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Abstract—High peak-to-average ratio power (PAPR) is a 

critical practical problem for an OFDM system. Many 

techniques, such as clipping and filtering (ICF), cognitive 

clipping, have been proposed to deal with the issue. 

However, it needs to determine the relationship between 

error vector magnitude (EVM) and clipping ratio (CR). In 

this paper, we formulate a universal PAPR optimization 

model with EVM constraint, and propose a differential 

evolution (DE) algorithm with a time complexity of 

2( log )O N N . The optimization parameter of the new 

approach is clipping noise. The EVM constraint 

guarantees proper receiver operation that is specified by 

most modern communication standards. The proposed 

DE algorithm employs the noise vector as the population. 

It adjusts three crucial control parameters to minimize 

cost function which is the amount of PAPR reduction. 

Simulation results show that our proposed method can 

offer good performance in PAPR and bit error rate (BER). 
 

Index Terms—Peak-to-average power ratio, clipping and 

filtering, differential evolution, error vector magnitude, adaptive 

step size 

 

I. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) 

is a very attractive multicarrier modulation technique [1]. 

It can offer high spectral efficiency, immunity to 

frequency selective fading and low inter-symbol 

interference. However, OFDM often suffer from high 

(peak-to-average ratio) PAPR which results in high scope 

power amplifier. On one hand, it decreases the signal-to-

quantization noise ratio and leads to in-band distortion 

and out-of-band radiation. On the other hand, it degrades 

the efficiency of the power amplifier in the transmitter. 

Many PAPR reduction methods have been proposed to 

address this issue. These include adaptive step size 

cognitive clipping [2], tone injection [3]-[5], iterative 

clipping and filtering (ICF) [6]-[9], coding [10]-[13], 

selected mapping [14]-[17] and partial transmit sequences 

[18]-[22]. Among these techniques, ICF technique is 

quite successful that requires no modification to the 

receiver structure. It is the simplest approach to obtain a 
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reduction of the PAPR. However, the filtering operation 

causes in-band distortion and out-of-band spectral re-

growth. The in-band distortion can degrade bit error 

performance and the frequency-domain filtering results in 

peak re-growth. The ICF method requires much iteration 

to approach a desired PAPR reduction that makes 

computational complexity increase exponentially. 

Ma and Shao [2] proposed an adaptive step size 

cognitive clipping method. It reduces the number of 

iterations by using the dynamic error vector magnitude 

(EVM) step size. However, the major drawback is that it 

needs to determine the relationship between EVM and 

clipping ratio (CR) in advance. For different modulation 

type, it needs a lot of simulations to configure of the 

optimal CR look-up-table for different EVM threshold. 

Min et. al addressed a number of feature selection 

problems from the viewpoint of constraint satisfaction 

problems [23]. Mi al considered the reduct problem of 

numeric data with both error ranges and test costs[24]. 

In this paper, we formulate a universal PAPR 

optimization model with EVM constraint, and propose a 

differential evolution (DE) algorithm with a time 

complexity of 2( log )O N N . It is a universal PAPR 

optimization model, which can be applied to various 

communication systems. It does not need to configure the 

optimal CR look-up-table in advance. We only need to 

input modulated signal without considering the CR. The 

optimization objective is the desirable PAPR reduction. 

We adopt the EVM constraint in the new problem. It can 

guarantee accurately decoding the data in the receiver 

that is specified by most modern communications 

standards. 

We propose a DE algorithm to solve the optimal PAPR 

problem. There are three major aspects of our DE 

algorithm. Firstly, we employ the noise vector as the 

population to parallel direct search the optimal solution. 

Secondly, we define the amount of PAPR reduction as 

cost function. Finally, three parameters including 

population size, scaling factor and crossover rate are 

adjusted to achieve the best performance. Complexity 

analyses demonstrate that the time complexity of our 

approach is 2( log )O N N . 

