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I. INTRODUCTION 

 

The conventional channel estimation methods for 

MIMO-OFDM systems have focused on pilot-assisted 

approaches [1]-[3] based on a quasi-static fading model 

that allows the channel to be invariant during an OFDM 

block. However, a loss of subchannel orthogonality due 
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to time-variant multipath channels in orthogonal OFDM 

leads to inter-carrier interference (ICI) which increases 

the error of system [4]-[5]. Therefore, the channel time 

variation during a symbol block must be considered to 

support high-speed mobile channels. 

Many pilot-aided channel estimation methods [3]-[5] 

usually estimate the channel response for a few selected 

subcarriers first. Those observations are used to 

interpolate the rest subcarriers. In such schemes, the 

required number of pilots depends on the coherence 

bandwidth of the channel, since the spacing of the pilot 

sequence has to satisfy the Nyquist sampling theorem to 

properly sample the fast fading channels. However, these 

schemes just consider the rich scattering environment, 

with the sparsity of the MIMO-OFDM channels being 

ignored. A number of sparse channel estimation schemes 

[6]-[17] have been proposed for time-frequency fading 

channels. The time-frequency joint sparse channel 

estimation scheme [17] first relies on a pseudorandom 

time-domain preamble, which is identical for all transmit 

antennas. The sparse common support property of the 

MIMO channels is utilized to acquire the partial common 

support. Then, frequency-domain orthogonal pilots are 

used for the channel recovery. However, the common 

support and the required number of pilots depend on the 

coherence bandwidth of channels and time of transmit 

antennas. The overhead of the required pilots or preamble 

will significantly increase as the number of transmit 

antennas. The blocks of transmitted OFDM symbols 

become large, which decreases the spectral efficiency. It 

may lead to the unacceptable high computational 

consumption, inter symbol interference and low 

frequency mask [18]. According to the Heisenberg 

uncertainty principle [19], the pulse signal is concentrated 

distribution in frequency domain and must disperse in the 

time domain. The sensing matrix of is updated by high-

speed mobile channels [20]. It is not easy to obtain sparse 

channels that meet the requirements of band and time 

limited [21]. The solution of problem to construct the 

sparse channels requires the use of a dynamic 

mathematical model of pulse wave functions. However, 

such models often involve errors due to a variety of 

causes, including fast fading environments, atmospheric 

effects, and hardware limitations.   

In this paper, we focus on the compensation estimation 

of mathematical model in compressed sensing (CS) based 

fast fading MIMO-OFDM channels. In order to achieve 
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Abstract—In this paper, a compensation estimation algorithm

is developed for Multiple-Input–Multiple-Output (MIMO)

Orthogonal Frequency-Division-Multiplexing (OFDM) systems

operating in a fast fading environment. In order to satisfy the

constraint frequency mask, the pulse signal spectrum must be

limited in the mask band. We investigate a channel estimator

that exploit channel sparsity in the time and/or Doppler domain,

where the channel is described by a limited number of paths,

each characterized by a delay, Doppler scale, and attenuation

factor, and derive the exact inter-carrier-interference pattern.

The algorithm works with channel sparsity by jointly estimating

the sparse coefficients vector and by reconstructing dynamic

mathematical model of pulse wave functions. The proposed

method exploits the intrinsic relationship between the sparse

channels and the mathematical model. A dynamic mathematical

model of pulse wave functions is used to construct the sparse

channels. The dynamic mathematical model reconstruction

is used to update the sensing matrix. The pulse signal

which is band and time concentrated distribution, is

conducive to optimization design of sparse MIMO-

OFDM channel. The simulation results show that the proposed

channel estimator can provide a considerable performance

improvement in estimating doubly selective channels with few
pilots and computational complexity.

