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Abstract—Blind recognition of error-correcting code is an 

essential problem to decode intercepted data. In this paper, a 

method dedicated to the blind recognition of punctured 

convolutional encoders is presented. The blind recognition of 

such encoders is of great significance, because convolutional 

encoders are embedded in most digital transmission systems 

where the puncturing principle is used to increase the code rate. 

After a brief review of the principle of puncturing codes, a 

method mainly based on the Walsh-Hadamard transform is 

presented for blind recognition of both the mother code and the 

puncturing pattern when the received bits are erroneous. 

Compared to existing techniques, our algorithm has advantages 

of robustness and efficiency. Experiments are conducted to 

illustrate the performances of this new blind recognition method. 
 
Index Terms—Blind Recognition, convolutional code, 

punctured pattern, walsh-hadamard transform. 

 

I. INTRODUCTION 

Most digital transmission systems are encoded to 

enhance the communication quality. Redundancy bits are 

appended in the informative binary data stream to better 

withstand channel noise. In a non-cooperative context, in 

order to perform information analysis, it is necessary to 

decode intercepted data with no knowledge of the 

parameters of the code. In this case, the blind recognition 

problem needs to be addressed. Convolutional codes are a 

class of important codes due to their flexibility in code 

length, soft decodability, short decoding delay and their 

role as component codes in parallelly serially 

concatenated codes. Puncturing allows convolutional 

codes to flexibly change rates and is widely used in 

applications where high code rates are required and 

where rate adaptivity is desired. In this paper, we only 

focus on communications encoded with punctured 

convolutional codes. 

This article is not the first to deal with blind 

recognition of convolutional codes in a noisy 

environment. A systematic algebraic approach for the 

reconstruction of linear and convolutional error 
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correcting codes was introduced by J. Barbier [1]. At the 

same time, the methods to recover a block code are 

developed in [2], [3], whereas [4] deals with the blind 

identification of linear scramble. An iterative algorithm 

for blind identification of a rate ( 1) /n n  convolutional 

encoder is introduced in [5]. The first approaches related 

with recovering the punctured code in a noiseless 

environment were proposed in [6], [7]. Ref. [8] discussed 

blind recognition of a rate 1/ n mother code in noisy 

environment. Here, we describe a new method for blind 

recognition of a more general rate ( 1) /n n punctured 

convolutional code. In this context, the blind 

identification results of a punctured code consist of the 

true mother code and the puncturing pattern. 

In this paper, we propose a novel approach for blind 

recognition of ( 1) /n n rate punctured convolutional 

encoders from received binary data stream in a noisy 

environment. The proposed method is based on Walsh-

Hadamard transform and decomposition of parity check 

equation. Our method offers robustness to noise and 

better performance than prior arts. The remainder of this 

paper is organized as follows. In Section II the principle 

of punctured convolutional encoders is explained. The 

method of the blind recognition of this punctured code is 

developed in Section III. Finally, the performances of the 

blind identification method are discussed in Section IV. 

Conclusions are drawn in Section V. 

II. P DE 

In this section we give the definitions and notations we 

use in the rest of the article. Punctured convolutional 

code is obtained through a periodic elimination of certain 

bit of a low-rate mother codes and it depends on the low-

rate mother code and the puncturing pattern of the 

punctured code. The punctured pattern is described in 

matrix form which is called the punctured matrix and 

denoted as P . For more details of punctured 

convolutional code, see also [7], [9]-[14]. In this section, 

we mainly refer to Ref. [11], [12]. 

A. Convolutional Encoders 

A ( , , )C n k K  convolutional encoder is defined by a 

k n  polynomial generator matrix G in Galois Field. 

Parameter n is the number of outputs, k is the number of 
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code was firstly discovered by Cain et al. [9]. Punctured 
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inputs and thus a ( , , )C n k K  convolutional code has an 

information rate of /k n . An important parameter of 

convolutional codes is constraint length K which 

corresponds to the total size of internal memory. The 

polynomial generator matrix is defined by 

1,1 1,

,1 ,

( ) ( )

( )

( ) ( )

n

k k n

g D g D

D

g D g D

 
 

  
 
 

G              (1) 

where
, ( ), 1,2, , , 1,2, , ,i jg D i k j n    are generator 

polynomials and D is the delay operator. The encoding 

process can be described by formula 

( ) ( ) ( )D D Dc m G                         (2) 

where ( )Dm is the input sequence and ( )Dc is the output 

sequence. 