Simulations are done with MATLAB 2010. It has been 

carried out to evaluate the performance of the proposed 

algorithm. The simulations assumed that the data were 

16-QAM modulated and the system contained 1024N   

subcarriers. It shows that our proposed method can 
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achieve better bit error rate (BER) performance without 

degradation of PAPR reduction. 

The paper is organized as follows. In Section 2, we 

briefly review previous studies about adaptive step size 

clipping method and the definition of PAPR and EVM. In 

section 3 we define a universal PAPR optimization 

problem. In sections 4 and 5 we adopt a DE algorithm for 

solving the optimization problem and discuss its 

complexity. Simulation results are provided in Section 6. 

Finally, the conclusion is given in Section 7. 

II. RELATED WORKS 

This section briefly reviews the related work. We start 

from two metrics to quantify OFDM system performance, 

PAPR and EVM. Next, we describe previous studies 

work, adaptive step size cognitive clipping method. 

A. Peak-To-Average Power Ratio 

For digital implementation, we need to express the 

signal in discrete time. The discrete-time OFDM symbol 

with N  subcarriers can be defined as 
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In equation (1), (k) nX C   is an OFDM constellation.  

To approximate the true PAPR of (1), the L  times 

oversampling technique is usually used, where 

L oversampling factor is. 

The PAPR is a measure commonly used to quantify the 

envelope fluctuations of multicarrier signals. The PAPR 

of the transmitted OFDM symbol is defined as 
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In equation (2),  E  denotes the expected value. 

B. Error Vector Magnitude 

EVM is extensively applied to describe the distortion 

of the processed OFDM symbol, which directly affects 

the BER performance at the receiver. 

For an OFDM block, each data symbol is mapped to a 

constellation point. However, various transmitter 

impairments or some deliberate modifications will cause 

the actual constellation point to deviate from the ideal 

location. The difference between the ideal constellation 

point and the deviated point is called the error vector. 

For a single OFDM symbol, its EVM is defined as 

1
2

0max

1 1
EVM )

N

E k
S N



  （                  (3) 

In equation (3), maxS is the average power of the carrier 

modulation scheme and ( )E k is the error vector at the 

kth  subcarrier in-band. 

( ) ( ) ( )E k X k X k                     (4) 

In equation (4), ( )X k  is an ideal constellation and 

( )X k is the constellation that is actually transmitted. 

C. Adaptive step size method 

In paper [2], an adaptive step method is proposed to 

reduce PAPR of OFDM signals. It uses dynamic EVM 

step size to adjust clipping level for PAR reduction. Fig. 

1 includes two major components: EVM  selecting 

block and iEVM selecting block, which select 

appropriate step size EVM and 
iEVM for iteration 

processing. 

 
Fig. 1. Structure of adaptive step size method 

However, it needs to determine the relationship 

between EVM and CR. For different modulation type and 

number of subcarriers, the inhibition ability of reducing 

PAPR is different. It needs a lot of simulations to 

configure of the optimal CR look-up-table for various 

communication systems in advance. 

III. PROBLEM DEFINITION 

In this section, we formulate a universal PAPR 

optimization model with EVM constraint. It is an EVM 

constraint PAPR optimization problem. It is no use for 

configuring the CR look-up-table in advance, and can be 

applied to any communication systems. 

We focus on the clipping noise which is generated by 

various ways such as ICF, adaptive step size cognitive 

clipping. We will reduce the amplitude of the original 

signal by looking for the optimal noise vector.  

We define an N-dimensional noise vector ( )e n  as  

( ) ( ) ( )e n x n x n                        (5) 

  

 

The EVM constraint PAPR minimizing problem can 

be defined as follows: 
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In equation (5), ( )e n is the distortion introducing by

clipping with various methods. Noise achieves the same

purpose, namely to reduce high amplitude of original

signal. We denote ( )E k is the frequency-domain vector

of ( )e n , which is the error vector between the original

signal and the signal after clipping. It directly determines

the size of the EVM. It will not bring any out-band

radiation because of using the frequency domain clipping.

Among all constellations nE k C（ ） that satisfy EVM

constraint, we seek one with the minimum possible PAPR.

