
OpenFlow-Based Dynamic Server Cluster Load Balancing

with Measurement Support

Qingwei Du and Huaidong Zhuang
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,

China

Email: duqingwei@nuaa.edu.cn; zhhdong@nuaa.edu.cn

Abstract—In the current cloud computing environment, the

size of the server cluster in the data center is growing in

response to the increasing traffic. Due to the use of multiple

replicas in the server cluster to provide the same services,

effective load balancing as a key technology is very important.

In this paper we implement and evaluate an alternative load-

balancing architecture using OpenFlow switches connected to a

controller, which gains high flexibility without additional

equipment, and has the potential to be more robust than

traditional load balancing approach. The system could measure

network and server status in real-time and dynamic set weights

of server according to the server's processing capability. Our

load balancer installs wildcard rules in the switches proactively

to direct requests of large groups of clients without involving

the controller which effectively saves the flow table space and

reduces the delay of the network. Our implementation uses the

OpenFlow controller Floodlight and network emulator Mininet

to verify the validity of this algorithm. The preliminary

evaluation results demonstrate that our dynamic load balancing

scheme is superior to not only the random load balancing

algorithm but also the round robin load balancing algorithm.

Index Terms—Dynamic load balancing, OpenFlow, SDN

I. INTRODUCTION

With the growing scale of online services ， using

server cluster to provide network services has become a

basic model of cloud computing. Multiple servers get

together to provide the same services, which can greatly

increase computing capacity as well as reduce single

points of failure, thus providing higher availability. Load

balancing in computer networks is a technique used to

spread the workload across multiple network links or

computers [1], [2]. In order to serve more clients with a

minimum of latency and a maximum of throughput, Load

Balancer distributes the incoming workload to a series of

replicated servers. Traditional load balancing uses a

dedicated hardware device to divide the network traffic

into different server replicas. Although it is fast, but is

expensive and lack of flexibility in the configuration,

making the configuration cannot be dynamically adjusted

based on the network status.

Manuscript received May 6, 2015; revised August 18, 2015.

This work was supported by the National Nature Science Foundation

of China under Grant No. 61202350.
Corresponding author email: zhhdong@nuaa.edu.cn.

doi:10.12720/jcm.10.8.572-578.

As an innovative networking technology that offers

high programmability and practical way of user control in

computer networks, OpenFlow [3] has been applied to

many load balancing system [4]-[7]. A typical OpenFlow

network consists of three major components, an

OpenFlow controller, OpenFlow switches and hosts. The

controller and switches communicate via OpenFlow

messages. An OpenFlow switch consists of one or more

flow tables that maintaining packet-handling rules. Each

rule performs certain actions (such as forwarding,

dropping, modifying the packets, or sending them to the

controller) on a subset of the traffic that matches a rule.

Each rule contains a pattern that matches fields of the

packet header, and a priority field to distinguish between

rules with overlapping patterns. The pattern supports

exactly matching all the relevant header fields (that is a

wildcard rule), or matching the wildcard rule with some

“don’t care” bits in the fields.

There are two ways for the controller to install rules in

the switches. One way is reactive rule installation: When

a new flow comes into the switch, it does a lookup in the

flow tables. If the flow table is not matched, the switch

creates an OpenFlow packet-in packet and forwards it to

the controller for instructions. Then the switch installs a

rule in the flow table based on the instruction.

Another way is proactive rule installation: the

controller populate the flow tables ahead of time for all

traffic that will come into the network, rather than

reacting to a packet. By pre-defining all of flows and

rules ahead of time in the OpenFlow switches flow tables,

the packet-in event will never occur. The result is that all

the packets are forwarded at line rate. If the flow table is

in TCAM, it requires only a simple lookup. Proactive rule

installation eliminates or drastically reduces the latency

caused by the consulting a controller for every flow.

Depending on the rules installed by a controller

application, an OpenFlow switch can act as a switch,

router, firewall, network address translator or load

balancer [8].

sFlow is a general purpose network traffic

measurement technology [9]. It is designed to not only

provide the complete L2 to L4 information but also

acquire the whole network statistics. All the traffic

throughout the network can be accurately characterized

572

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

and monitored, that allows analyzing performance or

trends of network traffic in real time. We propose a novel

approach to measure network and server status based on

sFlow, which could avoid the use of the OpenFlow flow

statistics counters. Therefore, there is no need to access

the packet counters of each flow entry and aggregated

flows can be used for forwarding purposes without

affecting the operation of the load balancing mechanism.

