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Abstract—Precise localization of mobile nodes in uncertain 

conditions is a fundamental and crucial topic in wireless sensor 

networks. In this paper a discrete-time H∞ filtering and dynamic 

node model based algorithm is proposed. Accurate and 

complicate network models are not required and no assumptions 

are needed for the external noise characteristics but only have to 

be seen as energy-limited. State and measurement equation of 

unknown node are built with basic kinematic property and 

sensor node measurement method, including the impact of 

environment random uncertainties and node connection failure. 

The position of the mobile node is estimated by the filter using 

an integration of position information from other assisting nodes. 

Complying to Linear Matrix Inequality (LMI) criterion, a 

theorem of H∞ filter designed for stochastic uncertain network 

is given. From the dynamics of the node, the solution existence 

of the proposed filter is obtained, and a low computational 

complexity method to get the optimum solution from the filter 

is provided in a simple motion model. The simulation results 

show that this method not only can achieve highly reliability but 

also the better localization accuracy under stochastic uncertainty 

wireless sensor network (WSN) conditions compared with the 

classic mobile MCL and MCB mobile schemes. 
 
Index Terms—WSN, mobile node localization, H∞  filtering, 

simple kinematic model 

 

I. INTRODUCTION 

In recent years, wireless sensor networks (WSNs), 

have been widely used in a range of applications, such as 

military action, medical treatments, and the monitoring of 

animal activity and environment changes in the forest. In 

particular, location-based applications are among the first 

and most popular applications of WSNs [1], [2]. 

Many localization schemes have been proposed in the 

past few years, most of which are designed for static 

sensor networks [3]-[7]. They need a large density of 

anchor nodes around each unknown node, such as 

Centroid, APIT. Also network flooding and well-

regulated nodes distribution, such as DV-HOP, 

Amorphous, are essential in others which is unrealistic. 
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These kinds of algorithms need to update node's location 

information frequently, which consume majority of 

hardware and energy resources and further reduce the 

responding speed of the network, as well as the 

localization accuracy. 

However, sensors are supposed to be highly dynamic 

and location aware in most applications. For example, in 

target tracking, sensor nodes detect surrounding areas by 

tracking positions of moving objects. In addition, once 

sensors are set to be mobile the sensing region will be 

enlarged. Thus, a specially designed mobile localization 

algorithm is highly required in dynamic WSN.  

In this paper a discrete-time H∞ filtering and dynamic 

node model based mobile algorithm is proposed. 

Accurate and complicate network models are not required 

and no assumptions are needed for the external noise 

characteristics but only have to be seen as energy-limited. 

The position of the mobile node is estimated by the filter 

using an integration of position information from other 

assisting nodes. Complying to Linear Matrix Inequality 

(LMI) criterion, a full theorem of H∞ filter designed for 

stochastic uncertain network is given. From the dynamics 

of the node, the solution existence of the proposed filter is 

obtained and a low computational complexity localization 

algorithm to get an optimum coordinate solution from the 

filter is provided. 

The remaining paper is organized as follows: Section 

II describes related work about mobile localization 

algorithms in WSN. System modeling and algorithm 

formation are given in Section III. Simulation validations 

and conclusions are described in Section IV and Section 

V respectively. 

II. RELATED WORK 

The existing localization schemes can be mainly 

divided into two parts: range-based and range-free [8]. 

The former depends on calculating absolute distances or 

angles between two nodes. Each node can estimate 

distance by Angle of Arrival (AoA), Time of Arrival 

(ToA), Time Difference of Arrival (TDoA), or Received 

Signal Strength Indicator (RSSI). In ToA and TDoA 

methods, distance between any two sensors can be 

calculated using the velocity of signal and the signal 
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propagation time interpolation between them. In AoA, 

each sensor node is equipped with directional antenna 

and estimates the relative angle with its neighbors. Sensor 

nodes use the RSSI [9] value to reckon real physical 

distance accurately. Once distance information between 

nodes can be obtained, coordinates calculation will be 

finished by triangulation or rigidity rule [10]. On the 

contrary, range-free localization algorithms estimate node 

position only by network connectivity instead of absolute 

distance or angle information. Each sensor node confirms 

the connectivity with neighbors by transmitting a packet 

and estimates its location by gathering information from 

them. Although its accuracy is not as well as range-based 

it is easy to implement and needs less energy 

consumption than range-based. So it is more suitable for 

WSN environment and become main research directions 

of localization algorithms recently. Until now many 

range-free schemes have been proposed but only for 

static sensors, in which unknowns estimate their positions 

by collecting the coordinates of neighbor anchors. 