B. Puncturing Principle 

Puncturing a convolutional code consists in 

transmitting only part of the output of the code, following 

a regular puncturing pattern. On condition that both 

transmit M k  bits and receives M n bits at the output 

one would pass from a ( , , )C n k K mother code to the Mth 

blocking code of C , denoted as [ ]MC  ( ,M n  , )M k K . 

The puncturing process consists of deleting a few bits 

from the code words through use of the puncturing matrix 

P , which is a ( M)n binary matrix with a total 

of N ones and M n N   zeros where ones correspond to 

the transmitted bits and zeros to the deleted ones. 

Application of this puncturing pattern to the [ ]MC  

( ,M n  , )M k K  code leads to the ( , , )p p p pC n k K code, 

called the equivalent punctured code, where 
pn N  and 

pk M k  . 

Example 1: Let’s consider the encoder for 

the (2,1, )C K convolutional encoder. The coding and 

puncturing processes can be represented as follows 

 

0 1 2 3 4 5

1 1 1 1 1 1

0 1 2 3 4 5

2 2 2 2 2 2

0 2 3 5

1 1 1 1

0 1 3 4

2 2 2 2

c c c c c c

c c c c c c

c c c c

c c c c

 
 
 

 
  

 

                  (3) 

where 
t

jc  is the bit of the output, j , encoded at the time, 

t . Using the puncturing pattern (4) 

1 0 1

1 1 0

 
  
 

P                                       (4) 

leads to a new encoder of rate /p p pr k n , where, 3pk  , 

and 4pn  . 

C. Equivalent Punctured Code 

As shown in [15], the equivalent punctured 

convolutional encoder can be described by a simple 

convolutional encoder ( , , )p p p pC n k K . This equivalent 

punctured code is defined by a generator matrix ( )p DG  

of size ( )p pk n . A high rate equivalent punctured code 

can be built from an original rate convolutional code 

through the simple process detailed hereafter. But prior to 

obtaining this equivalent punctured encoder, 

( , , )p p p pC n k K code, it is worth recalling some 

definitions necessary to understand the constructing of 

this punctured code. 

Definition 1: If 2

0 1 2( )a D a a D a D    is a 

polynomial in the indeterminate D , then for any 

integer 1M  , the Mth polyphase decomposition of ( )a D  

is the list of ( , )i M th  polyphase components 

( 0,..., 1)i M   . Let us denote by ( )iq D  the ( , )i M th  

polyphase component of ( )a D such that 

/ 1/

[ ]( ) ( )
M

i M M

i iq D D a D                     (5)  

where [ ]Mi (with i and M are integers) is the congruence 

class of i  (modulo M ). Finally, let [ ] ( )
M

r

ia D be the 

polynomial issued from ( )a D by selecting only the [ ]Mi  

degree terms and then substituting rD for D . 

Example 2: For illustration, let us consider the 

generator polynomial ( )a D  

2 3 5 6( ) 1a D D D D D                   (6) 

or 
2 3 6( ) 1a D D D D D                    (7) 

Then, the ( ,3)( 0,1,2)i i  polyphase component 

of ( )a D is 

2

0 1 2( ) 1 , ( ) 0, ( ) 1q D D D q D q D D              (8) 

or 
2

0 1 2( ) 1 , ( ) 1, ( ) 1q D D D q D q D                 (9) 

respectively. 

