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Abstract—This paper investigates the problem of image 

reconstruction of compressed sensing. First, an improved 

smoothed l0 norm (ISL0) algorithm is proposed by using 

modified Newton method to improve the convergence speed 

and accuracy of classical smoothed l0 norm (SL0) algorithm, 

and to increase calculation speed and efficiency. The choice of 

algorithm parameter is discussed and the algorithm convergence 

is proven. Then, the proposed ISL0 algorithm is applied to 

reconstruct images of compressed sensing. We preserve 

low-pass wavelet coefficients after single layer wavelet 

transform, only measure the high-pass wavelet coefficients. 

Then, ISL0 algorithm is utilized to recover high-pass wavelet 

coefficients, and inverse wavelet transform is performed to 

obtain the original image. Finally, simulation results are given 

to demonstrate the effectiveness of the proposed algorithm. It is 

shown that, compared with classical SL0, SP and OMP 

algorithms, the proposed ISL0 algorithm performs better not 

only in reconstruction quality, but also in calculation 

complexity and noise robustness.  
 
Index Terms—Compressed sensing, image reconstruction, 

smoothed 0l  norm algorithm, single layer wavelet transform, 

modified Newton method. 

 

I. INTRODUCTION 

The recently developed Compressed Sensing (CS) [1], 

[2] framework is a novel technique of data acquisition. It 

suggests that the exact reconstruction of a sparse or 

compressible signal can be realized from a small number 

of random projections or measurements through using an 

optimization process from these projections. Although 

the encoding process is simply linear projection, the 

reconstruction requires some non-linear algorithms to 

find the sparsest signal from the measurements. 

Therefore, the development of fast reconstruction 

algorithm with reliable accuracy and optimal (nearly) 

theoretical performance is one of challenging questions 

of CS research. It is also one of key factors to put CS 

theory into practical applications [3]. 

A series of sparse signal reconstruction algorithms of 

CS theory have been proposed. Among existing 

                                                             
Manuscript received January 15, 2015; revised May 6, 2015. 
This work was supported by the National Natural Science 

Foundation of China (Grants. 61271261), and the National Natural 

Science Foundation of CQ (Grants Nos. CSTC2012jjA40048 and CSTC 
2011jjA70006). 

Corresponding author email: zhaohui@cqupt.edu.cn  

doi:10.12720/jcm.10.5.352-359

reconstruction algorithms, the famous Basis Pursuit (BP) 

algorithm [4] aims at the 1l  minimization using linear 

programming. While it requires a minimal number of 

measurements, its high computational complexity may 

prevent it from practical large-scale applications. Another 

popular class of sparse recovery algorithms is based on 

the idea of iterative greedy pursuit. The most 

representative ones include the Matching Pursuit (MP) 

algorithm [5] and Orthogonal Matching Pursuit (OMP) 

algorithm [6]. The reconstruction complexity of these 

algorithms are significantly lower than that of BP method. 

However, they require more measurements for perfect 

reconstruction and lack provable reconstruction quality. 

Although greedy algorithms with a backtracking 

mechanism, such as Subspace Pursuit (SP) algorithm [7], 

have offered comparable theoretical reconstruction 

quality to the linear programming methods along with 

low reconstruction complexity, they assume that the 

sparsity of a signal is known for exact recovery [8]. 

Unfortunately, such an assumption may not be available 

in many practical applications [9]. More recently, 

Mohimani et al [10] proposed smoothed 0l  norm (SL0) 

algorithm which runs much faster than the competing 

algorithms while providing the same or better 

reconstruction accuracy without having to require the 

sparsity as prior knowledge. However, SL0 algorithm 

uses steepest descent method to approach the optimal 

solution, there exist “notched effect” in search direction 

and the step-size is usually estimated with experiences. 

Therefore, the computational performance of this method 

is still not efficient enough. 

In this paper, we improve the performance of SL0 

algorithm so as to obtain a more efficient algorithm 

named improved SL0 (ISL0) algorithm, in which   

modified Newton method is used to avoid the influence 

of “notched effect”, and variable step-size Newton 

method is utilized to increase calculation speed and 

efficiency. Then, the proposed ISL0 algorithm is 

employed to image reconstruction of CS based on single 

layer wavelet transform. The numerical simulation results 

show that, compared to several existing algorithms, ISL0 

algorithm yields improved image reconstruction quality, 

running time and noise robustness.  

