
Application Scheduling in Cloud Computing Environment

with the Consideration of Performance Interference

Lei Yang
1
 and Yu Dai

2

1
College of Information Science and Engineering, Northeastern University, Shenyang 110004, P.R.China

2
College of Software, Northeastern University, Shenyang 110004, P.R.China

Email: {yanglei, daiyu}@mail.neu.edu.cn

Abstract—Virtualization technology which can make multiple

virtual machines run in a shared physical host has received

much attention. However, the consolidation can result in the

contention in the shared resources and lead to a degradation of

the performance deployed on the virtual machines. To avoid

such degradation while respect the utility of the physical host, it

needs to study the performance interference effects of the

virtualized environment and schedule the application with the

consideration of this interference. Then, we develop an

application scheduling framework to improve the application

performance when co-located with others in the virtualized

environment. The experiments show the better performance of

our methods.

Index Terms—Performance interference, virtualized

environment, cloud computing, application scheduling

I. INTRODUCTION

Recently, cloud computing has received much

attention. Virtualization technology [1], [2] is one of the

important techniques in the cloud computing, which

allows multiple applications to run on the same hardware

simultaneously.

Ideally, the performance of an application should be

independent of the others co-located on the same machine.

However, modern virtual machine technologies do not

provide effective performance isolation [3]. Although

extensive works [4]-[6] have been done to achieve

performance isolation among VMs consolidated on the

same physical host, performance interference still

remains especially for some I/O-intensive or mixed type

of applications [7]. Then, it needs to predict the

performance interference among VMs when you want to

deploy an application on a VM which will be

consolidated with other VMs on the physical host.

For modeling and predicting the performance

interference among VMs, a set of research works [9]-[16]

have been done. However, current works usually assume

a single performance bottle neck of the applications and

Manuscript received April 13, 2015; revised August 19, 2015.

This work was supported in part by the National Key Technology
R&D Program of the Ministry of Science and Technology

(2015BAH09F02, 2015BAH47F03), National Natural Science

Foundation of China (60903008, 61073062) and the Fundamental
Research Funds for the Central Universities (N130417002,

N130404011).
Corresponding author email: daiyu@mail.neu.edu.cn.

doi:10.12720/jcm.10.8.603-609.

only deal with the CPU-intensive application or the I/O

intensive applications. However, different mixed

application may have very different usage pattern of the

CPU resource and I/O resource. Then, using a uniform

model to predict this kind of applications may not be very

appropriate. The current model training method cannot be

used for predicting the performance interference.

In this paper, we develop an application scheduling

framework that can improve the application performance

when co-located with others in the virtualized

environment. The proposed framework leverages

performance interference by predicting techniques which

acts as the core for application scheduling in the

virtualized environment. The experiments show the better

performance of the resource allocation method. The main

contributions of our work are as follows:

The rest of paper is organized as follows. The next

section introduces the related works in the field of

application scheduling in the virtualized environment.

Section 3 overviews the proposed application scheduling

framework. Section 4 and 5 present the methods of

modeling and scheduling techniques irrespectively in the

proposed framework. The evaluation results are presented

in Section 6. We conclude the paper in Section 7.

II. RELATED WORKS

Currently, there have been a number of noticeable

efforts putting into the performance modeling of the

applications [8]-[15]. Most of these efforts, aim to

streamline resource management, i.e., maximization of

resource utilization and application performance. A

recent study on VM consolidation [17] has revealed that

frequent live VM migration may even lead to significant

performance degradation, and thus resource usage

characteristics of the application should be considered in

resource allocation. Reference [18] also reports similar

results and develop a workload predicting technique

incorporated in the consolidation algorithm. Reference

[14] utilizes online feedback to build a multi-input multi-

output model to capture the performance interference and

to tune resource allocations to mitigate the performance

interference.

In the field of modeling the performance interference

among applications, resource contention between

processes in a single OS is well-researched. Reference

[19], [20] introduces a hardware activity vector to

603

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

monitor the access patterns on the cache. Reference [8]

uses application characteristics to model the virtualization

overheads. References [5], [6] and [12], [13] study the

network I/O interference in virtualized cloud

environments. References [14], [15] use online feedback

to model the performance interference among

applications. However, it mainly focuses on CPU-

intensive application. Reference [10] proposes a method

for modeling the relation between the system-level

workloads and the performance interference degree,

while the model can only be used for predicting the

performance interference among disk I/O-intensive

applications. Reference [11] proposes a model for

modeling the relation between the system-level

workloads and the performance interference degree.

