to be paid by the SP, by considering its CAPEX and

OPEX for providing the services.

ACKNOWLEDGEMENTS

This research is supported in part by HDTRA1-09-1-

0032, Google's Research Award and NSF CSR-1409809.

REFERENCES

[1] A. Beloglazov and R. Buyya, “Energy efficient resource

management in virtualized cloud data centers,” in Proc. 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, May 2010, pp. 826–831.

[2] A. Dastjerdi, S. Garg, and R. Buyya, “Qos-aware deployment of

network of virtual appliances across multiple clouds,” in Proc.

IEEE Third International Conference on Cloud Computing

Technology and Science, Nov. 2011, pp. 415–423.

[3] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant

is change: Incorporating time-varying network reservations in data

centers,” in Proc. ACM SIGCOMM Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communication, New York, NY, USA: ACM, 2012, pp. 199–210.

[4] J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm

placement and routing for data center traffi c engineering,” in

INFOCOM, Proceedings IEEE, March 2012, pp. 2876–2880.

[5] M. Guazzone, C. Anglano, and M. Canonico, “Energy-efficient

resource management for cloud computing infrastructures,” in

Proc. IEEE Third International Conference on Cloud Computing

Technology and Science, Nov. 2011, pp. 424–431.

[6] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo,

“Availability study on cloud computing environments: Live

migration as a rejuvenation mechanism,” in Proc. 43rd Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks, June 2013, pp. 1–6.

[7] M. Mihailescu, A. Rodriguez, and C. Amza, “Enhancing

application robustness in infrastructure-as-a-service clouds,” in

Proc. IEEE/IFIP 41st International Conference on Dependable

Systems and Networks Workshops, June 2011, pp. 146–151.

[8] P. Bod´ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and

I. Stoica, “Surviving failures in bandwidth-constrained

datacenters,” in Proc. ACM SIGCOMM Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communication, New York, NY, USA: ACM, 2012, pp.

431–442.

[9] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of

a cloud: Research problems in data center networks,” SIGCOMM

Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[10] D. Kliazovich, P. Bouvry, and S. Khan, “Dens: Data center

energy-effi cient network-aware scheduling,” in Proc. IEEE/ACM

Int’l Conference on Int’l Conference on Cyber, Physical and

Social Computing Green Computing and Communications

(GreenCom), Dec. 2010, pp. 69–75.

[11] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic

rightsizing for power-proportional data centers,” IEEE/ACM

Transactions on Networking, vol. 21, no. 5, pp. 1378–1391, Oct.

2013.

[12] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R.

Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning

algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.

23–50, 2011.

[13] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A

power benchmarking framework for network devices,” in Proc.

8th International IFIP-TC 6 Networking Conference, Berlin,

Heidelberg: Springer-Verlag, 2009, pp. 795–808.

[14] P. Gill, N. Jain, and N. Nagappan, “Understanding network

failures in data centers: Measurement, analysis, and implications,”

in Proc. ACM SIGCOMM 2011 Conference, New York, NY, USA:

ACM, 2011, pp. 350–361.

Zhouhan Yang is a PhD student in Computer

Science and Engineering department, State

University of New York at Buffalo. She

received her B.S in Computer Science

department at University of Science and

Technology of China (USTC), Hefei, in 2010.

Her research interest is in availability

modeling of virtual networks in cloud

computing and fault-tolerant virtual server

architectures.

Liu Liu is pursuing his Ph.D. degree

Communication and Information System at

University of Electronic Science and

Technology of China. His Research interests

include resource management in data centers

and cloud computing.

Sanjukta Das

received her PhD in operations

and information management in 2007 from

the University of Connecticut. She is an

Associate Professor at SUNY Buffalo in the

Department of Management Science and

Systems. Her research interests include

resource allocation and contract design in

cloud computing. Her research has been

funded by Google and NSF. She has

published extensively in journals such as INFORMS Journal on

Computing and Information Systems Research. She serves as an

Associate Editor for INFORMS Journal on Computing and as a

Coordinating Editor for Information Systems Frontiers. She has served

as a Guest Associate Editor for MIS Quarterly. She was a General Co-

chair of the INFORMS Conference on Information Systems and

Technology 2014 in San Francisco.

Ram Ramesh

is Professor and Chair of

Management Science & Systems department,

School of Management, SUNY at Buffalo.

His current research focuses on availability

analytics and statistical modeling of cloud

infrastructures, cloud market mechanisms and

contract structures. He serves as an Editor-in-

Chief of Information Systems Frontiers and

an Area Editor of INFORMS Journal on

Computing for the area “Knowledge Management and Machine

Learning”. He has published extensively in journals such as Information

Systems Research, INFORMS Journal on Computing and IEEE TKDE.

His research has been

funded by NSF, Air Force Office of Scientific

Research, Air Force Research Laboratory, Army Research Institute,

Google, Raytheon, Samsung and Westinghouse.

658

Journal of Communications Vol. 10, No. 9, September 2015

©2015 Journal of Communications

Anna Ye Du received her PhD from SUNY

Buffalo in 2010 and is a post-doctoral fellow

in the Department of Management Science

and Systems. Her research areas include

statistical modeling of availability in

computing systems, operations and economics

of cloud computing markets, and analytics of

health IT. Her research works have been

widely published in journals such as

Information Systems Research, INFORMS Journal on Computing,

ACM Transactions on MIS and many more.

Chunming Qiao is Professor and hair of

Department of Computer Science and

Engineering at SUNY Buffalo. He directs the

Lab for Advanced Network Design, Analysis,

and Research (LANDER) with current focus

on cyber transportation systems, cloud

computing, and smartphone systems. He has

published extensively with an h-index of

about 60 (according to Google Scholar). Two

of his papers have received best paper award

from IEEE and Joint ACM/IEEE venues. He also has 7 US patents and

has consulted for several major IT and telecom companies, including

Cisco and Google. He has served on the editorial board of IEEE

Transactions on Networks, and Transactions on Parallel and Distributed

Systems. His research has been funded by Cisco, Google and NSF. He

was elected to IEEE Fellow for his contributions to optical and wireless

network architectures and protocols.