The rest of the paper is organized as follows. Section II 

presents CS theory framework. In Section III, the 
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proposed ISL0 algorithm is described in details. Section 

IV is about the image reconstruction on the base of ISL0 

algorithm and single layer wavelet transform. 

Experimental results are presented in Section V and the 

paper concludes in Section VI.  

II. CS FRAMEWORK 

Consider a length-N, real-valued signal x indexed as 

x(n),  1,2, ,n N . In CS theory, the signal x to be 

acquired and subsequently reconstructed is typically 

assumed to be sparse or compressible in an orthogonal 

basis  1 2, , , N     which provides a K-sparse 

representation of x; that is  

1 1

( ) ( )
q

N K

n q n

n q

n n   
 

  x         (1) 

where x is a linear combination of K vectors chosen from 

 ,  qn  are the indices of those vectors, and  ( )n  

are the corresponding coefficients. Alternatively, we 

can write in matrix notation  

 x                  (2) 

where x is a N×1 column vector, and   denotes a N×1 

column vector with K nonzero entries. Let 
p

 denote the 

pl  norm, then we can write
0

K . 

According to the CS theory, such a signal x can be 

acquired through the following random linear projection: 

  y Ax A              (3) 

where y is the sampled vector with M<<N data points, A 

represents an M×N measurement/sensing matrix, and 

 A  . 

To recover signal x, the approach is to seek a solution 

of the 
0l  minimization problem 

0

min . .s t 
θ

y A θ          (4) 

Obviously, the above minimization problem is a 

NP-hard problem. The solution of (4) is not unique, we 

need to enumerate all the possible   that meet the 

condition. Fortunately, the above problem becomes 

computationally tractable if the sensing matrix   

satisfies a restricted isometry property (RIP) which 

introduced by Candès and Tao in [11], [12]. 

III. ISL0 ALGORITHM 

A. SL0 Algorithm 

In order to reduce the calculation complexity of (4), 

SL0 algorithm adopts a sum function ( )F x  to 

approximate the 0l  norm of vector x. Here  

1

( ) ( )
N

i

i

F f x 


x               (5) 

with  

2 2( ) 1 exp( / 2 )i if x x             (6) 

and xi (i=1,2…N) representing the components of vector 

x. It can be easily verified that  

0

1 0
lim ( )

0 0

i

i

i

if x
f x

if x





 


           (7) 

which yields that  

0 0
lim ( )F


x x            (8) 

  

  

2 2

1

min ( ) (1 exp( / 2 ) . .
N

i

i

F x s t 


   
x

x y Ax   (9) 

From (6), it is clear that the value of   specifies a 

trade-off between accuracy and smoothness of the 

approximation. For small value of  , ( )F x  contains 

lots of local extreme. Thus it will be tough to minimize 

this function for very small values of  . Nevertheless, 

as the value of   grows, the function becomes 

smoother and smoother, and hence the approximation 

accuracy of 0l norm will be reduced. Therefore, SL0 

algorithm solves a sequence of problems of the form 

min ( ) . .F s t x y Ax          (10) 

through constructing a progressively decreasing array 

 1 2, ,..., J     to optimize each corresponding 

objective function until J  is small enough, so as to 

eliminate the influence of the local extreme value and 

obtain the global optimal value of the smoothed function 

when parameter J  . 

B. Basic Idea of ISL0 Algorithm 

SL0 algorithm adopts the classical first-order steepest 

descent method (also known as gradient descent method) 

to solve problem (10). Steepest descent method consists 

of iteration of the form ( ( ))kl F  x x x , where 

steepest descent direction is the negative gradient of 
( )F x . In addition, the step-size parameter kl should be 

decreasing. Note that for smaller values of  , the 

function ( )F x is more “fluctuating”, hence smaller 

step-sizes should be applied for the minimization.  

Following [10], we set 
2

k kl t for some small 

positive constant t. However, this method still exists two 

drawbacks as follows.  

a) Gradient is an extremely local pointer and does not 

point to the global minimum. This hill-climbing 

search is often in zigzag motion and may move 

towards a wrong direction, and we refer to this as 

“notched effect”. As a result, the convergence speed 

will be strongly hindered in search direction and the 

accuracy of estimation for 0l  norm will be reduced 

correspondingly. 
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Consequently, the minimization 0l norm problem (4)

switches to the following problem



b) Search step-sizes cannot be estimated. Usually, it’s 

estimated with experiences, which lacks theoretical 

support.  