Load balancing is a classical problem; researchers have

put forward some load balancing strategies based on

OpenFlow nowadays [10]-[13]. Handigol et al. proposed

using OpenFlow to implementation the load balancer [6].

Plug-n-server tried to minimize response time by

controlling the load on the network and servers through

using customized flow routing, but this reactive solution

has scalability limitations. Furthermore the approach of

proactively map blocks of source IP address to replica

servers using the OpenFlow wildcard rules, so client

requests are directly forwarded through the load

balancing switch, have been reported in [4]. However,

they assume the traffic volume is uniform across client IP

address, which cannot represent the actual traffic. Chen

Wenbo, et al. proposed a dynamic load balancing

algorithm based on server running state and OpenFlow in

virtualization environment [10]. The architecture not only

can achieve real-time monitoring of load but also provide

the flexibility to write modules in the controller for

implementing the customizable policy set. They use

Libvirt to implement virtual machine management

module which is responsible for obtaining the running

status of each virtual machine in a fixed period, but they

also use a reactive flow entry installation.

We proposed the design and implementation of

OpenFlow-based dynamic server cluster load balancing

with measurement support using sFlow protocol. The

architecture not only is inexpensive but also provides the

flexibility to scale the network for increasing traffic.

When the network size increases, it only needs to add

switches rather than purchasing additional hardware. In

the beginning, the proposed scheme will measure the

state of the network and calculate every server’s serving

load, then get the detail statistics of the traffic for

generation an exact match. Next, the system proactively

installs wildcard rules of accurate measurement traffic in

the switches to direct client requests without involving

the controller. It is demonstrated in the paper that the

proposed scheme through feedback server load, dynamic

adjustment the weights of servers periodic will make the

servers’ loading be distributed more balanced and make

the response time be shorter than other well-known

mechanisms.

The remainder of the paper is organized as follows.

The proposed dynamic server load balancing mechanism

with measurement support is presented in Section II. It is

followed by the experimental results compared with other

load balancing schemes. Finally, we conclude the paper

by summarizing the main contributions in Section IV.

II. THE DESIGN OF LOAD BALANCING ARCHITECTURE

The load balancing architecture described in this paper

mainly composes of switches, a controller, a collector and

load balancing application running on the controller. AS

shown in the Fig. 1, the OpenFlow switch connects

multiple servers and communications with the controller

via OpenFlow message, receives rules from the controller

and modifies the packet header as the executor of the load

balancing. The Controller installs rules in OpenFlow

switches based on the load balancing policy. The

collector obtains running status of the network from the

sFlow agent (which combines interface counters and flow

samples into sFlow datagrams that are sent across the

network to an sFlow collector) in the switch, and then

reports it to the controller regularly. Each server provides

the same service to clients, and set a static IP address

within the cluster. The controller maintains an IP address

list of the server in the cluster and real-time network

topology. The load balancer partitions the client requests

among the servers and lets the clients access the cluster

using a “virtual” IP address. From the client’s perspective,

the cluster is regarded as a single server that responses to

these clients requests. With the traffic increasing,

additional servers can be deployed to the cluster

conveniently without modifying any configuration of the

system.

Controller

Server Cluster

Load
balancing

Network
Measurement

Floodlight

sFlow
collector

Client

C
o
n
t
e
n
t

r
e
q
u
e
s
t

S
e
r
v
e
r

s
t
a
t
i
s
t
i
c
s

OpenFlow
switch

N
e
t
w
o
r
k

s
t
a
t
e

Server state...

Load balancing Rule

OpenFlow protocol

Fig. 1. The load balancing architecture in OpenFlow and sFlow

environment.

For example, clustered servers in Fig. 1 work together

in a distributed and parallel manner to serve requests

from the Internet. When the client sends a request to the

cluster, the gateway switch measures the traffic status of

the network and reports it to the collector using sFlow

protocol. The controller query statistics collected by the

collector which analyzes the sFlow datagrams to produce

a rich, network-wide view of traffic flows. Then the

controller aggregates the requests, and generates wildcard

rules to send to the switch. When the request arrives at

load balancing switch, the switch uses packet header

information to compare with flow entry in the flow table;

573

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

if packet header information matches up with a flow entry,

the switch will modify the packet header according to

actions in the flow entry to steer request to a specified

server. If the packet does not match any flow entry，the

OpenFlow switch will forward this packet to the

controller, and let the controller determine how to

distribute the request base on the load balancing policy.

