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Abstract—Blind source separation of complex valued signals 

has been a hot issue especially in the field of 

multi-input/multi-output (MIMO) digital communications. 

Many contrast functions based on the nonlinear structure of 

the signals have been proposed to extract the unknown 

sources. However, these researches usually focused on the 

real-valued case, but ignoring the complex problem. This 

paper proposes a novel algorithm based on Newton iterations 

to solve the complex-valued case. The method has a potential 

capability of extracting complex sources with nonlinear 

autocorrelation. We also analyze the convergence conditions 

of the algorithm in theory. Numerical simulations for artificial 

complex signals corroborate the efficiency of the proposed 

method. Moreover, our algorithm performs more robust with 

lower computational cost than classical cumulant-based 

approach using the nonstationarity of variance (CANSV). 

Finally, experiments for the separation of single sideband 

signals illustrate that our method might have good prospects 

in real-world applications. 

 

Index Terms—Blind source separation, complex valued 

signals, nonlinear autocorrelation, convergence conditions. 

 

I. INTRODUCTION 

Blind source separation (BSS), an active area of 

research, aims to recover original sources from their 

mixtures with minimal priors and has found wide 

applicability. In particular, blind source separation of 

complex valued signals has found utility in many 

applications such as digital communications [1]-[3], 

artificial intelligence [4], analysis of functional 

magnetic resonance imaging [5], and radar data [6], [7]. 

In these applications, the signals are usually 

complex-valued with non-Gaussian or Gaussian 

distribution. 

Independent component analysis (ICA), as a kind of 

successful algorithms in separation [8], [9], generally 

assume that all sources are non-Gaussian or at most one 

is Gaussian, dealing with the separation problem by 

maximizing the non-Gaussianity. Therefore, most 

conventional ICA algorithms like Fast ICA and 
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Infomax are incapable to provide the desired source 

separation when the assumed sources are all Gaussian 

distributed. Alternative methods that explore other 

statistical properties instead of non-Gaussianity have 

been proposed, such as linear predictability or 

smoothness [10], [11], linear autocorrelation [12]-[15], 

temporal predictability [16], etc. These algorithms 

mainly based on linear statistical properties are known 

to provide good results for the separation of Gaussian 

distributed sources. Recently, deeper latent statistical 

properties of sources have been developed, like 

nonstationarity [17]-[19], nonlinear autocorrelation [20], 

nonlinear predictability [21] and so on. The nonlinear 

statistical properties are more common in biomedicine 

[22], communications [18], and speech areas [10]. 

Nevertheless, it is a pity that these studies, only 

considering the real-valued case, can not be directly 

applied to solving the complex-valued problem. In this 

context, we investigated the separation of complex 

sources with nonlinear autocorrelation in our previous 

work [23]. The gradient algorithm has been proposed, 

and the stability conditions about the contrasts in 

complex case have been derived. 

In this paper, we extend our previous work into a 

novel algorithm based on Newton iterations to solve 

complex-valued BSS problem. The learning algorithm 

is implemented in second-order iterative, therefore the 

convergence condition of the proposed algorithm is 

analyzed in theory, which is valuable to choose proper 

nonlinear functions. When sources have square 

temporal autocorrelation, we demonstrate the efficiency 

of the method. Furthermore, the method performs more 

robust at lower computational time than classical 

CANSV method [17]. Finally, experiments on the 

separation of single sideband signals illustrate that our 

method may have good prospects in real-world 

applications. What’s more, this work can be seemed as 

an important complement of the previous work. 

The remainder of the paper is organized as follows. 

Section II introduces the contrast function based on 

nonlinear autocorrelation and the optimization 

algorithm. We analyze the convergence condition of the 

proposed method in Sect. III. Section IV presents 

simulation results on different datasets and discussion. 

Finally, Sect. V concludes the paper. In this article, the 

superscripts ()
*
, ()

T
, ()

H
 denote conjugate, transpose and 

conjugate transpose, respectively. Bold upper 

©2015 Journal of Communications



(respectively, lower) case letters are used for matrices 

(respectively, vectors). 