Slow convergence is typical of steepest descent 

direction. In convex optimization the Newton direction is 

often used as the search direction to overcome the 

drawback of steepest descent direction [13]. If the 

Newton direction is not necessarily a descent direction, 

then a modified Newton direction is preferred [14]. 

Motivated by these facts, we resort to the modified 

Newton method to solve the above problem.  

The Newton direction of the objective function can be 

given as 

2 1( ) ( )F F 

  d x x          (11) 

where  

22
1

2 2

1

1

1 2 2
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e e
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 

 

 
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      (12) 

and 
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1
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1
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2

2 2

2

2

2

( )
0 0

( )
0 0 0

( ( ))

( )
0 0 N

N

f x

x

f x

F x

f x

x









 
 

 
 
 

   
 
 
 
 

 

x (13) 

with 

2

2

2 2 2

2
2 4

( ) kx

k k

k

f x x
e

x

 




 



      (14) 

To ensure that the Newton direction is descent 

direction, the Hessian matrix 2 ( ( ))F x
 is required to 

be positive definite in Newton direction d. In other words, 

all the diagonal elements in Hessian matrix should be 

positive. Thus the Hessian matrix shown in (13) should 

be modified to meet this requirement. Let 

2 ( ( )) kF  Q x E           (15) 

where ( 1,..., )k k N   is a group of appropriate positive 

numbers, E is identity matrix. Choosing 
2 2

4 2

2
exp( )

2

k k

k

x x


 
   as modification coefficients, thus the 

diagonal elements  

2

2

2 2

2
4

( 1,..., )
kx

k

ii

x
Q e i N






 ，       (16) 

of matrix Q are all positive. And the modified Newton 

direction can be obtained as  

2
1 1

2 2

1

2 2

2 2 2 2

( ) ,...,

                              ,...,

T

k N

k N

x
F

x

x x

x x







 

 




    



  

  

d Q x

  (17) 

Define   as the Newton step-size. Under normal 

circumstance, modified Newton method adopts 

full-Newton step-size in the iterative process, namely, 

1  . However, when the selected initial value is far 

away from the optimal solution, the solution accuracy 

and the iterative convergence might not be guaranteed. To 

overcome these shortcomings, we would like to use 

variable Newton step-size rather than full-Newton 

step-size. This can be obtained by adjusting the step-size 

value of   in accordance with some criterion that can 

provide an approximate measure of the adaptation 

process state. For solving the minimization problem (10), 

here, we let step-size   meet the following inequation 

in the iterative process  

1( ( )) ( )F F F     x Q x x        (18)  

It should be remarked that Newton direction 
1 ( )F

  d Q x
 is a feasible descent direction (see 

Theorem 1 of section 3.4) to the minimization problem 

(10), hence there must exist some step-size 0   that 

satisfies (18). Thus we can attempt to start with an initial 

step-size 0 1 
, and check whether 0  satisfies (18). 

If 0  satisfies (18), let 0 
. Otherwise, reduce the 

step-size 0  by backtracking along the modified 

Newton direction d until step-size satisfies (18).  

The improved smoothed 0l  norm (ISL0) algorithm is 

as follows. 

 Initialization: Let 
0

x equal to the minimum 2l norm 

solution of y=Ax, namely, 
 

1
0 T T



x A AA y
; 

choose a suitable decreasing sequence 
 1 2, ,..., J  

 

for  ; initial residual 0 0
.  

 For 
1,2,...,j J

 

 Step1 Let j  , 1jx x . 

Step2 Minimize (approximately) the function ( )F x  

on the feasible set  = x y Ax    

through modified Newton method. 

1) Search direction: 
2 22

1 1

2 2 2 2 2 2

1

( ) [ ,..., ,..., ]
j

Tk N

k N

x xx
F

x x x


 

  

      
  

d Q x    

2) Determine the search step-size  which satisfies 

     the following condition: 
1( ( )) ( )

j j j
F F F     x Q x x  

   3) Let  x x d . 

   4) Project x onto the feasible set   with 
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1( ) ( )T T   x x A AA Ax y  

and calculate the residual  y Ax . 

5) If the residual of the adjacent iterations meets  

0 2
   , then stop. Otherwise, let 0   , 

and return to step2. Further decrease   until   

is small enough. 

Step3 Set j x x .  

 Final answer is ˆ Jx x . 