Orthogonal Frequency Division Multiplexing (OFDM)

is a popular technique widely used for broadband

wireless communication systems due to its high spectral

efficiency [1]. However, the theoretical performance of

Multiple-Input Multiple-Output (MIMO) [2] and OFDM

systems may be degraded severely in broadband mobile

applications due to the doubly selective channels. Thus,

channel estimation which is employed to eliminate the

distortion of the signals at the receiver is a critical

component that affects the performance of MIMO-

OFDM systems.



few pilots, few computational complexity and low inter 

symbol interference, the pulse signal duration should be 

as short as possible, and be limited in the time. At the 

same time, in order to satisfy the constraint frequency 

mask, the pulse signal spectrum must is limited in the 

mask band. When the frequency mask changes, pulse 

waveform can be flexibly adjusted and corrected. The 

pulse signal which is band and time concentrated 

distribution, is conducive to optimization design of sparse 

MIMO-OFDM channel. The proposed method exploits 

the intrinsic relationship between the sparse channels and 

the dynamic mathematical model of pulse wave functions. 

The proposed method works by jointly estimating the 

sparse coefficients vector and by reconstructing the 

dynamic mathematical model. Then, the dynamic 

mathematical model of pulse wave functions 

reconstruction is used to update the sensing matrix, and 

the algorithm passes to the next iteration. The 

mathematical model is exploited to track rapidly MIMO-

OFDM channels by avoiding depending on the coherence 

bandwidth and time of channels. We propose a CS-based 

fast fading channels estimator for MIMO-OFDM systems 

with as few measurements as possible. The computational 

complexity is significantly reduced by avoiding the 

inverse computation of the large pilot matrices. 

The organization of this letter is as follows. The 

MIMO-OFDM system model is introduced in Section II. 

The CS-based channel compensation estimation is 

presented in Section III. Section IV depicts the 

experiments based on channel compensation estimation 

and the letter is summarized in Section V. 

Notation:  


 ,  
T

 ,  
H

 ,  
†

 ,  
1

  and
F

  denote the 

complex conjugation, transpose, conjugate-transpose, 
inverse, pseudo-inverse operations and Forbenius norm, 

respectively.  Vdiag  is diagonal matrix whose diagonal is 

the vector V ;  min   is to get minimum elements of an 

array; pI  denotes a p p  identity matrix; 1NI   is an 1N   

vector. 
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Fig. 1. MIMO-OFDM system models 

II. SYSTEM MODEL 

Consider a MIMO-OFDM system with TN transmit 

antennas, RN receive antennas in Fig. 1. The OFDM 

system contains K subcarriers. The sample interval is sT . 

The 1K  vector X ( )t n denotes the OFDM symbols 

transmitted from the thi antenna corresponding to 

the thn duration time.  

X ( ) (1), (2), , ( )
T

t t t tn X X X K 
 

          (1) 

Before these symbols are transmitted, this vector is 

first modulated by the inverse complex Fourier transform 

(IDFT), and a cyclic prefix is appended at the head of 

each OFDM symbol. After removing the cyclic prefix at 

the thr receive antenna, we obtain the 1K   

vector y ( )r n , which can be written as 

,

1

y ( ) X ( ) ( )
TN

r r t H t t

tT

n H F n n
N






                (2) 

where  

y ( ) (1), (2), , ( )
T

r r r rn y y y K 
 

             (3) 

,r tH  is a circulant matrix 
[4,5] 

with first column given 

by ,

1 ( ),0
T

T
r t

K Lh  
 
 

in slow fading environments. The 

1L  vector ,r th denotes the impulse response of a 

channel with L paths between the tht transmit antenna 

and the thr receive antenna, and  is the power allocated 

to the subcarriers. L is chosen to exceed the maximum 

delay spread. F denotes K K the unitary complex 

Fourier transform (DFT) matrix. ( )r n is vector of the 

noise. It is easy to show 

, ,

1 ( ),0
T

T
r t H r t

K LH F diag K F h F 

      
 

Taking the DFT of y ( )r n , we obtain 

,

1 ( )
1

Y ( ) ,0 X ( ) ( )
t T

N T
r r t t r

K L
tt

n diag K F h n n
N


 



      
 (4) 

where ( ) ( )r rn F n  . For fast fading environments, the 

channel matrix model defined in (4) is no longer valid.  