Definition 2: Let 2

0 1 2( )a D a a D a D    be a 

polynomial in the indeterminate D  and 

0 1 1[ ( ), ( ),..., ( )]Mq D q D q D
 be the Mth polyphase 

decomposition of ( )a D . The Mth  polycyclic pseudo 

circulant matrix (or PCPC for short) associated 

with ( )a D is the ( )M M polynomial matrix, [ ] ( )M DQ , 

such that 

0 1 1

1 0 2[ ]

1 2 0

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

M

M MM

q D q D q D

D q D q D q D
D

D q D D q D q D



 

 
 


 
 
 

  

Q
    (10) 

Example 3: The third PCPC associated with ( )a D  as 

in the Example 2 can be obtained as follows. 
2

[3] 2 2

2 2

1 0 1

( ) 1 0

0 1

D D D

D D D D D

D D D D

   
 

    
    

Q    (11) 



or 

2

[3] 2

2

1 1 1

( ) 1 1

1

D D

D D D D

D D D D

  
 

   
   

Q    (12) 

Theorem 1: If C is a ( , )n k  convolutional code, then 

the Mth  blocking code of C , denoted by [ ]MC , is 

an ( , )M n M k  convolutional code. If ( )DG is a ( )n k  

polynomial generator matrix for the original code C , 

then a generator matrix for [ ]MC , say [ ] ( )M DG , can be 

obtained from ( )DG by substituting the corresponding 

Mth  PCPC for each entry
, ( )i jg D from ( )DG and then 

interleaving the columns and lines at depth M . 

Example 4: Let us consider the (2,1,7)C mother code. 

The generator matrix of this code 

is
2 3 5 6 2 3 6( ) [1 ,1 ]D D D D D D D D D        G . 

We denote by [3]

1,1Q , the third PCPC associated with 

1,1( )g D  and by [3]

1,2Q , the third PCPC associated 

with
1,2 ( )g D . These matrices can be written as in 

Example 3. So, the generator matrix of the [3]C code is 

such that 

2 2

2

2 2

[3]

2

2

2

1 0

1

0 1
[ ( )]'

1 1

1 0 1

1 1 1

D D D D

D D D D

D D D D
D

D D D

D D D

D D

   
 
  

   
  

  
   
 

   

Q
     (13) 

Definition 3: On condition that ( )DG is a 

( )n k polynomial matrix and P is an ( )M n binary 

matrix, then the .n M columns of the matrix, [ ] ( )M DG , are 

in natural one-to one correspondence with the M n  

entries of P and the matrix, ( )p DG , is the matrix issued 

from [ ] ( )M DG after deletion of the columns 

corresponding to P entries. The code defined by the 

generator matrix, ( )p DG , is called the P punctured 

version of C .  

Let   be a bijection such that 

( , ) ( , ) ( 1)i j i j i n j               (14) 

To associate the ( , )i jP coefficient with 

the ( , )i j column of [ ] ( )M DG let us 

delete [ ] ( )M DG columns according to P coefficients; it 

leads to the equivalent punctured convolutional code 

matrix, ( )p DG . 

Example 5: Further to the calculation of the 

matrix, [3] ( )DG , in Example 4 , let us assume 

1 1 1

0 0 1

 
  
 

P                              (15) 

The coefficients,  2,1P and  2,2P , is equal to zero 

and correspond to the second and fourth columns 

of [3]( )DG . Deleting these two columns leads to the 

generator matrix of the equivalent punctured code 

2 2

2 2

2

2

1 0

0 1
[ ( )]'

1 0 1

1 1 1

p

D D D D

D D D D
D

D D D

D D

   
 

   
   
 

   

G     (16) 

The equivalent punctured code rate is 3 / 4pr  and the 

constraint length is 3pK  . 

III. BLIND RECOGNITION OF A PUNCTURED 

CONVOLUTIONAL CODE 

This section deals with the blind recognition of the 

punctured convolutional code in a noisy environment. 

The recognition process consists of three steps: (a) 

identification of the number of outputs n; (b) 

identification of the parity check matrix and (c) 

identifications of the mother code and the puncturing 

pattern. 

A. Identification of the Number of Outputs 

An iterative process dedicated to the blind 

identification of a rate ( 1) /n n  convolutional encoder 

in a noisy environment is explained in [5]. The principle 

of the method is to first identify the number of outputs n. 

Then, a basis of the dual code can be estimated. Finally, a 

generator matrix is obtained by solving a system. Let us 

recall the principle of this algorithm. 

The first step is to reshape column wise the received 

data bit stream under matrix form of size ( )L l , 

denoted
lR . This matrix is computed for different values 

of ( 1,2, , / 2)l l L   and for each matrix the Gauss 

Jordan Elimination through Pivoting is applied to obtain a 

lower triangular matrix noted 
lG  

l l l lA R B G                             (17)  

In (17), 
lA is an ( )L L rows permutation matrix and 

lB  an ( )l l matrix describing the columns combination. 