C. The Choice of Parameter    

Usually, parameter  is chosen as 1j j   , 

2,...,j J , [0.5,1) is the decline factor of the 

decreasing array  1 2, ,..., J   . Generally, the sequence 

of  is chosen with 0.5  , and 1  and J  are 

chosen as follows. Let
0maxi ixx , for fast algorithm 

convergence, parameter   should meet the following 

condition [15]: 

2 2

1 1

1
( ) 1 exp( / 2 )

2 2ln 2
f       

x
x x   (19) 

For simplicity, we choose 
0

1 maxi ix  . At the same 

time, as discussed in section 3.1, when 0J  , ( )
J

F x  

can better reflect the sparsity of vector x, but it is more 

sensitive to noise. Therefore, the minimum iteration value 

of parameter J  should not be too small. In addition, it 

also determines the termination process of ISL0 

algorithm. Here the algorithm terminates under the 

condition that the value of parameter
310J
 . 

D. Convergence Analysis of ISL0 Algorithm  

Theorem 1: When parameter J  , the sequence 

generated by ISL0 algorithm for solving the minimization 

problem (10) converges. 

Proof: According to the solving procedure of ISL0 

algorithm, to prove the convergence of the sequence 

produced by the ISL0 algorithm, we only need to prove 

the sequence generated by modified Newton method for 

solving the minimization problem (10) converges when 

parameter j   . 

Since matrix Q is positive definite via modified 

Newton method, therefore its inverse matrix G=Q-1 is still 

positive definite, namely 

( ) ( ) 0
j j

TF F   x G x          (20) 

Let ( )
j

F  d G x , we have 

( ) 0
j

TF x d              (21) 

As a consequence, ( )
j

F G x  is a feasible descent 

direction for function ( )
j

F x . Moreover, step-size   

satisfies the following condition 

( ( )) ( )
j j j

F F F    x G x x       (22) 

As stated above, modified Newton method generates a 

decreasing sequence. Since ( )
j

F x
 is a continuous and 

differentiable function, then for a given initial value, the 

corresponding level set is bounded. Accordingly, the 

sequence generated by modified Newton method for 

solving the minimization problem (10) converges when 

parameter j  . Thus Theorem 1 holds. 

IV.
 

IMAGE RECONSTRUCTION BASED ON ISL0
 ALGORITHM AND SINGLE LAYER WAVELET 

TRANSFORM
 

In the traditional process of image processing based on 

CS, the multi-layer wavelet transform
 
is usually adopted 

to make image sparse. However, as the reconstruction 

performance strengthens
 

along with the increasing 

decomposition layers,
 
the wavelet transform

 
and inverse 

transform
 

will bring out
 

greatly increasing calculation 

correspondingly.
 
Literature

 
[16] has proposed an optional 

method based on single layer wavelet transform
 

and 

OMP algorithm, which not only effectively reduces the 

amount of data that reconstructing image needs, but also 

obviously improves the reconstruction quality. 

Nevertheless, OMP algorithm requires a
 
given sparsity of 

images and the reconstruction accuracy is still 

unsatisfactory.
  In this section, we propose an image reconstruction 

method based on single layer wavelet transform
 
and ISL0 

algorithm. Inspired by literature [16],
 
single layer wavelet 

transform
 
is carried on the original image to obtain the 

low frequency sub-band
 

LL1
 

and the high frequency 

sub-bands {LH1,
 
HL1,

 
HH1}. Note that the low frequency 

sub-band contains
 

the most
 

energy of image and 

non-sparse, which plays
 

a crucial
 

role in image 

reconstruction.
 

While the high frequency sub-bands 

reflect the detailed information such as edges and 

textures, and are sparse signals. Therefore, we merely 

measure the high frequency sub-bands
 
in the first level 

while the wavelet decomposing coefficients in low 

frequency sub-band should be retained.
 The reconstruction method can be described as 

follows.
 1)

 
Implement single wavelet transform

 
to the primitive 

image
 

(N×N), and then obtain the low frequency 

sub-band LL1
 

and three high frequency sub-bands 

{LH1,
 
HL1,

 
HH1}. 

 2)
 

According to the sampling rate of the original image, 

determine M
 

of the observation matrix, and then 

construct an
 
M×N/2 matrix A. Unlike literature [16], 

here we adopt scrambled block Hadamard matrix
 
[17]

 instead of Gaussian random matrix for its simple 

structure, less storage space, good reconstruction 

performance and friendly hardware implementation. 