Unknown nodes can receive information packages 

directly from near anchors which are defined as 

neighbors. Centroid, APIT, DV-HOP, Amorphous, and 

MDS-MAP all belong to this kind [11]. 

Mobile node localization algorithm is highly needed 

but no perfect schemes have appeared. A classic Monte 

Carlo Localization (MCL) scheme specifically designed 

for mobile sensor networks is proposed in [12]. In MCL, 

all sensors are supposed to be mobile. There are two basic 

assumptions to make mobile sensors simple. One is that 

the time is divided into several time slots. The other is 

each sensor’s maximum moving distance in each time 

slot is no more than a specified value. Each anchor node 

periodically forwards its physical location to two-hop 

neighbors. Unknown nodes collect the location 

coordinates of their one-hop and two-hop anchor nodes 

by message exchange, and a new possible location set is 

constructed in each time slot. The possible location set 

consists of various coordinates where unknown nodes 

may locate. They are also constrained by the 

communication range of anchor nodes and the moving 

region of location set in the previous time slot. But the 

defect of MCL is that the localization error is high when 

the anchor density in the network is very low. 

A Monte Carlo Box (MCB) algorithm based on MCL 

is designed to solve the problem in [13]. In MCB 

algorithm anchor constraints are bounded by a square 

which is called an anchor box. By constructing anchor 

boxes and sample box in two hops of anchors it can 

reduce sampling area and increase sampling rate 

effectively. But it has fixed sample times which results in 

low efficiency, long cycle and large amount of 

computation that can not to be widely used in energy 

limited wireless sensor nodes. Two more main drawbacks 

can be listed as following. Firstly in WSN with low 

anchor density, each unknown gets tighter anchor 

constraint, which makes the estimated location error 

become larger. Secondly in WSN with high anchor 

density conversely, unknowns get more location 

constraints from anchors， which results that the most 

possible located region of the unknowns will be smaller. 

And also MCL and MCB both cannot reduce the 

localization error if the two have the same limit number 

of valid samples. 

Multi-hop based Monte Carlo Localization (MMCL) 

[14] is another range-free algorithm which uses Monte 

the Carlo method combining principles of MCL and DV-

Hop and possessing advantages of the two. In MMCL 

average distance of each two nodes can be obtained by 

DV-Hop and the area where unknowns may locate will be 

sure by using each average hop distance and hops 

between anchors and unknowns. In the end, possible 

coordinate information of unknown nodes will be filtered 

by basic MCL. The drawback of MMCL is that the 

communication range of each node should be known in 

advance which is hard to be realized and also introduces 

error accumulation. Mobile and Static Sensor Networks 

Localization (MSL) [15] realizes localization based on 

the weight of particles in the progress of construction and 

sampling. The performance is improved by one and two 

orders of neighbor nodes. MSL* is also derived from 

MCL which uses two kinds of neighbor nodes from 

unknown nodes, which means it uses the information 

collected from all one hop and two-hop neighbors of 

unknown nodes and anchors [16]. Its two main 

drawbacks are also as following. Firstly MSL* will have 

lower location accuracy in high dynamic environment. 

Secondly MSL* needs a lot of communication cost in 

forwarding location information packages. Additionally 

both of MSL and MSL* need high energy consumption 

and complicated calculation. 

III. SYSTEM MODELING AND ALGORITHM FORMATION 

In this section, the statement of the problem and H∞ 

filtering and dynamic node model based localization 

algorithm are introduced and discussed. In order for 

clarity, required motion and kinematics relationships of 

the mobile node in three-dimensional space are given. 