A. Measurement of Network and Server

The measurement module use sFlow protocol to gather

network status which includes the scale and IP address

distribution of requests [14]. This module combines

OpenFlow and sFlow technology to collect network

status and export them to the controller. There are two

different methods of network measurement. The first one

is the basic OpenFlow method, in which controller

queries flow statistics from switch periodical. The second

one is using packet sampling to monitor flow in the

OpenFlow network, sFlow was chosen as it is a low cost

solution, and it has been implemented on a wide range of

devices.

1) The basic OpenFlow method

For the purpose of obtaining the network status, the

controller sends “Read-State” messages to collect

statistics from the switch. Then, the switch replies the

flow entries with their corresponding counters. The

controller uses the counter of the rule to identify the

imbalance of the traffic, and automatically adjusts the

rule for rebalancing the traffic distribution. However, the

controller needs to send a message to switch, and

calculate the response information of the switch, which

will cause huge overhead to the controller in large

network, because of consumption a lot of resources.

2) The sFlow-based method

In order to overcome the blemish of the method we

mentioned above, we take advantage of the packet

sampling capability of sFlow in our method. Further, the

sFlow technique decoupling the flow forwarding logic

with statistics, since statistical information is no longer

bound with flow entry, the packet sampling provides the

necessary information of flow. Thus the measurement

method based on the sFlow collects the statistical

information of flow and update the corresponding counter,

run as an individual application of the controller.

Moreover, this method effectively reduces the required

communication between switches and OpenFlow

controllers, eliminates the potential control plane

overloading in large scale data plane.

In this paper, the sFlow agent uses statistical packet-

based sampling of switched packet flows to capture

traffic statistics from the switch [9]. The packet flow

sampling mechanism carried out by each sFlow instance

must ensure that any packet observed at a data source has

an equal chance of being sampled, irrespective of the

packet flow(s) to which it belongs. Packet flow sampling

works as follows: when a packet arrives on an interface,

the switch makes a filtering decision to determine

whether the packet should be dropped and whether or not

to sample the packet. Samples are sent to the sFlow agent

to process and get other packet information about the

request, such as the source and destination interface,

source and destination IP address, and next hop subnet.

Then the collector aggregates the request information

base on the IP address classification and reports to the

controller. By this way, we can get the exact amount of

the request IP address scale and distribution for the load

balancing module, and which is not involved in the flow

table. As the sFlow collector receives packet samples on

the fly, it updates the corresponding counters inside the

measurement module in a certain time period. Hence,

there is no need to constantly maintain and compare

detailed flow statistics for each flow entry of consecutive

period. Consequently, this approach can reduce the

complexity of the request measurement algorithm, thus

requiring lower CPU resources.

What’s more, we can use sFlow to measure the server

load without the need for additional equipment. The Host

sFlow project provides an open source implementation of

the sFlow standard. Host sFlow can be installed on the

server to export physical and virtual server performance

metrics, including CPU, memory, disk and network IO

performance [9]. The sFlow protocol can be used to

measure state of network and server at the same time,

along with sFlow agents embedded within the switch

form the integrated measurement system that provides a

complete picture of network, system, and application

performance which can scale to a large number of servers.

Server load status is sent to the collector by the sFlow

agent via sFlow protocol, and then the collector report

load information to the controller. After the controller

gets the server load information, it can dynamically adjust

the weights according to the load condition of the server.

3) Partitioning the client traffic and rule generation

The most important idea of this paper is the generation

of the pattern field (matching packet header fields) for the

wildcard matching rule. After the measurement module

obtain the request information, the load balancing module

divides the traffic into small parts, besides, we process

the actual traffic instead of assume the traffic distribution.