To detect the value of n, the principle is to find matrices 

lR  which exhibit a rank deficiency. So, the gap between 

column lengths of two consecutive rank deficiency 

matrix
lR corresponds to n. Then a dual code basis can be 

built from the matrix
lB . This paper describes a new 

method based on the Walsh-Hadamard transform to 

achieve the blind recognition of a rate 

( 1) /n n punctured convolutional code. 

B. Identification of the Parity Check Matrix 

By the first step of above algorithm, we assume that 

the parameter n is already known. Now we suppose the 

parity check polynomial of punctured convolutional code 
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(1) 2 ( )( ) [ ( ) ( ) ( )]nD H D H D H DH  

where 

( ) 2

0, 1, 2, ,( ) (1 )i d

i i i d iH D h h D h D h D i n        

( )

1
max(deg ( ))i

i n
d H D

 
  

In noiseless case, the received data sequence ( )DR is 

the code word sequence, so 

1 2( ) ( ) [ ( ) ( ) ( )]nD D r D r D r D R V  

2

0, 1, 2,( ) (1 )i i i ir D r r D r D i n       

satisfies the relation of the code word and the parity 

check matrix 

( ) ( ) ' 0D D V H  

Then, 

(1) (2) ( )

1 2[ ( ) ( ) ( )][ ( ) ( ) ( )]' 0n

nr D r D r D H D H D H D   

( )

1

( ) ( ) 0
n

j

j

j

r D H D


   

, ,

1 0 0

( ) 0
n d

i i

i j i j

j i i

r D h D


  

      

It reduces to the following linear equation system: 

, ,

1 0

0, , 1, ,
n d

i j k i j

j i

h r k d d d N

 

     

where we assume that the length of code word sequence 

is ( 1)d N n  . Write this system in the form of matrix: 

,1 0,1 , 0,

1,1 1,1 1, 1,

,1 ,1 , ,

d d n n

d d n n

d N N d N n N n

r r r r

r r r r

r r r r

 

 

 
 
 
 
  
 

 

0,1 ,1 0, ,( ) ' 0d n d nh h h h                               (18) 

Denote by (18) for short 

' 0 R x  

In (18) there are 1N  equations and ( 1)d n  

variables 0,1 ,1 0, ,{ }d n d nh h h h . In order to solve (18), 

we assume ( 1)N d n   . In noiseless case, Gauss 

elimination algorithm [16] is enough to solve (18). In 

noisy case, the received data sequence 

is ( ) ( ) ( )D D D R V e , where ( )De is the error 

polynomial. The syndrome 

( ) ( ) ' ( ) 0D D D R H S  if ( ) 0D e  

So (18) is a linear system with error equations. The 

linear system (18) can be solved by using Walsh-

Hadamard transform. Walsh-Hadamard transform is 

defined by Walsh-Hadamard matrix. A 2 2n n order 

Walsh-Hadamard matrix ( )nH is defined recursively by: 

( 1) ( 1)
(0) [1], ( )

( 1) ( 1)

n n
n

n n

  
   

   

H H
H H

H H  

By this recursive formula, 

1 1 1 1

1 1 1 1 1 1
(1) , (2)

1 1 1 1 1 1

1 1 1 1

 
 

           
 

  

H H  

Suppose 1{ ( )}( 0,1, , 1, 2 )nf k k N N    is a data 

vector, then the following vector  

1
{ ( )} ( 1){ ( )}k n k

N
 F H f  

is called Walsh-Hadamard transform. The Walsh-

Hadamard matrix satisfies some important properties 

such that it could be used to solve the linear system with 

error equations. 