A. Parameter Definitions 

Fig. 1 depicts a node moving statement with velocity 

sV  in three dimensional spaces. { }I  denotes a global 

coordinate system. The following symbols are used. 

 
Fig. 1. Geometry of mobile node in space 

'[ ]s s s sP x y z : Measured inertial position of the 

moving node in three-dimensional space. '{[ ] } denotes 

the transpose of a matrix. 
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sV : Measured inertial instantaneous velocity of the 

moving node in WSN. 

s : Unknown node acceleration 

w : External disturbance with unknown statistical 

character but only bounded energy. 

, ,sx sy sz   : Inertial instantaneous node velocity along 

axis line , ,OX OY OZ  respectively. 

, ,sx sy sz   : Unknown node’s acceleration along axis 

line , ,OX OY OZ direction respectively. 

 : Angle between node moving direction and axis 

line OZ . 

 : Angle between vehicle velocity projection on 

plane XOY and OX . 

B. Network Mobile Model 

According to the geometry of the mobile node 

localization problem in Fig. 1, the following equations 

can be easily obtained by resolution of velocity 
sV . 

sin cos

sin sin

cos

sx s

sy s

sz s

V

V

V

  

  

 

 







                         (1) 

By using kinematic laws and discretization method the 

continuous mobile node localization problem will be 

made discrete by sampling with time slot T , the 

following relations can be fixed: 

2

2

2

1
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1
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    
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








       (2) 

As in (2) '( 1) [ ( 1), ( 1), ( 1)]s s s sP k x k y k z k      

denotes node real position at time slot ( 1)k  . In the same 

way '( ) [ ( ), ( ), ( )]s s s sP k x k y k z k  denotes node position at 

time slot ( )k . { ( ), ( ), ( )}sx sy szv k v k v k  meanwhile denotes 

instantaneous node velocity along coordinate axis line 

, ,OX OY OZ  respectively at time slot ( )k . 

 ( ), ( ), ( )sx sy szk k k   is denoted as unknown real 

mobile node acceleration along coordinate axis line  

, ,OX OY OZ  respectively at time k . 

C. Problem Description 

The purpose in this part is as follows. 

Given the observation position ( )sP k and ( )sV k at time 

slot ( )k , predict the position ( 1)sP k   at time slot ( 1)k  . 

That is to say how to design a filter to recognize the 

trajectory of unknown node moving in complicated WSN 

environment only with system uncertainties and unknown 

external disturbance in three-dimensional space. 

The equations listed above in system (2) all have the 

same form and all the equations are independent with 

each other, so we can simplify system (2) into unified one, 

which means three-dimensional node localization 

problem will be changed into one-dimensional target 

observation problem and rewrite system (2) into system 

(3). 

    21
1 ( ) ( )

2
L k L k T V k A k T              (3) 

where all parameters in equation (3) are the following. 
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( ), ( ), ( )
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L k x k y k z k

L k x k y k z k

V k k k

A k k k k

  
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
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

 

We define the following for convenience. 

   
'

( ) ( ) ( ) [ ( ) ]'X k L k V k W k A k w      (4) 

In this way the state space model of system (2) and the 

observation equation can be written as  

( 1) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

X k A A X k BW k

Y k C C X k Dw

Z k LX k

    


   
 

        (5) 

And ( )X k is the state, ( )Y k is observation and ( )Z k is 

the state combination to be estimated. ,A C  represent 

the system uncertainty and measurement uncertainty 

respectively. Combining (2), (3), (4) and (5), (6) will be 

obtained: 

2[1 ;0 1], [ 2 1], [11], [11], [1 0]A T B T C D L     (6) 

In this way the key problem in this algorithm is to be 

thoroughly investigated in this paper will be become as: 

Given the observation ( )Y k , design a filter for system (5) 

to realize localization of ( )X k  with system uncertainties 

and unknown external disturbance in three-dimensional 

space. ( )X k is the position and velocity of unknown node 

in WSN. 