Our goal is to generate a series of wildcard rules to divide

the IP address space, and then associate with the weights

of servers. The detail procedure is as follows:

4) Split the IP address space into subnets

At the beginning, we use a 24-bit netmask, with a

range of 0.0.0.1/24-255.255.255.1/24 to split the IP

address space. There is some different from traditional

netmask in CIDR. If no wildcards are setting, the

OpenFlow protocol match field exactly describes a flow,

over the entire OpenFlow n-tuple. If all the wildcard flags

are set, then every flow will match. The source and

destination netmask is each specified in the wildcard

description. It is interpreted similar to the CIDR suffix,

but with the opposite meaning, since this is being used to

indicate which bits of the IP address should be treated as

"wild". For example, a CIDR suffix of "24" mean to use a

netmask of "255.255.255.0". However, a wildcard mask

574

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

value of "24" means that the least-significant 24-bits is

wild, so it forms a netmask of "255.0.0.0". So, we will get

some different subnets contain the request IP address

after the division of the subnet. It should be noted here

that the subnet is not the subnet in the traditional sense;

we are here to refer to a range of IP address space in the

wildcard rules.

5) Calculate the number of IP addresses in each

subnet

In this step we find actual requests in the subnet

address space and calculate the number of the IP

addresses for the next step to allocate server based on the

weight of server.

6) Assign the request of the subnet to each server

First, we sort the subnet in accordance with the valid

address in the wildcard rule, and then assign them to the

specific replica server following the weight of the server.

Then we select the biggest address space in a wildcard

rule from a wide range of subnet, and assign it to the

server which has the strongest processing capacity. Then

we select the second large address space wildcard rule

allocated to the server and go on until the final result is

that, the wildcard rule is divided uniformly according to

the server weight.

7) Divide the network into smaller subnetworks

If there is too many clients’ traffic in a subnet, a server

cannot afford to response so many requests, and then we

divide the subnet again. Such as the original subnet is

128.0.0.1/24, which will be divided into smaller subnets.

Here is from 128.0.0.1/16 to 128.255.0.1/16. After this

division, we calculate the number of actual request in

each new subnet again to count the valid number of IP

address. Then the system split a wildcard rules to a new

one with a smaller number valid IP address which can

have a more fine-grained adjustments.

If the number of IP addresses within the subnet is too

many, the wildcard rule can continue to be divided until it

can be assigned to a server. The number of the wildcard

rule and the divided subnet is equal; if we want to get less

number of rules require minimal subnetting. Subnet mask

is made by setting network bits to all "1"s and setting host

bits to all "0"s, and the greater the subnet range is

generated, the more the number of IP addresses that may

be contained in the subnet.

8) Install wildcard rules in the switches proactively

The load balancing module generates wildcard rules

flow entries base on the server’s processing capacity,

proactively install the rules in the load balancing switches

to direct requests for large groups of clients without

involving the controller.

B. Load Balancing Policies and the Weight of the Server

In this section, we propose a novel load balancing

algorithm that takes into account not only the load on the

server but also the performance differences between

servers in heterogeneous cluster and different type of

client request. For example the computationally intensive

request and I/O intensive request consumption of CPU

resources are different. In traditional load balancing

scheme, the weights based on the server's performance

are fixed. But in fact, the processing capacity of the

server is dynamic changing. For example, with the

increase of the load on the server, its processing capacity

is reduced, on this condition, using a fixed value of

weights may not be optimally distributing the load.

Meanwhile, the type of client request is different, for

example compute-intensive requests consume more CPU

resources, and I/O intensive requests require faster disk

speeds. If a fixed value is used without considering the

differences, the algorithm cannot accurately reflect the

server load when the request change, so using a dynamic

adjustment algorithms base on the server status is

essential.

1) Load computation of the server

There are many factors that would contribute to

server’s load, this paper considers the CPU utilization,

memory utilization, disk I/O speed and bandwidth

accessing rate. But this information does not directly

represent the load of a server, and each ration has a

certain influence on the load, so it needs a function to

convert these indicators and the server’s load can be

expressed as below:

1 2 3 4() () () () ()L s w L CPU w L mem w L band w L disk (1)

where L(CPU) is the CPU usage rate, L(mem) is the

memory usage rate, L(band) is the bandwidth usage rate

and L(disk) is the utilization of I/O rate of the disk and

the L(s) is the load of server s. Because different types of

factors have different level of influence on the load, so

we introduced the parameter w, used to indicate the

influence degree of the load, and

1

1
n

i

i

w

 . It can be

adjusted according to the type of service and the

performance of server. The value of L(s) indicates the

degree of server load, the larger the value, the more

heavily loaded; the smaller the value, the lighter the load.