We call E k（ ）the PAPR-reduction vector.



Problem 1: the minimal PAPR problem 

max

: ( );

: ( ), ( )

int :

: min

Input X k

Output e k x n

Constra EVM

Optimization objective PAPR


 

The input OFDM symbol is 16-QAM modulated signal. 

The output OFDM symbol in the time-domain can be 

written as  

1
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It represents that the time-domain clipped signal 

obtained by the frequency domain signal after M  point 

IFFT operations. 

Problem 1 has an optimization objective, which is to 

minimize the cost function.  

If we want to guarantee that the signal OFDM symbol 

is not distorted too much, we define the constraint 

function as follows 

2

1
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Namely, all ( )E k  satisfies the EVM constraint, where 

maxEVM  is permitted worst distortion on a single symbol 

specified by most modern communications. 

IV. ALGORITHM DESIGN 

This section presents differential evolution (DE) 

algorithm. The DE algorithm is applied to parallel search 

the noise vector achieving the desirable PAPR reduction 

[25]-[28]. 

Our approach tries to construct a general model, only 

considers the modulated signal as input, and gets a 

desirable output signal. It can meet with most modern 

communication standards. We provide a proposed DE 

algorithm to search the optimal ( )E k and apply it to solve 

the PAPR reduction problem. It could be implemented in 

parallel processing frame to reduce the computational 

burden and run time. 

The DE method usually has four main procedures: 

initialization, mutation operation, crossover operation and 

selection operation. Like the evolutionary algorithm, DE 

is an efficient and powerful population-based stochastic 

search method for solving optimization problems over 

continuous space. 

Algorithm 1 shows the DE-based optimization scheme 

for PAPR reduction. The input of the algorithm includes 

frequency-domain error range, control parameters Np, Pm, 

Pc. The output includes fitness function ,( )best Gf E , 

( )E k and ( )x n . 

TABLE I: DE-BASED OPTIMIZATION ALGORITHM 

Algorithm 1 DE-based optimization algorithm 

Inputs: 

The frequency-domain error range, ( )X k , Np , Pm , Pc  

Outputs: ,( ), ( ), ( )best Gf E E k x n  

Method: Differential evolution. 

1: Begin; 

2: G=0; 

3: Create a random initial population , 1, ,i GE i Np ; 

4:   for G=1 to maxG  do 

5:      for i=1 to Np  do 

6:         Select randomly 1 2 3r r r i   ; 

7:          0,1 *randj rand D    ; 

8:         , 1 2 3( )i G r r rM E Pm E E   ; 

9:      end for; 

10:    for j=1 to D do 

11:        
 ,

,

,

, ( 01 ) ( ),

, .

j
j i G m rand

i G j
i G

m if rand P or j j
w

e otherwise

  
 


，
; 

12:     end for 

13:     for j=1 to Np  do 

14:        if  , ,( ) ( )i G i Gf W f E then 

15:           , 1 ,i G i GE W  ; 

16:           , 1 ,( ) ( )i G i Gf E f W  ; 

17:              if , ,( ) ( )i G best Gf W f E  then 

18:                 , ,best G i GE W ; 

19:             end if; 

20:        end if; 

21:     end for; 

22:   end for; 

23: End. 

The algorithm terminates after the gap is small enough, 

or after the maximum number of iterations has been 

reached. 

1) Parameter setup 

Choosing suitable control parameter values is a 

problem-dependent task. In our scheme, there are three 

real control parameters in the algorithm, which are: the 

scale factor Pm, crossover probability Pc  and population 

size  Np.  

The rest of the parameters are maximal number of 

generations maxG  which may serve as a stopping 

condition and low and high boundary constraints of noise 

vector. 

2) Initialization 

It begins with a randomly initiated population of noise 

vector ( )E k . DE is a parallel direct search method which 

should cover the entire search space as much as possible 

with the search space constrained by the prescribed 

minimum and maximum bounds. 