Thus matrix A
 
can be written as 

 
/2M NR PA W (23) 
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where RM is an operator which chooses M rows of  

WPN/2 uniform at random, the N/2×N/2 matrix W is a 

block diagonal matrix with the form 

B

B

B

W

W
W

W

 
 
 
 
 
 

          (24) 

and WB denoting the B×B Hadamard matrix, PN/2 is a 

scrambling operator which reorders the N/2 columns 

of W randomly. Retain the low frequency sub-band 

without measurement, and take measurement on the 

high frequency sub-bands to get three measured value 

matrices. 

3) For reconstruction, ISL0 algorithm is firstly 

employed to recovery the three measured value 

matrices. Then associates the high frequency 

sub-bands coefficients with the preserved low 

frequency sub-band coefficients, and take on wavelet 

inverse transform to get the reconstructed image. 

V. SIMULATION RESULTS 

In this section, the performance of the proposed 

approach is experimentally verified and is compared with 

SL0, SP and OMP algorithms. Some classical gray 

images of size 256×256 are selected to conduct the 

simulation. All experiments are performed in MATLAB 

R2010a using an Intel 3.1GHZ processor with 4GB of 

memory and under Windows XP operating system. 

A. Image Reconstruction Quality Comparison under 

Noiseless Condition. 

In experiment, sym8 wavelet is selected as the sparsity 

basis, M is taken as 30, 40…, 100, and the reconstruction 

quality is evaluated by peak signal-to-noise ratio (PSNR). 

To ensure the experiment results without loss of 

generality, all the simulations are repeated 200 times to 

obtain the averaged statistical results of each algorithm. 

Fig. 1 is the reconstruction quality comparison of image 

Lena with different algorithms. It shows that ISL0 

algorithm outperforms SL0, SP and OMP algorithms, and 

with the increase of M, the advantages become more 

obvious. Fig. 2 shows that the quality of the ISL0 

algorithm has been improved and the details of image 

Lena are better reconstructed when M=50. 

30 40 50 60 70 80 90 100
28
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36
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M

P
S

N
R

/d
B

 

 

ISL0

SL0

SP

OMP

 
Fig. 1. Reconstruction quality comparison of four algorithms for 
noiseless image lena. 

 
(a) Original image 

   

重构的图像 , rela err = 63.7698PSNR= 30.0847

  

(b) OMP                     (c) SP 

          PSNR=30.28dB               PSNR=30.59dB 

 

恢复的图像

 

 (d) SL0                      (e) ISL0 

PSNR=31.76dB               PSNR=32.75dB 

noiseless image Lena.  

TABLE I: RECONSTRUCTION QUALITY COMPARISON WITH DIFFERENT 

IMAGES AND M. 

Image Algorithm  
 PSNR(dB) 

M=50      M=70     M=90     Avg 

 
 

Peppers 

ISL0 33.49   35.58 38.20 35.76 

SL0 32.70   34.73 37.13 34.85 

SP 31.75   33.61 36.13 33.83 

OMP 31.32   33.12 35.48 33.31 
 
 

Boat 

ISL0 29.14   31.49 34.41 31.68 

SL0 28.29   30.53 33.38 30.73 

SP 27.48   29.67 32.37 29.84 

OMP 26.97   28.94 31.45 29.12 

 

Camera 

man 

ISL0 30.27   33.65 36.86 33.59 

SL0 29.56   32.85 36.14 32.85 

SP 28.47   31.52 34.63 31.54 

OMP 27.99   30.85 33.83 30.89 

Baboon 

ISL0 23.56   25.16  27.40 25.37 

SL0 22.43   23.93  26.15 24.17 

SP 21.73   23.06 25.11 23.30 
OMP 21.31   22.58 24.49 22.79 

 

Table I presents the PSNRs for another four natural 

images Peppers, Boat, Cameraman and Baboon with 

different M, and their average PSNR which is denoted as 

Avg. It can be seen that, the proposed ISL0 algorithm has 

the highest reconstruction quality, which increases as M 

increases. Besides, compared with SP and OMP 

algorithms, the reconstruction quality of SL0 algorithm 

has an average improvement of 0.87 to 1.96dB. Moreover, 

the reconstruction quality of ISL0 algorithm outweighs 
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that of SL0 algorithm about 0.74 to 1.2dB in average. 

0 0.005 0.01 0.015 0.02 0.025 0.03
14

16

18

20

22

24

26

28

30

32

34

noise variance

P
S

N
R

/d
B

 

 

ISL0

SL0

SP

OMP

 
(a) M=50 
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(b) M=100 

Fig. 3. Reconstruction quality comparison of four algorithms for noisy 

image Lena. 
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Fig.4. Reconstruction effect comparison of different algorithms for 

noisy image Lena.  