2) Processing ability computation of the server

In heterogeneous server cluster, the server

specification is different in performance, load balancing

should not only consider the load, but also take into

account the processing capacity of the server. In order to

facilitate the realization of the algorithm, we calculate the

server's processing capability based on the parameters:

the CPU capacity, memory size, network throughput, and

disk I/O speed. Therefore, server's processing capability

can be expressed as a linear combination of these factors

as given in the equation below,

1 2 3 4() () () () ()C s rC CPU r C mem r C band r C disk (2)

where the parameter r denote the weighting coefficient

and

1

1
n

i

i

r

 . The greater the processing capacity of the

server, the server can able to handle the more client's

request.

575

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

3) Server weight computation for the traffic

distribution

After using wildcards to divide subnet, traffic is

distributed to a specific server for each subnet based on

the weight assigned to the server. In this article, weights

are calculated taking into account not only the load on the

server, but also the processing capabilities of the server.

Through the above discussion, we give the definition of

the server's current processing capacity as follows,

 () () (1 () / ())CC s C s L s C s (3)

here, CC(s) means the server's current processing

capacity to handle client requests currently. After

computing of current processing capacity for each server,

we use the formula (4) to calculate the current server

weights.

1

() () / ()
n

s

W s CC s CC s

 (4)

Every time the load balancing module distributes

traffic based on the weight of server, which is a dynamic

value follow the server load, means the ratio of this server

in the cluster. The server having a high-end hardware

may have a low weight because of its high load, but the

value W(s), can better reflect the relative importance of

the server in the cluster.

C. Re-Partitioning Traffic to Replica Server

There are two cases need to re-partition the traffic. One

case is that the measuring module detects the load

between servers has a large difference; another case is the

time goes beyond the default scheduling cycle.

There are several possible reasons that will cause load

imbalance. Even the wildcard rule match up the most part

of the traffic, the termination of connections or new

request from client with a new IP address not in the

wildcard rule, will change the scope and scale of IP

address.

Meanwhile, different types of requests, such as

compute-intensive or I/O intensive request consume

different server load. In the re-partitioning period, a new

request, if not match the existing wildcard rules, will be

sent to the controller, then the controller select the

lightest load server to process the request, until needing a

new round traffic division.

Two questions need to be solved in the re-partitioning

procedure. One is allowing ongoing TCP connections to

complete, directing all TCP connections from one client

IP address to the same host in the cluster. The other is

tries to re-use the previous installed rules.

Our approach is to compare the scope and scale of the

current IP address with the last round to identify the

change of traffic distribution. For the new IP address

space, the new added parts will generate new wildcard

rules; the original wildcard rules will be updated to

remove the reduced parts. By recording the scope of IP

addresses, and using a centralized control method, we can

get the global optimal partition results while maintaining

the continuity of TCP connection.

III. EXPERIMENT AND EVALUATION

In this section, we describe the evaluation environment,

traffic design and measurement approaches. We conduct

experiments with Mininet [15] on Ubuntu host and the

Floodlight [16] OpenFlow controller. Then we measure

the network throughput and latency under three different

load balancing schemes—random, round robin and the

mechanism proposed in Section II. Response latency

refers to a time interval between the client sending an

HTTP request to server and receiving the response of the

server. Throughput of the system is the sum of the data

rates processed by the server in the network.

Floodlight is a modular Java based controller, which is

exploited as a high-level programmatic interface upon

network events. Through the API of the Floodlight

controller, we implemented all three components as

separate Floodlight applications, responsible for

measurement network and server, partitioning the client

traffic and generation rules according to the load

balancing policy.

A. Environment

The experiment configuration using the prototype

system is shown in Fig. 2. Our load balancing experiment

environment consists of seven machines. In the prototype

system, three Web servers in the network map to the

same virtual IP address and provide the same services.

The detail hardware specifications are as follows, and the

server1 has higher computing power than others.

TABLE I: THE DETAIL HARDWARE SPECIFICATION

Host Name Web Server 1 Web Server 2 Web Server 3

CPU Dual 3.2 GHz Dual 2.6 GHz Dual 2.6 GHz

Memory 4 GB 2 GB 2 GB

Disk 320G 5400rpm 320G 5400rpm 320G 5400rpm

GE NIC Atheros
AR8114

Atheros
AR8114

Atheros
AR8114

Client Gateway Switch

Controller

Server 3Server 2Server 1

OpenFlow protocol

Sf
lo
w
pr
ot
oc
ol

sFlow

Load
balancing
Switch

Fig. 2. Experiment environment.