However, current works always assume perfect

performance isolation among VMs hosted on the same

physical machine. Some research works [10] considers

the performance interference among VMs when

considering the problem of VM consolidations, these

works always assume the availability of the historical

data about the performance interference of the VM to be

predicted. And current works always focus on one kind of

application and seldom considers the performance

interference prediction of mixed application.

III. FRAMEWORK OVERVIEW

In the following, we present the basic framework for

application scheduling with the consideration of the

performance interference among VMs which is shown in

Fig. 1.

Historical Data of

Performance Interference

Performance

Interference Model

Training

Performance

Interference

Model

Model Clustering

Workload Pattern

Matchmaking

Workload Patterns

There exists

historical data?

Predicting

Performance

Interference

Y
Selected Performance

Interference Model

Selected Performance Interference Model

N

Interference

Aware Scheduler

Performance

Interference Degree

Performance

Interference Prediction

Fig. 1. Basic framework for application scheduling with the
consideration of the performance interference.

The proposed application scheduling framework

consists of 5 major components: Interference Aware

Scheduling, Performance Interference Model Training,

Predicting Performance Interference, Model Clustering

and Workload Pattern Matchmaking. Here, Interference

Aware Scheduling is used to utilize the performance

interference prediction to infer the application

performance under interference and generate optimized

placement of tasks and physical hosts. Performance

Interference Model Training is used for modeling the

performance interference among VMs based on historical

data of the application co-located on the same physical

host. Model Clustering is used for clustering the available

performance interference models by the workload pattern.

Workload Pattern Matchmaking is used for match

making between the workload of the application and the

workload patterns of the available models to get the

performance interference model for the application whose

performance interference will to be predicted. Predicting

Performance Interference is to get the performance

interference degree based on the performance

interference model by feeding the corresponding

parameters.

In the following, we will discuss the implementation of

the major components in the framework.

IV. METHODS FOR PREDICTING PERFORMANCE

INTERFERENCE

A. Modeling the Performance Interference U sing Linear

Regression

As for the problem of application scheduling, we need

to know the degree of the performance interference

among VMs to determine where to place a “new” VM.

We will measure whether the “new” VM will affect the

performance of the VMs already deployed on the same

physical host. For simplicity, we call the “new” VM as

“foreground” VM, while all the other VMs co-located on

the same physical host is called as a whole of

“background” VM. The aim of predicting the

performance interference degree is to measure the

performance interference degree between the foreground

and the background VMs.

Definition 1. Performance Interference Degree.

Performance interference degree reflects the extent to

which the performance of the foreground VM (FW) will

be affected by the background VMs (BW). Equation (1)

shows how to compute it.

 
   

 

@ @
@

@

Perf FW BW Perf FW Idle
PID FW BW

Perf FW Idle




 (1)

where Perf (FW@BW) is the performance of the

application on the foreground running against the

background; Perf (FW@Idle) is the performance of the

application on the foreground VM when it runs alone.

To capture VM behaviors that generate performance

interference, we collect system-level workloads to find

the indicator of the performance interference. We collect

the following system-level workload of the VM, such as

average CPU utilization (cpuutil), average memory

utilization (memutil), average number of read operations

per seconds (rps), average number of write operations per

604

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

seconds (wps), average waiting time of the I/O operations

(await) and average time spent for the request in the disk

device (svctm). We can use the following equation to

show the relationship between the system-level workload

and the performance interference degree.

  0 1 2

3 4 5 6

@ BW BW

BW BW BW BW

PID FW BW a a cpuutil a memutil

a rps a wps a await a svctm

    

       

 (2)

where a0, a1, a2, a3, a4, a5, a6 are coefficients. The

system-level workloads of the background are cpuutilBW,

memutilBW, rpsBW, wpsBW, awaitBW and svctmBW.

Then, if the coefficients a0, a1, a2, a3, a4, a5, a6 in

Equation (2) is known, we can predict the performance

interference degree of the foreground VM when the

background VM’s system-level workloads is known.

Then, in the following, we will present how to use linear

regression to estimate the coefficients a0, a1, a2, a3, a4, a5,

a6.

To estimate the coefficients is to find a combination of

a0’, a1’, a2’, a3’, a4’, a5’, a6’ which can make the observed

value much more closet to the predicted one, as shown in

equation (3).