II. PROPOSED ALGORITHM 

A. Contrast Function 

In the noise-free instantaneous case, we assume that 

n unknown statistically independent source signals 
1

1( ) [ ( ), , ( )] n

nt s t s t  T
s  of zero mean pass 

through an unknown full-column rank mixing matrix 
m nA  (m≥n), therefore m mixed signals 

1( ) [ ( ), , ( )]mt x t x t T
x  can be modeled as 

( ) ( )t tx As                  (1) 

where t is the sample index. Besides, the sources are 

assumed to have certain unknown temporal structure 

with nonlinear autocorrelation, i.e., 

  
2

*E ( ) ( ( ) )i iI s t I s t   0  for i , where τ and 

I(·) denotes respectively certain time lags and an 

unknown nonlinear function that characterize the 

nonlinear autocorrelation. 

To simplify the problem, we further assume that the 

number of sources matches the number of mixtures i.e. 

m=n, an exactly determined problem. The prewhitening 

of the observations by the matrix U yields the new 

observations vector, ( ) ( )t tz Ux , whose covariance 

HE[ ]zz  is the identity matrix of dimension n n . 

Then the output signal y(t) that estimates one of the 

sources is obtained as H( ) ( )y t t w z , where w is the 

unit norm extraction column vector (enforcing the 

output to have unit variance). To estimates all source 

signals  
T

1( ) ( ), , ( )nt y t y ty , we should find an 

n n  separating matrix  1, , nW w w . 

Based on nonlinear autocorrelation of the desired 

complex-valued source, we present the following 

contrast function in complex case [23] 

  
2

*( ) E G ( ) G( ( ) )J y t y t  w        (2) 

where G(·) is the nonlinear function. The contrast 

function measures the nonlinear autocorrelation of the 

desired source. Most of the time, the contrast function 

though using only one time lagged nonlinear 

autocorrelation (the delay τ usually equals to 1) can 

obtain satisfying enough source separation performance. 

The nonlinear function choices are important for our 

method to obtain a stable separation point, further 

analysis of which is provided in Section 3. Examples of 

proper nonlinear functions are   2G u u  and 

 G log(cosh( ))u u . Hence, the solution of BSS for 

complex sources relies on the maximization of the 

contrast function. 

B. Learning Algorithm 

Basically, in order to maximize the contrast function 

(2), we can introduce a steepest ascent algorithm which 

moves from one point to another following the gradient 

direction of the criterion. However, improper choosing 

of step-size in gradient algorithm usually leads to slow 

convergence speed and poor stability performance [24]. 

Therefore, we derive a fast fixed-point algorithm 

through the Newton iteration, which is similar to the 

Complex FastICA [25] in ICA. Then we have 

1

T * *

( ) ( )J J


     
    

    

w w
w w

w w w
         (3)  

/w w w                   (4)  

To derive the conjugate gradient of J(w), we write 

J(w) as 

2

( ) ( )J Jw w                    (5)  

where   *( ) E G ( ) G( ( ) )J y t y t  w . 

Then the partial derivative of ( )J w  with respect to 

the conjugate of w  can be obtained as (see [26] for 

more details) 

  
  

**

*

* * *

* * *

( ) ( ) ( )
2 ( )

E G ( ) G( ( ) )

E G ( ) g( ( ) ) ( )

J J J
J

          y t y t

             y t y t t



 

    
    

     

  

 

w w w
w

w w w

z

        (6)  

where g(·) is the derivative of G(·). The Hessian matrix 

of J(w) with respect to w can be obtained as 

         
  
  

         

** H*

T *

* * *

* * *

** H*

( )
E g G

                        E G ( ) g( ( ) ) ( )

                        E G ( ) G( ( ) )

                        E g g ( )

J
y t y t t

y t y t t

y t y t

y t y t t t



 



 

  
   

  

  

 

 

w
z

w w

z

z z

(7)  

To simplify the inversion of this matrix, we decide to 

approximate the first term in (7). An approximation that 

turns out to be very suitable here is 

         
  

          

    

** H*

* * *

** H*

* * *

  E g G

  E G ( ) g( ( ) ) ( )

E g G E

  E G ( ) g( ( ) ) E ( )

0

y t y t t

y t y t t

y t y t t

y t y t t



 



 

 

 

  

 



z

z

z

z

      (8) 

Thus, the formula (3) becomes 
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         
  

1
** H*

* * *

E g g ( )

E G ( ) g( ( ) ) ( )

y t y t t t

y t y t t

 