,

1

Y ( ) X ( ) ( ) ( )
TN

r t r t r

tt

n n Fh n n
N





             (5) 

where F  is K  times the first L columns of F .  
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Due to the rapid time variation of the channel, the  

( 1)KL Q  channel matrix ,r tH cannot be considered as a 

circulant matrix. Where Q  represents the basis expansion 

order. Therefore, the channel matrix ,r tH cannot be 

directly applied to fast fading channels without paying a 

performance penalty. 

III. CS-BASED CHANNEL COMPENSATION ESTIMATION 

A. Channel Model 

For the thn  symbol, the tht transmit antenna sends 

pilots in ( )tM n subcarriers and the remaining ( )tK M n  

subcarriers are used for data transmission. The set of 

pilots chosen for different transmit antennas need not be 

the same or disjoint. The thi antenna transmit 

demodulated baseband data matrix is X ( )t n .The transmit 

symbols matrix can be denoted as 

X ( ) X ( )G ( )t t tn n n                           (6) 

where the 1K  vector ( )tG n  frequency pulse waveform 

is 

G ( ) (1), (2), , ( )
T

t t t tn G G G K 
 

             (7) 

Then, the received signal of the thr receive antenna in 

the thn observation symbol can be expressed as 

  ,

1

Y ( ) X ( ) G ( ) ( ) ( )
TN

r t t r t r

tt

n diag n n Fh n n
N





    (8) 

In many cases such as the nonline-of-sight scenario, 

the mean angle of departure and angle of arrival of the 

clusters of multipath components tend to be uniformly 

distributed over all subcarriers. Thus, when the number of 

clusters is relatively large, the channel estimation 

technique [3]-[5] may hardly improve a considerable 

performance in estimating fast fading channels, because 

nearly all the elements of spatial domain channel matrices 

may not approach zero. To consider wider applications, 

we will focus on techniques in which the sparse channel 

coefficients with mathematical model. 

One of the most salient characteristics of multipath 

wireless channels is signal propagation over multiple 

spatially distributed paths. The channels between 

different transmit-receive antenna pairs are time 

frequency sparse. The time domain channel vector for the 

thr receive antenna is 

,,1 ,2( ) ( ), ( ), , ( )T
T

r Nr r rh n h n h n h n                 (9) 

where the multipath channels , ( )r th n can be represented 

by  

    
1

, ,

0

( ) ( , ) ( )
L

r t r t

l
l

h n h n l   




                    (10) 

where
, ( , )r th n l  and l  represent the gain, the delay of the 

path l , respectively, and ( )t is the Dirac delta function. 

L is impulse responses of equal maximum resolvable 

paths. The path l  channel , ( , )r th n l is represented by as 

2 ( /2)

, ,

0

( , ) ( , , )

j q Q kQ
r t r t WK

q

h n l h n l q e

 



            (11) 

whereW is a positive integer, and the variation of W is 

associated with the maximum Doppler frequency. Q  can 

be set to  max2 sf KT , representing the basis expansion 

order, where maxf is the maximum Doppler frequency. 

The carrier frequency offset matrix is 

2 ( 2) 2 ( 2)( 1)

, , ,
j q Q j q Q K

r t WK WK
q e e

      
  
 

Ψ          (12) 

The multipath channels 
, ( )r th n is the thn symbol 

complex impulse response of the all path, and can is be 

written in matrix form as 

, , ,( ) Ψ ( )r t r t r th n n                            (13) 

where the carrier frequency offset matrix is 

, , ,

0,0 0,1 0,

, , ,

1,0 1,1 1,,

, , ,

,0 ,1 ,

Ψ

T
r t r t r t

Q

r t r t r t

Qr t

r t r t r t

L L L Q

 
 