    
2

@ @i i

i

Q PID FW BW PID FW BW 
 (3)

where BWi is the i
th

 observations;  @PID FW BW is the

observed performance interference degree in the i
th

observations;  @
i

PID FW BW is the predicted

performance interference degree, which can be calculated

as Equation (4).

 
0 1 2

3 4 5 6

' ' '

' ' ' '

@ BW BW

BW BW BW BW

PID FW BW a a cpuutil a memutil

a rps a wps a await a svctm

    

       

 (4)

We can use least square approach [24] to estimate the

coefficients a0’, a1’, a2’, a3’, a4’, a5’, a6’. And then the

performance interference degree of the foreground VM

can be predicted if the system-level workloads of the

background VM are known. As for the limitations of the

paper, we will not present the concrete algorithm in

details.

If the historical data of the performance interference

between VMs for training the model is available, we can

use the above method to find the coefficients. However,

as for the problem of VM placement, we may not know

the historical data. Then, in this situation, we will use the

past experience to infer the performance interference

between VMs. Then, in the following, we will discuss

how to make a prediction of the performance interference

under this situation.

B. Generating Combined Performance Models

Performance interference has a relation with the

system-level workloads of the background and

foreground VMs. When the system-level workloads of

two applications are similar, we can infer one

application’s performance interference from the

performance of the other.

Imagine we have a set of performance interference

degree models, signified as H={PID(FW1@),

PID(FW2@), …, PID(FWn@)}. Here, we call FWi the

workload pattern.

Since the historical data about the performance

interference of vm (the virtual machine to be placed) with

other VMs is not enough for the model training, we will

find the performance interference degree models with the

highest similarity of the foreground workload with the

VM vm. If we can find a set of performance interference

degree models whose workload pattern is similar with vm,

then we can combine these models together to generate

the model of vm.

In the following, we will show how to compute the

similarity degree between two workload patterns and how

to generate the combined model for vm.

Imagine we have 2 workload patterns wpi and wpj,

each of which is a vector of the system-level workloads

as described above. We will use Euclidean distance to

compute the similarity between workload patterns as

shown in Equation (5).

 
 

 

   

 

 

2

2

2 2

2

2

1
,i j

cpu i j

mem i j

rps i j wps i j

await i j

svctm i j

d wp wp

w cpuutil cpuutil

w memutil memutil

w rps rps w wps wps

w await await

w svctm svctm



 

  

     

  

  

 (5)

where wcp, wmem, wprs, wwps, wawait and wsvtm are the

weights for adjusting since the value ranges of the

system-level workloads are different.

Then, we can find the workload pattern similar to vm.

Here, we can use a threshold, and when the similarity

degree between the workload pattern and vm is beyond

the threshold, it means that this workload pattern’s

corresponding performance interference degree model

can be used for predicting the interference degree of vm.

If we can find more than one workload patterns whose

similarity degree with vm is beyond the threshold, we can

use the following equation to generate the performance

interference model of vm.

   @ @i
i

i

d
PID FW BW PID FW BW

sumd

 
  

 


 (6)

where FW is the workload pattern of VM vm. FWi is the

workload pattern whose similarity degree with vm is

beyond the threshold. PID(FWi@BW) is the performance

interference degree model corresponding to FWi. di is the

similarity degree between FW and FWi; sum is the sum of

the similarity degree between FW and each FWi, that is,

sum=∑di.

605

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

Then, we can use the equation (6) to predicting the

performance degree of vm.

V. METHODS FOR SCHEDULING APPLICATIONS IN

VIRTUALIZED ENVIRONMENT

With the help of performance interference prediction,

the proposed application scheduling system can now

schedule the incoming tasks to different virtual machines

in a way that minimizes the interference effects from co-

located applications. Generally speaking, optimally

assigning tasks to physical machines in parallel and

distributed computing environments has been shown to

be an NP-complete problem [21]. In this work, we

explore a number of heuristic techniques to find a good

solution for the scheduling problem. In the following, we

will present the aim of the scheduling problem and then

give the solutions to this problem.

Specifically, the aim of the application scheduling in

the virtualized environment is to reduce the total

performance interference degree while respect to the

utilization of the physical resource. Given a set of

application deployment requests T and for each task t T,

it has the requirement towards the resource which is

denoted as R=<cpu, memory, disk>. Here, cpu is the

amount of CPU resource the task t needed, memory is the

amount of memory resource the task t needed and disk is

the amount of disk resource the task t needed. Given a set

of physical hosts PM={pm1, pm2, …, pmn}, then, the aim

of the scheduling problem is to find an optimal mapping

from the set of tasks to the set of physical hosts, to satisfy

the resource requirement of the tasks and achieve the

highest utilization of the physical resource while

considering the interference effects among VMs. In this

work, we explore the following two scheduling

algorithms.