1

min min min{ , , }DE e e                     (9) 

1

max max max{ , , }DE e e                   (10) 

Equations (9), (10) are the minimum and maximum 

bounds of noise vector ( )E k .The initial value of the jth 
parameter in the ith individual is generated by  
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 ,0 min max min0,1 ( ),  1,2, ,j j j j

ie e rand e e j D        (11) 

3) Mutation 

After initialization, DE employs the mutation operation 

to produce a mutant vector ,GiM corresponding to target 

vector ,i GE in the current generation. 

For each target vector ,i GE is generated by  

,G r1 2 3( )i m r rM E P E E             (12)  

In equation (13), 1r  2r  and 3r  are selected randomly 

and are mutually different. The scaling factor Pm  is a 

positive control parameter for scaling the difference 

vector. 

4) Crossover 

To increase the diversity of the population, crossover 

operator is carried out. In this paper, DE employs the 

binomial crossover defined as follows 

 
,

,

,

if ( 0 1 ) or
,   

( ),  1,2, ,

,   otherwise

mj

i Gj
randi G

j

i G
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m

j j j Dw

e

 


  



，

        (13) 

 

During selection, the offspring iW competes with the 

initial solution candidate iE .If it is fittest with respect to 

the cost function, it replaces iE in the next 

generation ( 1)G  , i.e. 

, , , ,

, 1

, ,

( ) ( )i G i G i G

i G

i G

W if W f E
E

E otherwise



 


           (14) 

V. COMPLEXITY ANALYSIS 

The computational complexity of our approach method 

is mainly reflected in the mutation and selection. While 

the number of samples for DE is *G Np . We can 

denote G  is the maximum number of iterations and Np  

is the population size. In this paper, we set 50Np   to 

achieve a good optimization result. It is far less than the 

number of subcarriers 1024N  . Each sample is 

calculated by using the N -point FFT. The number of the 

multiplications with our approach algorithm to find a sub-

optimal solution is the 2( log )O N N . 

VI. SIMULATIONS AND ANALYSIS 

Simulations in the 64-bit MATLAB platform have 

been carried out to evaluate the performance of the 

proposed systems including comparison of control 

parameters, the complementary cumulative distribution 

function (CCDF) of the PAPR, BER. The simulations 

assumed that the data were 16-QAM modulated and the 

system contained 1024N   subcarriers, 20MHz 

bandwidth. 

A. Comparison of Control Parameters 

The performance of the conventional DE algorithm 

highly depends on the chosen trial vector generation 

strategy and associated parameter values used. 

Inappropriate choice of strategies and parameters may 

lead to premature convergence or stagnation. The 

efficiency of the search for the global minimum is very 

sensitive to the setting of values Pm, Pc and NP. A series 

of simulations were conducted to select the optimal 

control parameters. 

1) The scale factor Pm 

Fig. 2 shows the obtained optimal objective function 

curve using different Pm  values. The scale factor Pm  is 

a value in the range  0,2  that controls the amount of 

perturbation in the mutation process. When the scaling 

factor Pm value is between  0.5,1 , the results obtained by 

the algorithm is better. If the 0.5mP   or 1mP  , we 

cannot get high quality solutions. When 0.5mP  , we can 

get the desirable objective function value of 5.892. 

 
Fig. 2. Finding optimal scale factor Pm 

 
Fig. 3. Finding optimal crossover probability Pc 

2) A crossover probability Pc 
Fig. 3 shows the obtained optimal objective function 

curve using different Pc values. From Fig. 3, we can see a 
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In equation (13),  , 0,1i jrand is a uniformly distributed

random number,  1,2, ,randj D is a randomly chosen

index, which ensures that ,i GW gets at least one

component from the mutant vector ,GiM .

5) Selection



value for Pc from the range  0.6,0.8  is best because each 

trial vector frequently competes with a target vector. 

Using low values of Pc can cause the search to take 

longer than a simple random search .When 1cP   the 

population may stagnate because the size of the pool of 

potential trial vectors is limited.  