 
 
 
  

Ψ Ψ Ψ

Ψ Ψ Ψ

Ψ Ψ Ψ

        (14) 

The sparse coefficients vector of complex impulse 

response is 

, , , ,
0 1( ) ( , ), ( , ), , ( , )

T
r t r t r t r t

Ln h n h n h n    
 

   (15) 

Due to the unknown of
, ( )r t n , we use the complex 

basis including all time frequencies to sparsely represent 

the received channel in (15). Equation (15) means that the 

received signals are sparse in the time and frequency 

domain. For estimation of such channels, the performance 

can be improved through exploitation of sparsity. Exited 

MIMO-OFDM channel estimation techniques treat 

channels as spatial rich multipath. However, in many 

situations, MIMO-OFDM channels may tend to be time 

frequency sparsity due to limited scattering. Using the 

time frequency expansion and a measurement matrix, the 

sampling scheme based on CS can be designed to reduce 

the sampling rate in theory.  

B. Subsampled at the Pilot Position 

The following is presented to design the measurement 

matrix with finite bases. The sparse coefficients vector of 

channel responses are estimated at the pilot locations.     

Defining  X (1), (2), , ( )t t t t

diag diag X X X K , the set 

of receive vectors at the pilot positions using the known 

pilot matrix are chosen by 

,

1

Y ( ) ( )X ( ) ( )G ( ) ( ) ( )
T T

N
r t t t t t r t r

p diag p
tT

n S n S n S n n Fh n n
N





  (16) 
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where ( )tS n  is the ( )tM n K  pilot selection matrix that 

chooses the ( )tM n rows of the t

diagX matrix according to 

the thk  subcarriers pilots chosen in the thn  symbol, 

( ) ( 1)t
tM n N KL Q  . It can be noticed that the 

training stage entails a total of ( )tM n pilots to estimate 

( 1)tN KL Q   channels. For traditional channel 

estimation schemes, the spacing of the pilot sequence has 

to satisfy the Nyquist sampling theorem to properly 

sample the fast fading channels. It is necessary to 

establish a theoretical limit on the number of pilots 

required for perfect channel recovery in a noise system. 

According to the theory of compressed sensing, a 

sparse signal can be exactly reconstructed from its 

measurement matrix. Based on the CS theory, (16) can be 

sampled by a measurement matrix. The measurement 

matrix satisfies the so-called restricted isometry property 

(RIP). According to the RIP theorems, the goal then is to 

design the training matrix using minimum number of 

pilot vectors and process the received signal 

matrix ( )Y n to obtain an estimate ˆ ( )rh n that is close 

to ( )rh n in terms of the mean squared error (MSE). The 

measurement matrices satisfy the RIP [8]. The 

tht transmit antenna selection matrix 

( ) ( ,1), ( ,2), , ( , ( ))
T

t t t t tS n S n S n S n M n 
 

        (17) 

The selection matrix selects randomly the pilot symbol 

locations. The thn column ( )tS n  is constructed by 

selecting randomly ( )tM n subcarriers of K subcarriers in 

the thn symbol.  The ( )tM n subcarriers are used for pilot 

transmission while the rest ( )tK M n  ones are data and 

virtual carriers. The entries of ( )tS n  which determine the 

location of the ( )tM n  pilot subcarriers are prescribed by 

a random sequence { }px  that is generated at the 

transmitter for probing a channel. At the transmitter, the 

random sequence { }px is generally used to probe a 

channel. The numbers of pilot are 

1 1

( , )
TN K

t

t k

M M n k
 

                               (18) 

log( ( 1) / )t rM C N N KL Q   satisfies RIP of 

order and parameter s with probability at least1 CMe , 

where, 1C  is the oversampling factor. We have 

different observations for different transmit-receive 

antenna pairs. Further the length ( )tM n  of the 

observation is not same for all antennas. 