Online scheduling algorithm is to make a quick

scheduling decision that becomes necessary when the

tasks arrive at rapid speed. In such a scenario, the tasks

will arrive at the queue at arbitrary times and the

scheduler will dispatch an incoming task immediately

without waiting for later tasks. With the goal of

minimizing the number of physical machines and the

overall performance interference degree of all the tasks,

the online scheduling algorithm maps each incoming task

to the physical machine with the minimal interference

degree and with the minimal rest of available resources.

The online scheduling algorithm is presented in

Algorithm 1.

Algorithm 1. Algorithm for Online Scheduling the Application

Input: Task t; set of Physical hosts PM; the workload pattern

(FW) of task t

Output: placement plan (candidatePM) of task t

Begin

1. For each pmi in the PM do

2. Begin

3. If t.cpu<=pmi.CPUAvailable and t.memory<=pmi.

memoryAvailable and t.disk<=pmi.diskAvailable then

4. begin

5. BW=getBackgroundWorkloadPattern(pmi);

6. pid=GetPID(FW, BW);

7. utility=GetUtiltity(t, pmi);

8. If min> c pid

utility

 then //c is a constant

9. begin

10. min= c pid

utility

 ;

11. candidatePM= pmi;

12. end

13. end

14. end
End

In a batch scheduling scenario, the scheduling process

takes place when the queue that holds the incoming tasks

is full. Imagine we have a queue of incoming tasks, and

the length of the queue is m, n is the number of physical

hosts. In the batch scheduling algorithm, the first step is

to take the first task t1 in the queue as the input to run the

online scheduling algorithm, and secondly, another task t2

from the rest of the queue which has the least interference

with t1 will be picked out and t2 will be taken as the input

to run the online scheduling algorithm. The batch

scheduling algorithm is shown in Algorithm 2.

Algorithm 2. Algorithm for Batch Scheduling the Application

Input: Queue of Tasks Q; set of Physical hosts PM;

Output: placement plan (candidatePMs) of T.

Begin

1. while Q is not empty do

2. begin

3. candidatePMs[t1]=OnlineScheduling(t1, PM,

t1.workloadPattern); // run the online scheduling

algorithm

4. For each task ti in Q and i<>1 do

5. begin

6. PID=GetPID(t1.workloadPattern,

ti.workloadPattern);

7. If min>PID then

8. t=ti;

9. End

10. candidatePMs[t]=OnlineScheduling(t, PM,

t.workloadPattern);

11. RemoveFromQueue(t1, t);

12. end

End

VI. EXPERIMENTS

In order to verify the effectiveness of our framework,

we have done a set of experiments. In the first and second

parts of the experiments, we will evaluate the

performance interference prediction methods proposed in

this paper. And in the second parts of the experiments, we

will evaluate the effectiveness of the proposed application

scheduling method.

In the first and second parts of the experiments, two

VMs are created in a physical host with a Xen hypervisor.

Each VM domain only runs one application. All the

configuration of the physical hosts are the same and as

the followings. The CPU is Intel Core i3 3.3G with 4G

memory and 250G disk and the version of the operating

system is Ubuntu 12.04. The configuration of the virtual

606

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

machine is as the following. The VMs are created using

the Xen hypervisor with 4VCPU, 1G memory and 8G

disk and the operating system is Ubuntu 12.04.

In the first experiment, we will test the effectiveness of

the performance interference degree model based on

linear regression. Take the applications in our experiment

as the foreground VM and train the performance

interference degree model. Fig. 2 shows the average error

and the maximum error as well as the minimum error

between the predicted performance degree and the

observed one.

Fig. 2. Result of average, maximum and minimum error.

From Fig. 2, the I/O-intensive application’s errors

(such as cat) are bigger than the other type of application

(such as Super PI). The prediction result can be accepted

since the average error ranges from 6% to 13%.

We also test the predicted performance interference

degree of applications cp, dd and spinlock which has no

historical data about the performance interference in our

experiments. Take the average predicted performance

interference degree and the observed one of the

applications. Fig. 3. shows the result.

From Fig. 3, the prediction result can be accepted since

the average error ranges from 7% to 14%.

Fig. 3. Result of average, maximum and minimum error.