D. Proposed Algorithm 

We will give an accurate robust discrete-time H∞ 

filtering algorithm with stochastic uncertainties. Consider 

the uncertain stochastic discrete-time system: 

1 ( { })

( { })

0,1,2,

k k k k

k k k k

k k

x A E x Bw

y C E x Dv

z Lx , k





   


  
  

               (7) 

where l

ky R is measurement, n

kx R is the state, 

l

kv R is measurement noise, l

kw R is the input noise, 

and l

kz R  is state combination to be estimated. Also 

0x , kw and kv are uncorrelated noises not only with 
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bounded energy. , , , , , ,A E B C F D L  are fixed known 

matrices of appropriate dimensions. Also { }kE   and 

{ }kE   represent system uncertainty and measurement 

uncertainty respectively. { }kE  and { }kE   are both 

uncorrelated standard random sequences with mean zero 

which satisfies following equation. 

{ } , { } , { }

1, , 0

k j kj k j kj k j k kj

k

E E E

k j

         



  

  





   (8) 

In (8), { }E  denotes the mathematical expectation. The 

core idea of H∞ filtering is to design an estimator to 

estimate the unknown state combination via output 

measurement, which guarantees the gain and includes 

external disturbance and estimation error, to be less than 

a prescribed level. The performance index is defined as 

following. 

0 2 1
0

2

2
22

2 2
, [0, )

0 0 2

inf ( ) inf sup
ˆf f

k

k

k f
F F x l

kP

e
J T F

x x





 

  
 

   (9) 

In (9) above, ( )k fT F is the mapping function from 

unknown prior information 
0 0

ˆ{( ), }kx x  to filtering 

error ˆ
k k k ke z L x  .The initial estimation error matrix is  

0 0 0 0 0
ˆ ˆ{( )( ) }P E x x x x    . And   denotes the matrix 

norm. According to the classic H∞ filter design theory, 

the filter structure can be written as 

1
ˆ ˆ ,

ˆˆ , 0,1,2,...

k f k f k

k k

x A x B y

z Lx k

  


 
                  (10) 

Here ˆ ˆ,k kx z are denoted as the estimation of ,k kx z  

respectively.  

Define the following two equations. 

 { } { }k f kE B E                          (11) 

f fA A B C                                (12) 

From (7), (8) and (9), we will have  (13) and (14): 

 1 1( { } { }) ( )k k k k k k

k k

e A E E e B G r

z Le

  
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


   (13) 

1 1, ,f f fA A B B B D E B E                     (14) 

So according to this theory, once given the (13) and 

0γ   filter design problem can be converted to LMI 

problem which is to find matrix 0,P P Q  and H∞ 

performance index 0γ   satisfying (15). 

2

1 1
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Let 2  , the LMI (15) can be written down as: 

( , , ) 0P Q                           (16) 

Then the optimal filter design could be obtained by 

solving the following convex optimization problem: 

  1 0,
min

subject  to LMIs (15)

P Q







                (17) 

With the mathmatical software the robust H∞ filter 

design can be obtained with the least H∞ bound for 

system (10): 

1 1

f fB P Q A A P QC               (18) 

Once the optimum solution is calculated the estimated 

position of each unknown node will be obtained 

accordingly. 

IV. SIMULATION VALIDATION 

In order to demonstrate the effectiveness of the 

proposed algorithm, simulations under dynamic 2D and 

3D environment with random noise respectively have 

been made with the MATLAB software. 

Parameter settings are listed in the following. 

, ,x y zV V V : Node moving velocity along , ,X Y Z  

coordinate axis directions and will be given the same 

value for simplicity and unity. 

T : Sampling period of this algorithm and is set at 5 

intervals. 

N : Sampling points of unknown node at the moving 

trajectory and is set as 25 points per interval. 

 : System setup parameters and is set as 0.05. 

L : Side length of localization area and is set at100 

units. 

A. Localization Performance in 2D Space 

Main parameters are set as the values previous. Mobile 

node is moving in 2D plain and its movement routes are 

random. But it must comply with the following moving 

limits. 

The node starts from inertial coordinate origin (0,0) . 

Moving velocity along X  and Y  axis directions will be 
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changed randomly from (0, )Vx  and ( , )Vy Vy  in each 

step period respectively. In this way the dynamic route of 

mobile node becomes uncertain. 