C. Estimation and Compensation 

Using the statistical characteristic and the dominate 

scatter, a compensation estimation detector is proposed in 

this section. The feature used to detect the channel is 

firstly presented in the following. After the CS receiver, 

the maximal element is assumed to be the dominate 

scatter, which is corresponding to the basis. At the 

receiver, the dominate scatter is depicted as 

1

Y ( ) ( )X ( ) ( )G ( )
T T

N
r t t t t t

p diag
tt

n S n S n S n n F
N





   

, ,Ψ ( ) ( )r t r t r

pn n                                     (19) 

In order to avoid the interference of the wireless 

system and improve channels sparsity, an effective 

method is to design appropriate pulse waveform ( )tG n . 

The channels function is limited by angular frequency 

and time domain. The time pulse wave functions can be 

the most of concentration in a given time interval 

 2,  2s sT T and maximum normalized Doppler 

bandwidth maxDv , where max maxD sv f T . The time pulse 

wave functions meet the product differential equation 

max2

2

sin(2 ( ) )
( )

( ( ))

s

s

T

t t D
T

t v
g t d

t

 
 

 





           (20) 

where t  is the eigenvalues of pulse wave functions. 

Based on the definition of equation (20), ( )tg t  can be 

shown as follows: 

2

max

2

max

2
sin 1

2

( )

2
sinh( ) 1

2

D

s
t t

D

s

v t

T

g t

v t

T



 
   

  
 



 
 

 

               (21) 

where 

max max

max 2 2
1

sinh( )
2 2

D Dv v

Dv
e e

 
   

 

            (22) 

The time pulse wave functions can be expressed as 

( ) ( )t tg t u t                         (23) 

where 

2

max

2

max

2
sin 1

2
( )

2
sinh( ) 1

2

D

D

v t

T
u t

v t

T

 
   

  
 



 
 

 

                       (24) 

The frequency pulse wave functions can be written as 

G ( ) U( )t tn n                           (25) 

where ( )U n  is the Fourier transform of U( ) ( )n Fu t . It 

can be observed that the energy of time concentrates 

along (20). Doppler lines maxDv shares the same frequency 

as the dominate scatter. Equation (25) shows that 

channels function is limited by angular frequency and 
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time domain.  

According to the time domain waveform and amplitude 

spectrum, the set of receive vectors are 

, ,

1

Y ( ) ( )X ( ) ( ) U( ) Ψ ( )
t T

N
r t t t t t r t r t

p diag
tt

n S n S n S n n F n
N


 



   

( )r

p n                                    (26) 

Equation (26) can be expressed in matrix form as  

Y ( ) ( ) ( ) ( ) ( )r t r r r

p pn n n n n             (27) 

where 

Y ( ) ( ,0), , ( , )
T

r r r

p p pn Y n Y n M              (28) 

1 1 1Φ( ) ( )X ( ), , ( )X ( )
TT

t t t

T
N N N

diag diag

t

n S n S n S n S n
N

  
 

 (29) 

,1 ,1( ) ( ( )U( ) Ψ , , ( )U( ) Ψ )T TN r Nr rn diag S n n F S n n F   (30) 

T
,,1 ,2( ) ( ), ( ), , ( )tr Nr t r t r tn n n n       

 
 (31) 

Conventional methods assume that the channels don't 

include time and frequency constraints. The following 

optimization problem is used to channel reconstruction 

[13]-[17]: 

 
2

2 1
( )

( ) arg min Y ( ) ( ) ( ) ( ) ( )
r

r r t r r r

p
n

n n n n n n


       (32) 

where   is the regularization parameter. In consideration 

of the time and frequency sparsity, we also need to 

reconstruction the eigenvalues of appropriate pulse 

waveform. Then, the sparse channels are estimated by 

using appropriate pulse wave functions. We pose the 

problem of joint channels estimation and eigenvalues 

reconstruction as the minimum cost solution of the 

following cost function: 

   
2

,1

2 1
( ), Y ( ) ( ) ( ) ( ) ( )r t r t r r r

pJ n n n n n n        (33) 

The channels estimation and eigenvalues 

reconstruction can be obtained as 

 
( ),

( ), arg min ( ),
r t

r t r t

n

n J n
 

      
            (34) 

By solving (34), both the channels estimation and 

eigenvalues reconstruction can be jointly obtained. The 

remaining problem is how to solve (34). Using a similar 

joint method proposed in [17], (34) can be solved by an 

iterative algorithm with channels estimation, eigenvalues 

reconstruction and compensation of pulse wave functions. 