 


 

    
 

  

w w z z

z

(9) 

As a result, formula (9) can be further simplified by 

multiplying both sides of (9) by 

         
          

** H*

** H*

  E g g ( )

E g g E ( )

y t y t t t

y t y t t t

 

 

 

  

z z

z z

 

This leads to the following fixed-point algorithm: 

  

          

* * *

** H*

E G ( ) g( ( ) ) ( )

E g g E ( )

/

y t y t t

y t y t t t

 

 

  

  



w z

z z w

w w w

 (10) 

Hence, our algorithm (C-FastNA: Complex Fast 

Algorithm based on Nonlinear Autocorrelation) can be 

summarized as follows: 

C-FastNA Algorithm (estimating all sources using 

symmetric orthogonalization [25]) 

1) Initialization 

Center and whiten the observations. Set random 

initial matrix (0) (0) (0)

1 , , n
   W w w , and choose 

proper nonlinear functions and delays τ (equals to 1). 

2) Iteration 

At the ith iteration for obtaining W, 

For p = 1,…,n 

     

     

   

* *H H( ) ( 1) ( 1)

* *H H( 1) ( 1)

H ( 1)

E G ( ) g ( ) ( )

          E g ( ) g ( )

          E ( )

i i i

p p k p

i i

p k p

i

p

t t t

t t

t t

 





 

 



 
   

 

 
  

 



w w z z w z

w z z w

z z w

                      (11) 

End for 

  
1/2

H
( ) ( ) ( ) ( )i i i i



W W W W  

3) Termination 

The iteration is terminated when the relative change 
( ) ( 1)i iW W  is less than a specified tolerance. 

Furthermore, one can also use a deflation scheme 

(one-by-one estimation) to estimate all the source 

signals [27]. 

III. CONVERGENCE ANALYSIS 

In this section, we derive the convergence properties 

of the proposed algorithm (10). For the simplicity of 

expression, ,is   denotes  is t  . We make the 

orthogonal change of coordinates T

1( , , )np p p  

H H
A U w  so that H Hy  w x p s . Without loss of 

generality, we analyze the convergence of the point 
T

1 ( , ,0)je p  where θ is an arbitrary phase shift. 

The following theorem tells us in which conditions the 

proposed algorithm can converge. 

Theorem. If the following conditions are satisfied: (a) 

 ,,i is s   and  ,,j js s   are mutually independent 

( j i  ); (b) sources have no temporally linear 

autocorrelation, i.e.,  *

,E 0i is s   , i ; (c) all the 

sources are second-order circular, i.e.,  2E 0is  , i ; 

(d)     
* *

*

, ,E G g 0j j

i i ie s e s s 
 

  , the fast 

algorithm (10) converges. That is to say, the vector w 

converges, up to the phase ambiguity, to one row of the 

inverse of the mixing matrix UA, and the convergence 

speed is at least quadratic. 

Proof. To begin with, we can rewrite the fast 

algorithm (10) as 

  
      

*
H H * *

* *
H H H

E G g( ) )

       E g g

/

E

 

 

 



p p s s p s

p s s p s s p

p p p

        (12) 

Using the complex Taylor series expansion for G and 

g, we obtain 

     

    

H * * H

1 1 1 1 1 1

2 2* H

1 1 1 1 1

G G g

1
              g '

2

p s p s

p s o

 

  

  



p s p s

p s p
       (13) 

     

    

H * * H

1 1 1 1 1 1

2 2* H

1 1 1 1 1

g g g '

1
             g ''

2

p s p s

p s o

 

  

  



p s p s

p s p
       (14) 

where p-1 and s-1 are the vectors p and s without their 

first components. Using assumptions (a) in Theorem, 

also doing some algebraic manipulations, we have 

      
* * 2*

1 1, 1, 11
E G gj jp e s e s s o 

 



  p    (15) 

    
    
     

      
 

*
2 *

1 1 ,

*
*

1 1 ,

* 2
3 *

1 1, ,

* 2
* 2

1 1, ,

2

1

E G g'

E g g

1
E G g''

2

1
E g ' g

2

j j

i ii

j j

i i i

j j

i i

j j

i i i

p e s e s s p

       e s e s s s p

       e s e s s p

       e s e s s s p

       o

 