Fig. 2 gives the tracking trajectory comparisons under 

different moving velocities, which is changed from 2 to 8 

m/s with interval as 2 m/s respectively. From the whole 

no matter how the velocity of mobile nodes changes the 

proposed algorithm realizes node localization in dynamic 

environment with low location errors. By using this 

mobile method the mobile trajectory of each node can be 

well followed and the coordinates in each time slot can be 

computed quickly and accurately, which is better 

applicable in different mobile conditions. We can also 

find directly from the figure localization errors present an 

increasing trend in different conditions of node velocities. 

In order to better explore the location errors, Fig. 3 gives 

the error comparisons in the same environment settings. 

 
Fig. 2. Tracking trajectory in 2D plane 

In order to give the accurate localization error 

comparison values in each velocity condition Fig. 3 is 

given below which gives different errors under different 

moving velocity settings. 

In Fig. 3 explicit average localization errors during a 

whole moving process are computed and given (sampling 

points N  is also set as 25). With Vx and Vy  increasing 

average localization error is increasing too. Vx and Vy  

are set at 2, 4, 6 and 8 m/s respectively in each time slot. 

The error is increased by 95.25%, 77.40%, 27.48% and 

31.96% respectively. That is because with velocity 

increased the random uncertainties of nodes movement 

direction are raised. In this way it’s hard to forecast the 

future status and directions and also localization time of 

each stop is reduced which adds the location errors. But 

in the whole localization errors are in an accepted scope. 

Meanwhile margin of error presents a downward trend, 

which proves the stability of proposed method. The 

maximum value is 7.77145 m which is much lower than 

the side length of localization area which is only by 

7.77%. The effects of velocity on this algorithm can be 

neglected. 

 
Fig. 3. Average localization errors with different 3D velocity 

As said in part II many classic mobile node 

localization algorithms have been proposed, in which  

MCL and MCB are the most famous. Here comparisons 

are made between them under the same condition settings 

shown in Fig. 4. 
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We assume a number of nodes and anchors deployed 

in an obstacle-free area of 500 500 units but with 

random noise. We thus allow all algorithms to use 

possible negative information. Both the nodes are mobile 

randomly. The anchors know their location in priority, for 

example by using GPS or other ways. The radio range r  

set to 40 units for all nodes and kept unchanged. 

 
Fig. 4. Localization error of three algorithms 

Fig. 4 gives the simulation results of MCL, MCB and 

proposed method in this paper. It is obvious MCL is the 

worst of the three no matter how node speed changes. Its 

error is the largest and with least stability. Especially 

when maximum speed is larger than 0.4 the error increase 

sharply and the summit is nearly 35m which is 35% of 

side length of localization area. Also MCL is the most 

sensitive to node moving speed. However MCB is the 

most stable and stays at low level all the time because it 

introduces a box to limit the estimated error and 

accumulated uncertainties. The box is playing an 

important role in MCB. It is obvious our proposed 

algorithm has the best performance. The smallest error is 

only 2.3m which is improved 44% and 69.3% compared 

with MCB and MCL respectively. When maximum speed 

arrives at 1, MCB and proposed algorithm will have the 

same accuracy that is 80% better than MCL. So it proves 

that our proposed algorithm has both best accuracy and 

stability. And it is very suitable for the mobile WSN 

environment. 

 
Fig. 5. Tracking trajectory in 3D space 

B. Localization Performance in 3D Space 

Simulation results in 3D space are given in this part. 

The parameters are set as before except the environment 

is changed into three dimensional spaces. The side length 

is still set as 100 units. Fig. 5 gives the comparisons of 

estimated node moving route and the true locations in 3D 

conditions. In Fig. 5, Vx and Vy  are set as 2m/s. From 

the figure we can see the node is moving randomly in 

direction and velocity in 3D space. Also by using the 

proposed method tracking can be well realized. Tracking 

can be well realized for each node in each time slot. In 

order to find out the accurate errors Fig. 6 is given. 