The cost function is minimized with respect to the sparse 

coefficients estimation. The eigenvalues are reconstructed 

by the channels estimation. The pulse wave functions are 

updated using the reconstructed eigenvalues. The sensing 

matrix of is updated by the pulse wave functions. The 

sparsity and accuracy of the channel estimation are 

compensated to improve by the new sensing matrix in 

next iterative process. The algorithm flow is outlined as 

follows: 

Firstly, the problem of estimating the sparse complex 

basis expansion channel ( )rh n coefficients is transformed 

into the problem of estimating ( )r n . 

    
1

( )

( ) arg min ( ),
r

i i
r r t

n

n J n


  


             (35) 

 
1

( )
i

r n


 is the sparse coefficients of the complex time 

frequency basis parameter with pulse waveform. 

Furthermore, when some spatial domain bins contain few 

physical paths due to limited scattering, the 

corresponding channel coefficients should approach zero. 

Equation (35) is actually composed of complex pulses, 

which means that the received signals in (35) is sparse in 

the time frequency domain. The cost function is 

minimized with respect to the sparse coefficients 

estimation. 

Secondly, the eigenvalues are reconstructed by the 

channels estimation. Reconstruction of eigenvalues for 

pulse wave functions is: 

    
1 1

arg min ( ) ,
t

i i
t r tJ n



  
 

               (36) 

Thirdly, the pulse wave functions are updated using the 

reconstructed eigenvalues  
1i

t


. The pulse wave 

functions maxDv , U( )n are updated by using  
1i

t


.  

Fourthly, the sensing matrix G ( )t n of is updated by the 

pulse wave functions U( )n . 

Finally, the sparsity and accuracy of the channel 

estimation are compensated to improve by the new 

sensing matrix in next iterative process. The 

compensation sparse complex basis expansion represents 

band and time limited sequences with the pulse wave 

functions. Let 1i i   and return to estimation of sparse 

coefficients. Terminate when   

   

 

2
1

2

2

2

( ) ( )

( )

i i
r r

i
r

n n

n

 







                        (37) 

Equation (37) is less than a preset threshold. This 

allows us to choose a suitable threshold for ignoring the 

small-valued channel taps and retaining only the most 

significant taps to reduce the effect of noise in the 

estimation. The energy mainly concentrates in the spatial 

time frequency, thereby improving the performance of 

the channel estimation technique. It can be observed that 

the energy of  
1

( )
i

r n


 spreads over the entire ambiguity 

domain, so the energy in an adjacency of the dominant 

time frequency, corresponding to the matched signal. 

When the frequency mask changes, pulse waveform can 

be flexibly adjusted and corrected. The pulse signal 

which is band and time concentrated distribution, is 

conducive to optimization design of sparse MIMO-

OFDM channel. The proposed method exploits the 
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intrinsic relationship between the sparse channels and the 

dynamic mathematical model. The proposed method 

works by jointly estimating the sparse coefficients vector 

and by reconstructing the dynamic mathematical model. 

Then, the dynamic mathematical model reconstruction is 

used to update the sensing matrix, and the algorithm 

passes to the next iteration. The mathematical model is 

exploited to track rapidly MIMO-OFDM channels by 

avoiding depending on the coherence bandwidth and time 

of channels. 