The element in the cross point of row u and column 

v of ( )nH  

'
( 1) , , 0,1, ,2 1n nu v n

uvh u v


     

where 

1 2 0( ) ( ) ( )n binary n n decimalu u u  u u  

1 2 0( ) ( ) ( )n binary n n decimalv v v  v v  

Since 

1, ' 0

1, ' 1

n n

uv

n n

if
h

if

  
 

  

u v

u v
 

the row vector 
uh in the Walsh-Hadamard matrix 

presents all solutions such that the product with 
nu is 

zero. Every solution of ' 0n  u x is the binary 

representation
nv of the column position v  which 

corresponds to 1 in the vector
uh . When we seek for the 

solutions of ' 0n  u x , we can transfer
nu to its decimal 

number u . Then we look for the column positions v which 

correspond to 1 in the row u in the 2 2n n Walsh-

Hadamard matrix. The binary representation 
nv  of v is a 

solution of the equation, in all 12n such solutions for one 
equation. For a system with more than one equation, we 
can add all row vectors in the real number field and get a 
new row vector. Then the binary representation  

nv of v which is equal to the number of the equations in 

the system is the solution of the system. So, we can solve 
the system (18) by the following process, hereafter we 

assume ( 1)m d n  . 

The first step is to transfer the coefficient vector of 

each equation in the system to decimal number. Then we 

can obtain 1N   decimal numbers from 1N  equations. 

The second step is to construct a new 2m  dimensional 

vector 'A . Set the position in 'A to 1 corresponding to 

those decimal numbers, 0 for other positions. 

The third step is to compute 2m dimensional 

vector 'B according to the following formula 

' ( ) 'm A H B  
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The last step is to check the vector 'B . If some element 

of 'B is equal to the number of the equations, then the 

binary representation 
nu  of the position u of this element 

is the solution of this system. Maybe there is more than 

one solution. If every element except 0 column is less 

than the number of the equations, there is no solution for 

the system. 

The third step in the above process is actually a Walsh-

Hadamard transform of 'A . 'B is the spectrum 

coefficients. In this paper, the spectrum coefficients 

'B possess obvious physical meaning. As pointed earlier, 

if 1uvh  , then it shows that ' 0n n u v , and if 1uvh   , 

then ' 1n n u v . So, the physical meaning of 'B is: the 

value of every element in 'B denotes the difference of the 

number of equations satisfied by the binary 

representation
nu of the element position u and the 

number of equations dissatisfied by the binary 

representation
nu of the element position u . Since the 

process of solving linear equations is Walsh-Hadamard 

transform, one could reduce the complexity of Walsh-

Hadamard transform from 2N to logN N by using the fast 

Walsh-Hadamard transform. 

On the insight into the physical meaning of 'B , we can 

extend this method to solve the linear system with error 

equations. For the error linear equations, the most 

possible solution is the binary representation
nu of the 

element position u which corresponds to the maximal 

spectrum coefficient. Almost as before, we can solve the 

linear system with error equations by the following steps. 

The first step and the third step are the same as before. 

The second and the fourth steps are of some difference. 

The second step is to construct a new 2m dimensional 

vector 'A . Set the position in 'A to t corresponding to 

those decimal numbers where t is the time the decimal 

number appears 0 for other positions.  

The fourth step is to check the vector 'B and find the 

largest element in 'B . The most possible solution is the 

binary representation nu of the element position u which 

corresponds to the largest element. Because the equations 

are with errors, the last step is to check the confidence 

level of the result. Suppose 1 2( , , , )nc c cc is a solution 

of the system with error equations. If c satisfies 

the ith equation, let 1i  , otherwise, let 1i   . If the 

probability of the equation holds is p , the mean and 

variance of
1

j

i

i




 are
1

( ) ( ),
j

i

i

E j p q


 
1

( )
j

i

i

D 


  

4 jpg , where j is the number of equations and 1q p  . 

When j is big enough, then we have 

1

( ( )) / 4 (0,1)
j

i

i

j p q jpq N


    

Suppose c satisfies 1n equations in the system and does 

not for another
2n equations, and let

1 2z n n  . Compute 

the statistics quantity: 

( ( )) / 4T z j p q jpq                    (19) 

If the significance level is , then 

/ 2 1 ( )F t                                    (20) 

where ( )F t is the probability distribution function of t . 

(20) gives a standard t . When we solve the system, we 

assume T t . Taking 0.5p q  , then /T z j . If 

3t  , the error probability is 0.00135, which is called 

impossible event in Mathematics. 