 



 

 

 

 

 

 

 

 



 







p

  (16) 

Noting that by assumptions (b) and (c), we find that 
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    
      

*
2

1 1 ,

*
2

1 1 ,

  E G g'

E G g' E 0

j j

i

j j

i

e s e s s

e s e s s

 


 


 

  

      (17) 

    
      

*
*

1 1 ,

*
*

1 1 ,

  E g g

E g g E 0

j j

i i

j j

i i

e s e s s s

e s e s s s

 


 


 

  

     (18) 

Substituting (17) and (18) into (16), we get 

     

        

* 2
3 *

1 1, ,

* 2 2* 2

1 1, , 1

1
E G g''

2

1
E g ' g

2

j j

i ii

j j

i i i

p e s e s s p

e s e s s s p o

 

 

 

 

 

 





  p

 (19)  

Equation (15) and (19) indicate that under the 

assumption (d)  * * *

, ,E G( ) g( ) 0j j

i i ie s e s s 
 

  , the 

proposed algorithm converges to the vector p1, and the 

convergence is at least quadratic. 

Moreover, the Theorem is meaningful for real 

applications to choose proper nonlinear functions. For 

instance, assume that the square function 2G( )y y  is 

chosen for the extraction of independent circular 

sources with no temporally linear autocorrelation, we 

have the convergence condition 

       
    

* * 2
* * 2

, , ,

2
2 * 2 2

,

E G g E 0

E cov ( ), ( ) 0

j j j

i i i i i

i i i i

e s e s s e s s

s s s t s t

  
  

 

  

   

(20) 

It implies that if the energies of sources are 

time-autocorrelated, the choosing of the square function 

will properly lead to the convergence of the algorithm. 

Besides, although the true nonlinear function that 

describes nonlinear autocorrelation of sources is 

unavailable, we can achieve the separation of sources 

by choosing a proper nonlinear function (e.g. 

 G log(cosh( ))u u ). This can be demonstrated in the 

next Section. 

IV. SIMULATION RESULTS AND DISCUSSION 

Here, several sets of simulation results are provided 

to demonstrate the performance of the proposed 

algorithm. In order to measure the separation 

performance, we use the performance index [28]. 

2
1 1 1 1

1
PI 1 1

max max

n n n n
ij ij

i j j iik kj
k k

c c

cn c   

   
       

       

     (21) 

where cij is the ijth element of n×n combined 

mixing-separating matrix C=W
H

UA, and  PI 0,1 . 

As C converges to a generalized permutation matrix, PI 

will converge to zero, and sources will be retrieved 

exactly. 

Besides, we also utilized the mean square error 

(MSE) in decibel to measure the performance in some 

experiments. 

2

1

1
10log ( ) ( )

T

i i i
t

MSE y t s t
T 

 
   

 
        (22) 

where si is the original signal and yi is the recovered 

corresponding signal (both are normalized to have zero 

mean and unit variance), T denotes the data length of 

samples. The higher MSEi is (usually over 20dB), the 

better the performance is [21]. 

A. Experiments on Artificial Complex Sources with 

Nonlinear Autocorrelation 

In the simulation, we test the performance of 

C-FastNA on square temporal autocorrelated complex 

Gaussian sources. Firstly, the signals are modeled using 

a standard autoregressive model 

( ) ( 1) ( )i i i is t s t t              (23) 

where ρi is the correlation coefficient of the ith source, 

and ξi(t) is a complex Gaussian random number. The 

correlation coefficient ρi was set 0.8 for all sources. 

Then the signs of the signals are completely 

randomized by multiplying each signal by a binary i.i.d. 

signal that takes the values ±1 with equal probabilities. 

Thus the source signals are created with square 

temporal autocorrelations (or variance nonstationarity), 

which could not be separated by ordinary source 

separation methods based on non-Gaussianity such as 

Complex FastICA [8], [9] as well as linear 

autocorrelation methods such as AMUSE [14], JADE 

[29] and SOBI [12]. 

We mixed ten complex valued sources described 

above, with data length varied from 500 to 5000 

samples. The mixing matrix A in data model of (1) and 

the initial separating matrix W
(0)

 were created randomly. 

The ten sources with 5000 samples are shown in Fig. 1. 