In Fig. 6 average localization errors both in 2D and 3D 

are given. The two both present an upward trend which 

can be sees as almost linear. Smallest values are 1.33372 

and 1.78276 respectively in two different conditions. The 

differences in each velocity between 2D and 3D spaces 

are very small and the biggest is 1.1 m which is only 

1.1% compared with localization side length as shown in 

Fig.6. That is equally to say the performance in 3D space 

is more or less the same as MCL and MCB in 2D plain 

which is much better compared with the classic two. 

We can see in the two figures above our proposed 

algorithm proposed algorithm can be well used in 3D 

space and the accuracy is as high as in 2D plain. The 

effectiveness of this method for mobile node localization 

in WSN environment is proved. 

 
Fig. 6. Accuracy comparisons in 2D and 3D space 

From the simulation curves above we can find the 

proposed method can be both used in 2D and 3D 

environments. In each condition it can realize node 

localization well with low position errors. The accuracy 

differences in 2D and 3D conditions are very small, 

which proves to have universality. It receives better 

accuracy compared with MCL and MCB by the 

comparisons above. 

V. CONLUSIONS 

Many applications in WSNs must know accurate 

locations of sensor nodes. In order to get location 

information, many localization schemes have been 

proposed to estimate sensors’ positions automatically. In 

mobile sensor networks, the localization scheme becomes 
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difficult to implement because of node mobility and 

network uncertainties. In this way developing a simple 

localization scheme with low estimated error is a big 

challenge for mobile sensor networks. In this paper a H∞ 

filtering and dynamic node model based mobile algorithm 

is proposed. State and measurement equation of each 

node are built with basic kinematic property and sensor 

node measurement method, including the impact of 

environment random uncertainties and node failure. The 

position of the mobile node is estimated by the filter 

using an integration of position information from other 

nodes, based on Linear Matrix Inequality (LMI) criterion. 

Simulation results show that this method can achieve 

highly reliable and accurate localization performance 

under stochastic uncertainty conditions compared with 

the classic mobile MCL and MCB mobile schemes. With 

the simulation results, our scheme has lower localization 

error than the previous work in most scenarios 

ACKNOWLEDGMENT 

This work was supported by the Research Fund of 

Shandong Jiaotong University (No. Z201306, Z201419), 

Science and Technology Plan Project of Shandong 

Province (2014GGX101015) and Natural Science 

Foundation of Shandong Province (ZR2014FL006). 

REFERENCES 

[1] H. Q. Zhang and Y. G. Zhang, “A robust algorithm for multiple 

disjoint moving sources localization with erroneous sensor 

locations,” Journal of Communications, vol. 8, pp. 345-351, Jun. 

2013.  

[2] J. Y. Zheng, Y. E. Huang, Y. Sun, et al., “Error analysis of range-

based localisation algorithms in wireless sensor networks,” 

International Journal of Distributed Sensor Networks, vol. 12, pp. 

78-88, Jan. 2010. 

[3] L. Cheng, C. D. Wu, Y. Z. Zhang, and Y. Wang, “Indoor robot 

localization based on wireless sensor networks,” IEEE Trans. 

Consum. Electron, vol. 57, pp. 1099-1104, Aug. 2011. 

[4] W. Li and Y. Jia, “Location of mobile station with maneuvers 

using an IMM-based cubature Kalman filter,” IEEE Trans. Ind. 

Electron, vol. 59, pp. 4338-4348, Nov. 2012.  

[5] R. Niu and P. K. Varshney, “Target location estimation in sensor 

networks with quantized data,” IEEE Transactions on Signal 

Processing, vol. 54, pp. 4519-4528, Aug. 2006. 

[6] A. Hesham and S. H. Yang, “Balancing the power consumption 

speed in flat and hierarchical WSN,” International Journal of 

Automation and Computing, vol. 5, pp. 366-375, Oct. 2008. 

[7] J. P. Sheu, P. C. Chen, and C. S. Hsu, “A distributed localization 

scheme for wireless sensor networks with improved grid-scan and 

vector-based refinement,” IEEE Trans. Mobile Computing, vol. 7, 

pp. 1110-1123, Sep. 2008. 