The method based on Walsh-Hadamard transform was 

introduced in [17] to solve the linear system with error 

equations and then used to blindly recognize the 

convolutional encoder in [18]. But, if ( 1)m d n  is big, 

the complexity of above algorithm is high and the 

algorithm exceeds the limitation of computer memory. In 

[19], the authors attempt to solve this problem and 

propose a modified Walsh-Hadamard transform. One 

purpose of this paper is to improve the method in [19] 

and then achieve the blind recognition of the punctured 

convolutional encoders. Here we use a key fact 

that
0, 1nh  according to [20], a convolutional encoder [21] 

is realizable if the polynomial ( ) ( )nH D is a delay-free 

polynomial. A polynomial
0

( ) ( ) i

i

f D f i D




  is called a 

delay-free polynomial if (0) 1f  . 

We decompose the coefficient matrix R in (18) 

into
1 2[ ]R R R where

1R is a
1( 1)N r  matrix, 

2R is a 

2( 1)N r   matrix, and
1 2 ( 1)r r d n    . Similarly, we 

decompose the variables 
0,1 ,1 0, ,{ }d n d nh h h h  

into
1 2[ , ]x x , where 

1x is a
1r dimensional vector and

2x is 

a
2r dimensional vector. So, (18) transforms 

to ' '

1 1 2 2 0   R x R x . For illumination consideration, we 

suppose
1r is a multiple of ( 1)d  , for example, 

1 ( 1) / 2r d n     , where / 2n   denotes the integer part 

of / 2n . In this case, 
1R  and

2R are respectively equal to 

,1 0,1 , /2 0, /2

1,1 1,1 1, /2 1, /2

,1 ,1 , /2 , /2

d d n n

d d n n

d N N d N n N n

r r r r

r r r r

r r r r

      

        

        

 
 
 
 
 
 
 

     (21) 

and 

, 0,, /2 1

1, 1,1, /2 1

, ,, /2 1

d n nd n

d n nd n

d N n N nd N n

r r r

r r r

r r r

  

   

   

 
 
 
 
 
 
 

               (22) 

while  

1 0,1 ,1 0, /2 , /2
[ ]d n d n
h h h h

      
x , 
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2 ,0, /2 1 , /2 1
[ 1 ]d nn d n
h h h

       
x  

For 1 1
0,1, ,2

r
l


 , suppose the binary representation 

of l is
1'x . We first compute

1 1'R x , then we obtain 

a ( 1)N  dimensional vector
1 1[ ]Ny y 

. Sum this vector 

to the
2( )r d th column of

2R . Denote by
2R the new 

matrix 

, 1 0,, /2 1

1, 2 1,1, /2 1

, 1 ,, /2 1

d n nd n

d n nd n

d N n N N nd N n

r r y r

r r y r

r r y r

  

   

    

 
 

 
 
 
 
 

     (23) 

then 
'

2 2 R x  

, 1 0,, /2 1

1, 2 1,1, /2 1

, 1 ,, /2 1

d n nd n

d n nd n

d N n N N nd N n

r r y r

r r y r

r r y r

  

   

    

 
 

 
 
 
 
 

 

,0, /2 1
( 1 ) 'd nn
h h

  
  

' '

1 1 2 2 0    R x R x                                            (24) 

The last linear system '

2 2 0 R x can be handled by 

previous method based on the Walsh-Hadamard 

transform. 

Algorithm1：Identification of generator matrix ( )DG of mother code 

and puncturing pattern P . 

1: Input 
(1) (2) ( )( ) [ ( ) ( ) ( )]nD H D H D H DH ; 

2: 1M n   

3: 
( )

1
max(deg ( ));i

i n
d H D

 
  

4: while (
2 2

2

nF P such that the Hamming weight of P is n and 

( (2 1), (2 )) 0, 1,2, , 1i i i n   P P ) do 

5: while (
1

0 1 2( , , , ) d

da a a F  and 
1

0 1 2( , , , ) d

db b b F  )do 

6:                 1

0

( )
d

i

i

i

g D a D


 ; 

7:                 2

0

( )
d

i

i

i

g D b D


 ; 

8:                 1 2( ) ( ( ), ( ))D g D g DG ; 

9:                      build 
[ ]

( )
M

DG by Theorem 1; 

10:                    build ( )P DG by Definition 3; 

11:                   if ( ) ( ) ' 0P D D G H then 

12:                     ( ) ( )D DG G ; 

13:                         P P ; 
14:                          break; 
15:                  end; 

16:          end; 

17: end; 

18: Output the generator matrix ( )DG and P ; 

 

C. Identification of the Parity Check Matrix 

Now assuming ( )DH the parity-check matrix of 

punctured convolutional code is identified, the generator 

matrix of mother code and puncturing pattern can be 

obtained by the method in [7] or achieved by the 

following Algorithm 1 for a special case to accelerate the 

identification process. 