We chose the time delay τ=1, which is suitable for all 

experiments.  

The C-FastNA algorithm with the nonlinear 

functions ( 2G( )u u and G( ) log(cosh( ))u u ) were 

used to estimate the separating matrix. For comparison, 

we also carry out the cumulant-based approach using 

the nonstationarity of variance (CANSV) [17], 

C-FastICA [8], and SOBI [12]. The total number of 

iterations was set to proper value 100 for the 

convergence of the methods. The results involving 100 

realizations are shown in Table. I. From the comparison 

of PI among different separation methods, we can 

observe that traditional methods like SOBI and 

C-FastICA fail to achieve the separation, while 

successful separation is obtained by CANSV and the 

proposed method. 
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Fig. 1. Ten sources with square temporal autocorrelation 

TABLE I: PI AND EXECUTION TIME FOR SEPARATION METHODS. (TEN COMPLEX GAUSSIAN SOURCES, RANDOM MIXING MATRIX. 100 MONTE 

CARLO REALIZATIONS) 

Separation Methods 

Average Performance Index Average Execution Time (s) 

Number of Samples Number of Samples 

500 1000 2000 5000 500 1000 2000 5000 

C-FastICA 0.87 0.87 0.88 0.86 0.87 0.36 0.53 1.33 

SOBI 0.84 0.81 0.81 0.80 0.79 0.21 0.24 0.79 

CANSV 0.12 0.07 0.05 0.03 2.41 4.09 7.21 17.61 

C-FastNA G( ) log(cosh( ))u u  0.36 0.17 0.12 0.06 1.05 2.80 5.73 10.01 

C-FastNA 
2G( )u u  0.07 0.04 0.03 0.02 0.66 1.62 3.23 6.01 

 

From the comparison of PI among three separation 

methods, we can observe that similar separation 

performance is achieved, which confirm the validity of 

our method. The proposed algorithm using 2G( )u u  

behaves a slightly better separation performance than 

the other two algorithms. Furthermore, the comparison 

of execution time demonstrates that a suitable choice of 

the nonlinear function for our method might lead to 

significantly lower computational time. Although our 

algorithm in (10) has the same quantity level of 

computational complexity o(n
2
) as CANSV algorithm, 

the latter needs to compute more terms from the 

conjugate gradient of the cross-cumulant every iterative 

than our method. 

 
Fig. 2. The average performance indexes over 100 Monte Carlo 

Realizations against iteration numbers by the proposed C-FastNA 
algorithm with different time delay τ 

The robustness of the methods was also investigated 

by choosing different single time lag τ. Fig. 2 illustrates 

the average performance indexes against iteration 

numbers by the proposed algorithm ( 2G( )u u ) with 

different time lags τ (τ=1, 2, 3, 4, and 5, respectively). 

Ten sources above with 5000 samples were employed. 

We can see that the performance of the proposed 

algorithm with τ=1 is best, however, the performance 

with other lag τ (whose value is close to τ=1) is also 

similar to τ=1. Thus, the experiments show that the 

performance of the C-FastNA is still good if the choice 

of the time delay τ is not far from the time delay τ=1. 

Nevertheless, if the time delays τ are far from the true 

one, the performance degrades. 

Moreover, we randomly added complex outliers 

whose values are 10+10j in each source signal in order 

to further examine the robustness of algorithms. Fig. 3 

and Fig. 4 shows the average performance indexes 

against iteration numbers when the numbers of outliers 

are 10 and 20 respectively (τ=1). Only the method 

C-FastNA which employs the nonlinear function 

G( ) log(cosh( ))u u  is not affected dramatically by 

outliers and is seen to perform well. The method 

CANSV, which use a cross-cumulant as a measure of 

nonstationarity, behaves similar to the method 

C-FastNA ( 2G( )u u ) especially when the number of 

outliers is greater, i.e., both of them fail completely in 

separating the sources. Indeed, both the methods 

CANSV and C-FastNA ( 2G( )u u ) utilize the 
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forth-order statistics of signals, which typically result in 

an estimate sensitive to outliers. This is the key reason 

why the two algorithms perform non-robust in terms of 

separation accuracy. 