576

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

Two PC install Openvswitch which support both

OpenFlow and sFlow protocols, one as a gateway switch

and the other as a load balancing switch which is

responsible for distributing the request to the web server.

The Controller and sFlow collector are installed on the

same PC to reduce network transmission delay. We used

the sFlow collector implemented as a Floodlight

application along with traffic controlling application to

measure the request. All servers have a fixed IP address

and connect to the collector to report load information.

B. Traffic Design and Benchmark Algorithms

One main challenge of the network performance

evaluation is how to generate real network traffic; we use

English Wikipedia access trace [17] to generate traffic

through Mininet, a network emulator, which creates a

network of virtual hosts and switches. The hosts in

Mininet set an IP address in the trace file which can

reflect the scale and distribution of IP addresses in real

network. Each host using “wget” to send request to server

and one to ten processes are randomly selected to send

request. In order to test the performance of the proposed

algorithm, we use two other algorithms as comparisons.

The first is the random algorithm, each new request

will be forwarded to the controller by load balancing

switches, and the controller selects a server from the

server cluster randomly to response client requests and

generates a corresponding flow entry to send to the

switch.

The second is the round robin algorithm. For each

request that is forwarded to the controller by the switch,

the controller selects a server from the server cluster

sequentially, then the server respond to the client's

request in turn, until the end of one cycle and then re-start

the next round.

The flow entry’s action is to modify the destination

MAC and IP address of the request packet with the

selected server’s MAC and IP address. After the packet’s

header is modified, the switch forwards the packet to the

output port of the switch. In a word, the controller

generates a flow entry, the switch modify the source IP

address of the packet to the load balancing virtual IP

address, the server responds to the client's request.

C. Results

Each measurement is performed 10 times for the rather

stable results. Fig. 3 shows the average response time of

the system at different rate of requests using three load

balancing strategies. The Random and round robin

methods have similar response time, and each request can

obtain relatively fast response, when the request is at a

low rate. But with the requests rate increasing, the

proposed algorithm has a significant advantage on

response time. Since the proposed method does not

require the first packet of each flow to forward to the

controller, the delay is significantly reduced. But after a

period of time or a large amount of traffic does not match

the installed rule, the delay will increase, because the

packet has to forward to the controller like the original. In

addition, an important reason for the delay is that the

software switches rewriting the packet header is very

slow, but performance will be better if using a hardware

switch.

Fig. 3. Response time of 3 different load balancing strategies.

Fig. 4 depicts the changes in throughput of the server

against the request arrival rate. The x-axis represents the

client request arrival rate per second; the y-axis

represents the throughput of the server cluster. As can be

seen from the figure, the proposed dynamic load

balancing algorithm can achieve higher throughput than

random and round robin algorithm. With the request rate

increasing, throughput gradually increased until it reaches

a maximum at 600 requests per second, then throughput

begins to decline. But the dynamic load balancing

algorithm is still able to get a higher throughput than

other algorithms under the same conditions.

Fig. 4. Server’s throughput of experiment demonstrating.

Fig. 5 shows the CPU usage of three algorithms when

the number of requests is 500 per second. The CPU load

is used here to represent the server’s load, because the

CPU is the most important factor accounting for the

weight of a server. When we use the random algorithm,

CPU utilization of the server is most unequal, and using

the proposed dynamic load balancing algorithm can make

the servers have almost same CPU utilization. Because

server 1 has a higher computing power, it' CPU

utilization is relatively low when using other algorithms.

But the proposed dynamic server load balancing

algorithm can distribute more requests to server1 and

make full use of its performance. The dynamic load

577

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

balancing algorithm has a better resource scheduling

ability to avoid unbalanced load among servers, thus

improving overall resource utilization of the system. The

above result confirms that the proposed method

successfully improves performance by controlling the

traffic load on servers.

Fig. 5. Server’s CPU using ratio of 3 load balancing strategies.

IV. CONCLUSIONS

In this paper, we propose a dynamic server load

balancing algorithm based on OpenFlow and sFlow to

efficiently distribute traffic among servers of cluster. The

algorithm utilizes the wildcard rules to aggregates traffic

of the server replicas, and makes decisions based on real-

time traffic statistics obtained via the sFlow protocol.