IV. EXPERIMENT RESULTS 

Consider (2,1,7)C  convolutional code as in Example 

4 .This encoder is used in many standards and it is 

described by the generator matrix and the parity check 

matrix such that 

(171 133)G  and (133 171)H  

where polynomials are represented in octal. The analysis 

of the performance is proposed for two punctured 

convolutional encoders given in Table 1. The method of 

blind identification of a punctured encoder is divided into 

two parts: one part is identification of the equivalent 

punctured code and the other part is identification of the 

mother code and puncturing pattern. In the experiments, 

we mainly focus on: (1) the impact of the number of 

iterations upon the probability of detection and (2) the 

global performances of probability of detection against 

the channel error probability ( )eP . The iterative process 

is used to first identify the length n of punctured 

convolutional code as described in the section III.  

TABLE I: PUNCTURED CONVOLUTIONAL ENCODERS 

( , , )C n k K       M                  P               ( , , )p p p pC n k K  

(2,1,7)C                2           
1 1

0 1

 
 
 

 (3,2,4)pC   

(2,1,7)C               3         
1 1 1

0 0 1

 
 
 

 (4,3,3)pC   

 

Fig. 1 and Fig. 2 depict probability of detection against 

channel error probability, for 1, 10, 40 and 50 iterations. 

From experiment results, we note that the algorithm 

performances are enhanced by iterations. Moreover, the 

marginal utility of detection decreases as the number of 

iterations increases. For example, the global 

performances of probability of detection with 40 and 50 

iterations are very close. We can also see that, to obtain 

the best performance, the number of iteration should vary 

with different punctured convolutional encoders. The 

global performance of probability of detection decreases 

as channel error probability increases. In the case of 

(3,2,4)pC , the probability to detect true generator matrix 

and true punctured pattern proved to be close to 1 for 

channel error probability less than 0.02 with more than 50 

iterations. 
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Fig. 1. (3,2,4)pC probability of detection against
eP . 

 

Fig. 2. (4,3,3)pC probability of detection against
eP . 

          

Fig. 3. (3,2,4)pC probability of detection against
eP in [11]. 

To evaluate the result of the blind recognition, a 

comparison between the proposed method (Method I) and 

the method (Method II) in [11] was drawn. Fig.1 and Fig. 

3 depict probabilities of detection against eP , for 1; 10; 

40 and 50 iterations for (3,2,4)pC by Method I and II, 

respectively. It’s obvious that our method performs better 

significantly both on the impact of the number of 

iterations upon the probability of detection and the global 

performances of probability of detection. 

V. CONCLUSION 

We have presented a new solution for recognition 

of ( 1) /n n rate punctured convolutional code from 

received binary data stream in a noisy environment. The 

recognition includes generator matrix of mother code and 

punctured pattern of punctured convolutional encoders. 

The algorithm offers robustness to noise and higher 

probability of detection against channel error probability. 

We achieve this by utilizing the idea of Walsh-Hadamard 

transform and decomposition of parity check equation. 

Experiments demonstrate the efficacy of our method with 

case studies. The probability to detect true generator 

matrix and true punctured pattern proved to be close to 1 

with a 0.02eP  for (3,2,4)pC and (4,3,3)pC with more 

than 50 iterations. The proposed method outperforms the 

prior arts. 

In the future work, we will extend the blind recognition 

of convolutional encoders of ( 1) /n n rate to the case of 

rate /k n . Then, it will be adaptive to any case rate of 

equivalent punctured codes and have a wide application 

scene. Additionally, we will discuss the new algorithm in 

some more complex channels, e.g., AWGN channels. 

Moreover, following Walsh-Hadamard transform, it 

should be possible to consider soft-decision input. 
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