 
Fig. 3. The average performance indexes over 100 Monte Carlo 

Realizations for 10 sources with square temporal autocorrelation 
when 10 outliers are introduced 

 
Fig. 4. The average performance indexes over 100 Monte Carlo 
Realizations for 10 sources with square temporal autocorrelation 

when 20 outliers are introduced 

B. Experiments on the Real-World Single Sideband 

(SSB) Signals 

Finally we show the separation validity and 

efficiency of our proposed algorithms for practical 

single sideband (SSB) signals carrying the music 

information (typically non-Gaussian distribution 

sources). 

To begin with, three baseband sources with three 

types were utilized: (1) bass; (2) tenor; and (3) jazz 

music. The sources are all with sampling frequency 8 

kHz and time span 2.5 s. Then all the baseband sources 

were represented as equivalent low-pass signals with 

single sideband 

( ) ( ) ( )l t t j t s s s             (24) 

where ( )ts  denotes the Hilbert transform of s(t). 

As we know, in wireless communications, the 

equivalent low-pass representation is meaningful in that 

the signals which are single-side band modulated can 

save considerable spectrum and power resources 

comparing to the double-side band signals [30]. 

Furthermore, we assume that the communication 

channel is linear without complicated factors like IQ 

unbalance, multi-path effect and non-linear distortion. 

Thus in the simulation, the MIMO channel can be 

characterized by the time-invariant mixing matrix A, 

which was created randomly in data model of (1). We 

chose the nonlinearity 2G( )u u . 

Fig. 5 gives the separation results provided by 

C-FastNA in the waveforms of the real parts of signals, 

whose imaginary parts need not be redundantly 

presented here since the imaginary parts are the Hilbert 

transform of the real parts. It illustrates that our method 

seems to have good prospects in real-world 

applications. 

We also investigated the effect of noise on the 

separation performance when received signals are 

contaminated with complex white Gaussian noise, i.e., 

( ) ( ) ( )t t t x As v , where  
T

1 2( ) ( ), ( ), , ( )nt v t v t v tv  

1n  is the receiver noise vector. A detailed 

performance of MSE for different signal to noise ratios 

(10dB, 20dB, 30dB, 40dB, 50dB) was obtained among 

CANSV, C-FastNA with G( ) log(cosh( ))u u  and 

2G( )u u . The results involving 100 realizations are 

shown in Table. II, which demonstrate that our method 

behaves equally well as CANSV algorithm. This 

illustrates the validity of the applications in noise case. 

TABLE II: MSE FOR SEPARATION METHODS IN THE COMPLEX WHITE 

GAUSSIAN NOISE CASE. (TWO SSB SOURCES, RANDOM MIXING 

MATRIX. 100 MONTE CARLO REALIZATIONS) 

Separation Methods 

Average MSE (dB) 

Signal to Noise Ratio (dB) 

10 20 30 40 50 

CANSV 17.1 20.3 35.6 48.2 52.2 

C-FastNA 

( ) log(cosh( ))G u u  
14.4 22.1 33.7 46.9 50.1 

C-FastNA 
2( )G u u  16.4 27.4 40.8 49.5 55.2 

V. CONCLUSION 

In this paper, we have proposed a new method for 

blind source separation of complex sources through the 

optimization of nonlinear autocorrelation contrast. 

Depending on temporal structure with nonlinear 

autocorrelation of the signals, our method holds a 

potential capability of extracting complex sources with 

arbitrary distribution (Gaussian and non-Gaussian), 

which is unattainable for traditional BSS methods. We 

have also provided a theoretical analysis about the 

convergence of the algorithm based on Newton 

Journal of Communications Vol. 10, No. 3, March 2015

175©2015 Journal of Communications



iterations. Therefore, this paper is an important 

complement for our previous work. It has been shown 

through computer simulations that the algorithm offers 

more robust performance and lower computational cost 

than classical CANSV method. The experiments for 

SSB signals in Section 4.2 indicate that the method 

might be applied to wireless broadcast system. 

However, the channel model in this paper is simply 

represented by instantaneous mixtures, such that further 

research is still needed to determine if our method can 

be extended to implement in more practical and 

complicated scenarios like convolutive mixing case or 

fast time-variant channel. 

 
Fig. 5. Separation result of three SSB signals with bass, tenor and jazz music information respectively.(a) Original sources, (b) Observations, (c) 

Extracted sources. 
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