[8] S. Kumar, N. Kumar, and Sheeba, “Obstacle based range-free 

localization-error estimation for WSN,” International Journal of 

Computer Science Issues, vol. 8, pp. 31-39, Sep. 2011. 

[9] A. Bassam and B. Raouf, “Clustering in WSN with latency and 

energy consumption constraints,” Journal of Network and Systems 

Management, vol. 14, pp. 415-439, Sep. 2006. 

[10] M. P. Michalis, C. Laoudias, and C. G. Panayiotou, “Fault tolerant 

localization and tracking of multiple sources in WSNs using 

binary data,”

 

IEEE Transactions on Mobile Computing, vol. 13, 

pp. 1213-1227, Jun. 2014. 

[11]

 

D. Qi and D. G. Liu, “Using auxiliary sensors for pairwise key 

establishment in WSN,”

 

IEEE Transactions on Embedded 

Computing Systems, vol. 11, Sep. 2012. 

[12]

 

R. Stoleru, T. He, and A. Stankovic, “Range-free localization,”

 

Secure Localization and Time Synchronization for Wireless Sensor 

and Ad Hoc Networks, vol. 30, pp. 2365-2380, Jan. 2007. 

[13]

 

L. Liu, “Adaptive source location estimation based on compressed 

sensing in wireless sensor networks,”

 

International Journal of 

Distributed Sensor Networks, vol. 31, pp. 123–128, Jan. 2012. 

[14]

 

H. Y. Sun, Z. Y. Fang, and G. N. Qu, “CESILA: Communication 

circle external square intersection-based WSN localization 

algorithm,”

 

Sensors and Transducers, vol. 158, pp. 1-8, 2013. 

[15]

 

F. Caballero, L. Merino, P. Gil, I. Maza, and A. Ollero, “A 

probabilistic framework for entire WSN localization using a 

mobile robot,”

 

Robotics and Autonomous Systems, vol. 56, pp. 

798-806, Oct. 2008. 

[16]

 

Y. Liu, J. P. Xing, H. Wu, X. M. Wu, and G. Y. Zhang, 

“Distributed wireless sensor network localization algorithm using 

space standard normal vector (SSNV),” Journal of 

Communications, vol. 9, pp. 461-467, Jun. 2014. 

 

Xiaoming Wu, was born in February 1973. 

She is currently working as a vice professor of 

Shandong Jiaotong University. Her research 

interests include communication systems, 

wireless data communication, intelligent 

transportation systems, ad hoc network 

information transmission, sensor network and 

signal processing. 

 

 

Hua Wu, male, lecturer, was born in 1982. 

He received the Master degree from Shandong 

University in 2008. He is currently working as 

a lecturer of Shandong Jiaotong University. 

His research interests lie in ITS network 

information transmission, sensor network. 

 

 

 

 

Yang Liu, was born in March 1987, received 

his B.E. degree in Electronic Information 

Engineering from Shandong Jiaotong 

University in 2009 and M.E. degree in 

Communication & Information System from 

Shandong University in 2012. He is currently 

a teaching assistant in Shandong Jiaotong 

University. His research interests include 

wireless sensor networks, localization 

algorithms and intelligent transportation systems. 

 

Guangyuan Zhang, was born in July 1974, 

received the B.S. degree in computer 

applications from the China University of 

Geosciences in 1995, the M.Sc. and Ph.D. 

degree in Computer Science and Technology 

from Northeastern University in 2003. His 

interests include computer vision, 

communication technology, wireless networks. 

 

 

 

 

 

421

Journal of Communications Vol. 10, No. 6, June 2015

©2015 Journal of Communications



Jianping Xing, was born in July 1969, 

received the B.S. degree in mathematics from 

the Shandong University, Jinan, China, in 

1992, the M.Sc. degree in control engineering 

from Shandong University, China, in 1995, 

and the Ph.D. degree in transport information 

engineering and control from Beihang 

University, Beijing, China, in 2009. His 

interests include satellite navigation, wireless 

data communication, ITS network information transmission, sensor 

network and signal processing. 

 

 

 

422

Journal of Communications Vol. 10, No. 6, June 2015

©2015 Journal of Communications