B. Image Reconstruction Quality Comparison under 

Noise Condition.  

To verify the robustness of ISL0 algorithm under noise 

condition, imnoise function is employed to add white 

Gaussian noise to the tested images. Noise variance is 

taken as 0~0.03 in simulation. Fig. 3 gives the 

reconstruction quality comparison of image Lena under 

noise condition. Fig. 4 is the reconstruction effect 

comparison of noisy image Lena with different 

algorithms (where M=50, noise variance is 0.005), 

indicating that the ISL0 algorithm is better in noise 

robustness.  

As shown in Fig. 3, the performance of four algorithms 

is in decline with the increase of noise variance. However, 

the downward trend of the curve corresponding to ISL0 

algorithm is most gentle which reveals that ISL0 

algorithm obtain the best reconstruction quality in cases 

of the same noise variances. Especially when M is 

comparatively large, the reconstruction performance 

superiority will be more apparent.  

Table II and Table III show the reconstruction quality 

comparison for another four images under noise 

condition. It is clear from Table II and Table III that ISL0 

algorithm performs better than other three algorithms， 

and the PSNR can be improved around 1.13~2.42dB in 

cases of M=50. On the whole, it shows that compared 

with other three classical algorithms, the proposed ISL0 

algorithm provides better robust performance against 

noise. 

TABLE II:  RECONSTRUCTION QUALITY OF DIFFERENT ALGORITHMS 

WITH DIFFERENT IMAGES. (HERE NOISE VARIANCE IS 0.01, M=50) 

Image   ISL0       SL0       SP       OMP 

Peppers 22.08 20.84 20.03 19.65 

Boat 21.50 20.32 19.49 19.14 

Cameraman 21.96 20.77 19.95 19.58 

Baboon 19.80 18.62 17.88 17.47 

TABLE  III:  RECONSTRUCTION QUALITY OF DIFFERENT ALGORITHMS 

WITH DIFFERENT IMAGES. (HERE NOISE VARIANCE IS 0.02, M=50) 

Image   ISL0       SL0       SP       OMP 

Peppers 19.47 18.20 17.51 17.13 

Boat 19.04 17.85 17.10 16.71 

Cameraman 19.34 18.19 17.56 17.12 

Baboon 17.92 16.79 16.04 15.63 

C. Average Running Time Comparison  

Fig. 5 shows the averaged reconstruction computation 

time of image Lena over 200 runs at different values of 

M. 

Obtained results reveal that, for a large range of M, 

ISL0 algorithm and SL0 algorithm behave more efficient 

than the SP and OMP algorithms, and the complexity of 

ISL0 algorithm is slightly lower than that of the SL0 

algorithm. Although ISL0 algorithm needs to calculate 

Hessian matrix and its inverse matrix, however, due to 

the fact that the objective function in (13) has a special 

nature that only the elements on the diagonal are 

Journal of Communications Vol. 10, No. 5, May 2015

357©2015 Journal of Communications



non-zero, as a result, has no significant increase in 

calculation. In addition, SL0 algorithm adopts the 

classical first-order steepest descent method, which 

implies that the convergence speed is relatively slow. 

Thus the calculation speed of SL0 algorithm turns out to 

be slower than ISL0 algorithm for its better convergence 

speed by modified Newton method. Along with the 

increment of M, the advantage of ISL0 algorithm 

becomes more pronounced than SP algorithm and OMP 

algorithm, while the disparity between ISL0 algorithm 

and SL0 algorithm almost stays the same. More 

importantly, the proposed algorithm has improved the 

reconstruction performance without increasing the 

computation complexity or even slightly lower than that 

of SL0 algorithm.  
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Fig. 5. Execution time comparison of different algorithms. 

VI. CONCLUSION 

In this paper, a new method is proposed to reconstruct 

image of CS, which is based on an improved smoothed 

0l  norm algorithm and single layer wavelet transform. 

We have considered modified Newton method to avoid 

the influence of “notched effect” and combine variable 

step-size Newton method so as to accelerate the 

optimization and guarantee its convergence. Simulation 

results are presented which indicate that the proposed 

algorithm, comparing with other competing algorithms, 

improved both in terms of image reconstruction 

performance, noise robustness and execution time. 
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