Furthermore, our load balancer proactively installs

wildcard rules on the switches to direct requests for a

large group of clients without involving the controller,

which will reduce the number of rule and reduce the

network latency. We have implemented the algorithm as

a module of the Floodlight controller application, and use

the Mininet network emulator and Openvswitch to

evaluate the effectiveness of the algorithm. By comparing

with the random and the round robin algorithms, it proves

that our algorithm can improve the throughput and obtain

lower latency while the server load will be more balanced.

Due to limitations of the experimental conditions, the

network size is small and only software switch is used. In

our future work, we plan to apply our algorithm to the

actual environment with the hardware switch and real

traffic, it will get better results.

ACKNOWLEDGMENT

The authors would like to thank the anonymous

reviewers for their comments that improved the content

and the presentation of this paper. This work was

supported by the National Nature Science Foundation of

China (No. 61202350).

REFERENCES

[1] Microsoft’s Network Load Balancing. [Online]. Available:

https://msdn.microsoft.com/en-us/library/bb742455.aspx

[2] Q. Zhang, A. Riska, W. Sun, et al, “Workload-aware load
balancing for clustered web servers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 16, no. 3, pp. 219-233,

2005.

[3] N. McKeown, T. Anderson, H. Balakrishnan, et al., “OpenFlow:
Enabling innovation in cam pus networks,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[4] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server
load balancing gone wild,” in Proc. 11th USENIX Conference on

Hot Topics in Management of Internet, Cloud, and Enterprise

Networks and Services, Boston, Mass, USA, April 2011.
[5] H. Nikhil, F. Mario, S. Srini, J. Ramesh, and N. McKeown,

“Aster* x: Load-balancing as a network primitive,” in Proc. 9th

GENI Engineering Conference (Plenary), 2010.

[6] N. Handigol, et al., “Plug-n-Serve: Load-balancing web traffic

using OpenFlow,” ACM Sigcomm Demo, 2009.

[7] M. Koerner and O. Kao, “Multiple service load-balancing with

OpenFlow,” in Proc. IEEE 13th International Conference on High

Performance Switching and Routing, 2012.

[8] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an

intellectual history of programmable networks,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

[9] P. Phaal. (July 2004). sFlow Specification Version 5. [Online].

Available: http://sflow.org/sflow_version_5.txt

[10] W. B. Chen, et al., “Dynamic server cluster load balancing in

virtualization environment with OpenFlow,” International Journal

of Distributed Sensor Networks, 2014.

[11] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic

load-balanced routing in OpenFlow-enabled networks,” in Proc.

27th IEEE International Conference on Advanced Information

Networking and Applications, March 2013, pp. 290–297.

[12] A. Ghaffrinejad and V. R. Syrotiuk, “Load balancing in a campus

network using softare defied networking,” in Proc. 3rd GENI

Research and Educational Experiment Workshop, 2014.

[13] L. Yu and D. Pan, “OpenFlow based load balancing for fat-tree

networks with multipath support,” in Proc. 12th IEEE

International Conference on Communications, Budapest, Hungary,

2013.

[14] Host-sFlow Project. [Online]. Available: http://host-

sflow.sourceforge.net

[15] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:

Rapid prototyping for software-defined networks,” in Proc. ACM

SIGCOMM HotNets Workshop, 2010.

[16] Floodlight Openflow Controller. [Online]. Available:

http://floodlight.openflowhub.org/

[17] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload

analysis for decentralized hosting,” Computer Networks, vol. 53,

no. 11, pp. 1830-1845, 2009.

Qingwei Du was born in 1974. He received

the Ph.D. degree from Southeast University.

He is currently working as a vice professor of

Nanjing University of Aeronautics and

Astronautics. His research interests include

wireless sensor networks, mobile computing

and software define network.

Huaidong Zhuang was born in Suzhou,

China in 1989. He received his B.S. degree in

Computer Science and Technology from

Linyi University, China in 2012. He is

currently a graduate student of Nanjing

University of Aeronautics and Astronautics.

His research interests include software define

network, traffic schedule and load balancing

systems.

578

Journal of Communications Vol. 10, No. 8, August 2015

©2015 Journal of Communications