3) Population size Np 

Fig. 4 shows the obtained optimal objective function 

curve using different Np values. In order to test the 

influence of population size to our proposed DE 

algorithm, we set the scaling factor 0.5mP  , crossover 

factor 0.8cP  , the population size from 10 to 100. When 

the population size increases to a certain number, the 

accuracy of solutions will no longer increase. The reason 

is the larger population can keep the diversity of 

population, but will reduce the speed of convergence. 

Diversity and convergence speed must maintain a certain 

balance. Therefore, accuracy will be decreased, when the 

population size is too large, if not to increase the 

maximum generation. It can achieve the good 

optimization result when the population size is 

between  30,50 . 

    
a) Generation=10                                                                      b) Generation=20 

    
c) Generation=50                                                                                         d) Generation=100 

Fig. 4. Finding optimal population size Np  

B. Complementary Cumulative Distribution Function 

The PAPR reduction performance is evaluated by the 

complementary cumulative distribution function (CCDF) 

of the PAPR. We will generate 100, 00 OFDM symbols 

to obtain the CCDF of PAPR. It denotes the probability 

that a PAPR exceeds a certain threshold. Fig. 5 shows the 

CCDFs of the PAPR for the original, adaptive step size 

method and our proposed method, respectively. As we 

can see, an impressive PAPR reduction of close to 6.1dB 

at the 10
2
 CCDF level is possible while still meeting the 

constraints of EVM. It is obvious that our proposed 

method by using DE algorithm can offer the same PAPR 

reduction performance as that of the adaptive step size 

cognitive clipping method with much iteration. 

 
Fig. 5. PAPR-reduction performance of original method, our method, 

adaptive step size method (1024 subcarriers, 16QAM, L=4). 
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C. BER 

Fig. 6 plots the bit error rate curves of the original 

signal, the adaptive step size method, and our proposed 

method in an additive white Gaussian noise (AWGN) 

channel. From the figures, it is observed that the DE 

algorithm achieve almost the same BER performance as 

that the original unprocessed method. There is less 0.2dB 

Eb/N0 degradation at 10
-6

 BER level. In most 

communication system, this degradation is negligible 

because of the channel coding. The signal to noise ratio 

(SNR) of our proposed method is better than adaptive 

step size method for a given BER. The reason is the 

adaptive step size method only considers the average 

EVM, while the BER performance of a clipped OFDM 

system depends on the in-band distortion. For example, at 

a BER level of 10
-4

, our proposed method has an SNR 

about 1dB better than that of the adaptive step size 

method. 

 
Fig. 6. BER comparison for original OFDM symbols, clipped OFDM 

symbols using adaptive step size method and our proposed DE method 
in an additive white Gaussian noise (AWGN) channel. 

 
Fig. 7. Constellation of individual optimal 16-QAM OFDM symbols 
with our method and adaptive step size method. 

D. Spectral Characteristics 

Fig. 7 plots individual error vectors for our proposed 

method with EVM constraint and the adaptive step size 

method. A constellation point is said to be feasible if it is 

located within the associated feasible region. From Fig. 7, 

we can see that the original ICF signals exceeds the EVM 

specification and outside the decision region boundary. 

The reason is that the basic clipping violates the EVM 

constraint. The clipped signal must be corrected in the 

frequency domain or it will be incorrectly decoded by the 

receiver. At the same time, we can see that the signal 

using DE algorithm satisfies the EVM constraint and 

almost all inside the decision region boundary. It can 

guarantee achieve the better BER performance. 

VII. CONCLUSION 

In this paper, a desirable solution can be obtained with 

the EVM constraint by constructing the PAPR 

optimization universal model. The satisfactory solution 

will be solved by DE algorithm efficiently. Complexity 

analysis show the time complexity of our approach 

is 2( log )O N N . Our proposed method can avoid solving 

the CR with a lot of simulations. Simulations results 

compare our proposed method to that of the adaptive step 

size method. It shows that our proposed method can 

achieve better BER performance without degradation of 

PAPR reduction. We believe that a real-time 

implementation is feasible given the capabilities of 

current day CMOS technology. 
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