D. Performance Evaluation 

We define dominant non-zero channel coefficients 

( )r n ’s as those which contribute significant channel 

power, that is, the coefficients for which 
2

,
1( , )r tE h n    for some prescribed threshold 

0  . Thus, the channels are sparse 

 

0

2

1

( ) ( 1)
tN

r
t

t

E n N KL Q


 
 

  
         (38) 

It is easily seen that the fast fading channels 

encountered in practice are sparse MIMO-OFDM 

channels with most of the multipath energy localized to 

relatively small regions. The channels impulse responses 

are dominated by a relatively small number of dominant 

resolvable paths within the sparse complex basis 

expansion. Thus, the goal is to reconstruct the sparse 

channel coefficients ( )r n from few pilot measurements. 

Using the sparse complex basis expansion and a 

measurement matrix, the sampling scheme based on CS 

can be designed to reduce the sampling rate in theory. 

When traditional channel estimation methods are used for 

the doubly selective MIMO OFDM channels, 

the ( 1)tM N KL Q  matrix will be designed to have full 

column rank ( 1)tN KL Q  , which requires 

( 1)tM N KL Q  , where ( 1)tN KL Q  is the number of 

path. 

The main computational cost is from of sparse 

coefficients estimation and eigenvalues reconstruction. In 

each iteration, the first step reconstruct the targets, whose 

complexity is order  tO MN K . The computational 

complexity of eigenvalues reconstruction is order 

 tO N K . 

IV. SIMULATIONS 

In order to demonstrate the performance of the 

proposed channel estimation, the simulations were 

presented in this section. The simulation parameters are 

chosen to be depictive of a communication system with 

carrier frequency to be 2.3GHz, symbol duration and 

guard interval to be 102.4 s and 12.8 s , subcarriers to 

be1024，and FFT size to be 1024. The performance of 

the MIMO-OFDM system is measured in terms of the 

MSE of the channel estimate, and the bit error rate (BER) 

versus SNR. 
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Fig. 2. Comparison of the recovery probabilities at the SNR = 60 dB. 

5 10 15 20 25 30

10
-3

10
-2

10
-1

M
S

E

SNR(dB)

 

 

Proposed

MIMO TFT-OFDM 

FRI-PERK

IJEP

 
Fig. 3. MSE against SNR 
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Fig. 4. BER against SNR. 
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Fig. 2 presents the correct channel impulse response

recovery probability when different numbers of pilots

[ ( ) ( )]%t

tM n N K are used under the fast fading channel

with the fixed SNR of 60 dB in a 4 4 MIMO system.

Here, the correct recovery is defined as the estimation

Mean Square Error (MSE) is lower than 210 . It can be

seen from Fig. 2 that by utilizing the obtained intrinsic

relationship between the sparse channels and the dynamic

mathematical model, the required number of pilots in the

proposed method is less than that in the MIMO TFT-

OFDM [17] algorithm and far less than that in SOMP

algorithm.

Fig. 3 shows MSE of channel estimation error vs.

Signal-to-Noise Ratio (SNR). The BER of each data



 

 

 

 

 

 

 

  

 

 

V. CONCLUSIONS 

We proposed the CS-based channel compensation 

estimation for MIMO-OFDM with fast fading channels. 

The proposed estimation method has much better 

performance than traditional channel estimation method. 

We investigate a channel estimator that exploit channel 

sparsity in the time and Doppler domain, where the 

channel is described by a limited number of paths, each 

characterized by a delay, Doppler scale, and attenuation 

factor, and derive the exact inter-carrier-interference 

pattern. The algorithm works with channel sparsity by 

jointly estimating the sparse coefficients vector and by 

reconstructing the mathematical model. The proposed 

method exploits the intrinsic relationship between the 

sparse channels and the mathematical model. 
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jointly estimating the sparse coefficients vector and by
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band and time concentrated distribution, is conducive to
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The mathematical model is exploited to track rapidly

MIMO-OFDM channels by avoiding depending on the

coherence bandwidth and time of channels.
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