The above experiment results show the predicted

performance interference degree is close to the observed

one.

We evaluate the application scheduling framework in a

36-node Xen-based private virtual cluster, which consists

of 12 physical servers, each of which is configured with

Intel Core i3 CPU, 4GB memory and one 250GB disk.

We evaluate the proposed application scheduling

framework using the applications in the above

experiments. In the experiments, we compare the

performance of the proposed application scheduler

framework with 2 other main competitors in practical use:

the one (we call NonInterferenceScheduler) which do not

consider the performance interference among VMs and

uses a min-min heuristic algorithm [22] for finding the

assignments of the task; the one [7] (we call

InterferenceScheduler) which considers the performance

interference among VMs. The constant c in the proposed

algorithm is set to 4. The result is shown in Fig. 4 and Fig.

5. In Fig. 4, the normalized runtime is a ratio of the

response time of the application after scheduled in the

virtualized environment to the response time of the

application in the non-sharing resource environment.

Fig. 4. Comparison result of normalized response time of

different scheduling algorithms.

Fig. 5. Comparison result of the number of used physical hosts

of different scheduling algorithms.

From Fig. 4, the normalized response time of the

proposed batch scheduling algorithm is always the lowest

among all the algorithms. And the

NonInterferenceScheduler always has the highest

normalized response time. This is the

NonInterferenceScheduler does not considers the

performance interference among VMs when scheduling

the application. As for the InterferenceScheduler can

achieve almost the same normalized response time as the

proposed algorithms when the application is Disk I/O

intensive application while if the application is of other

types the normalized response time is high. This is

because the prediction model in InterferenceScheduler is

only disk I/O intensive application. Then, when the

application is of other types, the accuracy of the

prediction result cannot be insured which may result in a

bad performance in the scheduling. The proposed batch

scheduling algorithm can get a little bigger normalized

607

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

response time than the proposed online scheduling

algorithm.

From Fig. 5, the NonInterferenceScheduler always has

the lowest number of the used physical hosts than others.

This is because that in NonInterferenceScheduler, it does

not consider the performance interference and only

considers the utility of the physical hosts. As for the

proposed online scheduling and batch scheduling

algorithms, the latter one can always use less physical

hosts than the former one while only at a sacrifice of a

little response time degradation (from Fig. 5 we can find

it).

The above experiment results verify the effectiveness

of the proposed method for predicting the performance

interference and also the proposed application scheduling

framework for mitigating the performance interference

while respecting the utility of the physical hosts.

VII. CONCLUSIONS

In this work, we present an application scheduling

framework with the consideration of the performance

interference among VMs. We propose a method for

predicting the performance interference of applications in

the virtualized environment. We develop 2 scheduling

algorithms that work with the performance interference

prediction to manage VM placement in virtualized

environment.

In the future wok, we will use other non-linear method

to analyze the relationship between the performance

interference degree and the system-level workloads in

order to improve the accuracy of the prediction of the

performance interference. And the system-level

workloads related to network I/O will be considered.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their

detailed reviews and constructive comments, which have

helped improve the quality of this paper. This work was

supported in part by the National Key Technology R&D

Program of the Ministry of Science and Technology

(2015BAH09F02, 2015BAH47F03) and the Fundamental

Research Funds for the Central Universities

(N130417002, N130404011)).

REFERENCES

[1] Xen Virtual Machine Moniter. (Jan. 12, 2013). [Online]. Available:

http://www.xen.org

[2] P. Barham, B. Dragovic, and K. Fraser, “Xen and the art of

virtualization,” in Proc. ACM Symposium on Operating Systems

Principles, New York, 2003, pp. 164-177.

[3] D. Gupta, L. Cherkasova, R. Gardner, and A Vahdat, “Enforcing

Performance Isolation across virtual machines in xen,” in Proc.

International Conference on Middleware, Melbourne, 2006, pp.

342-362.

[4] Y. Koh, R. Knauerhase, and P. Brett, “An analysis of performance

interference effects in virtual environments,” in Proc.

International Symposium on Performance Analysis of Systems and

Software, California, 2007, 200-209.

[5] Y. D. Mei, L. Liu, and X. Pu, “Performance measurements and

analysis of network i/o applications in virtualized cloud,” in Proc.

International Conference on Cloud Computing, Miami, 2010, pp.

59-66.

[6] X. Pu, L. Liu, and Y. D. Mei, “Who is your neighbor: Net I/O

performance interference in virtualized clouds,” IEEE Trans on

Services Computing, vol. 6, no. 3, 314-329, 2013.

[7] R. C. Chiang and H. H. Huang, “TRACON: Interference-aware

scheduling for data-intensive applications in virtualized

environments,” in Proc. International Conference for High

Performance Computing, Networking, Storage and Analysis,

Seattle, 2011.

[8] T. Wood, L. Cherkasova, and K. Ozonat, “Profiling and modeling

resource usage of virtualized applications,” in Proc. International

Conference on Middleware, Leuven, 2008, pp. 366-387.

[9] B. R. Nikzad, T. Javid, and M. Reza, “On modelling and

prediction of total CPU usage for applications in mapreduce

environments,” in Proc. International Conference on Algorithms

and Architectures for Parallel Processing, Fukuoka, 2012, pp.

414-427.

[10] S. Kundu, R. Rangaswami, and K. Dutta, “Application

performance modeling in a virtualized environment,” in Proc.

International Conference on High Performance Computer

Architecture, Bangalore, 2010, pp. 1-10.

[11] A. A. Bankole and S. A. Ajila, “Cloud client prediction models for

cloud resource provisioning in a multitier web application

environment,” in Proc. Service Oriented System Engineering, San

Francisco Bay, 2013, pp. 414-427.

[12] X. Pu, L. Liu, and Y. D. Mei, “Understanding performance

interference of I/O workload in virtualized cloud environments,”

in Proc. International Conference on Cloud Computing, Miami,

2010, pp. 51-58.

[13] Y. D. Mei, L. Liu, and X. Pu, “Performance analysis of network

I/O workloads in virtualized data centers,” IEEE Transactions on

Services Computing, vol. 6, no. 1, pp. 48-63, 2013.

[14] N. Ripal, K. Aman, and G. Alireza, “Q-clouds: Managing

performance interference effects for QoS-aware clouds,” in Proc.

European Conference on Computer Systems, Paris, 2010, pp. 237-

250.

[15] T. Chen and R. Bahsoon, “Self-adaptive and sensitivity-aware

QoS modeling for the cloud,” in Proc. International Symposium

on Software Engineering for Adaptive and Self-Managing Systems,

San Francisco, 2013, pp. 43-52.

[16] Y. Koh, R. Knauerhase, and P. Brett, “An analysis of performance

interference effects in virtual environments,” in Proc.

International Symposium on Performance Analysis of Systems &

Software, California, 2007, pp. 200-209.

[17] G. Jung, M. A. Hiltunen, and K. R. Joshi, “Mistral: Dynamic

managing power, performance, and adaptation cost in cloud

infrastructures,” in Proc. International Conference on Distributed

Computing Systems, Genova, 2010, pp. 62-73.

[18] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of

virtual machines for managing SLA violations,” in Proc.

International Symposium on Integrated Network Management.

Munich, 2007, pp. 119-128.

[19] A. Settle, J. Kihm, A. Janiszewski, and D. Connors, “Architectural

support for enhanced SMT job scheduling,” in Proc.

International Conference on Parallel Architectures and

Compilation Techniques, Alberta, 2004, pp. 63-73.

[20] M. Ghosh, R. Nathuji, and M. Lee, “Symbiotic scheduling for

shared caches in multi-core systems using memory footprint

signature,” in Proc. International Conference on Parallel

Processing, Kyoto, 2011, pp. 11-20

[21] P. Fortemps, “Jobshop scheduling with imprecise durations: A

fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 5, no.

4, pp. 557-569, 1997.

[22] H. Oscar and E. K. Chul, “Heuristic algorithms for scheduling

independent tasks on nonidentical processors,” Journal of the

ACM, vol. 24, no. 2, pp. 280-289, 1977.

608

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

Lei Yang, received the M.S. and Ph.D.

degrees in computing application technology

from Northeastern University, Shenyang,

Liaoning, China, in 2004 and 2007

respectively. He has been a faculty member of

college of information science and technology

at Northeastern University since 2004, where

he is currently an associate professor. His

major research interests include cloud

computing, service computing and quality management of service.

Recent years, as a project leader and main researchers he has undertaken

many national and province projects.

Yu Dai, received her M.S. and Ph.D degree in

computing application technology from

Northeastern University, Shenyang, Liaoning,

China, in 2006 and 2008 respectively. She is

currently an associate professor in the college

of software, Northeastern University. Her

research interests include cloud computing,

service computing and quality management of

service.

609

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

