
LTE

Protocol Conformance Testing

145

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

Design and Implementation of System Under Test for

Yin Chen, Zhizhong Ding, Dingliang Wang, and Teng Huang
Institute of Communications and Information Systems, Hefei University of Technology, Hefei 230009, China

Email: {hfut_cy, wdlwshcjf}@163.com; zzding@hfut.edu.cn; Huangteng66@gmail.com

Abstract—The test suites of protocol conformance released by

European Telecommunications Standards Institute (ETSI) are

used to examine whether user equipment (UE) conforms to the

specified protocols. For developers and engineers, the workflow

of test case is very helpful to comprehend the technical

specifications. However, all the test suites developed in TTCN-

3 language can not be run without building up a development

environment which should connect with the System Under Test

(SUT), the target to be tested. Unfortunately, it is quite time

consuming and expensive to build up an actual standard test

environment specified by the technical specifications at the start

phase of development. To solve the problem, this paper

proposes a feasible test model in which the SUT is simulated on

a common computer. The main idea is that the software SUT

implemented in TTCN level needs not to simulate all the details

of the System Simulator and UE depicted in standard test

environment, but only implements some necessary steps as long

as the test suites could be run with correct test procedures and

functions. What is more, the developed SUT can be reused for

the development of many other test suites which have the

similar procedures, due to its high flexibility and easy

modification.

Index Terms—protocol conformance, test suites, SUT, TTCN

I. INTRODUCTION

Protocol Conformance testing is the testing to

determine whether a product or system meets the

specified protocols which are developed by authoritative

organizations [1]. It is necessary for Long Term

Evolution (LTE) UE to pass standardized tests to ensure

its correct interaction with other LTE entities. Therefore,

ETSI has been developing the TTCN-3 test suites and test

system of protocol conformance testing which now are a

part of 3rd Generation Partnership Project (3GPP)

technical specifications named as TS 36.523-3 [2].

The standard test environment in TS 36.523-3 is shown

in Fig. 1. Host-PC is a high performance computer

needed for compiling and running the test suites. The test

suite developed by Testing and Test Control Notation

Version 3 (TTCN-3) only runs in the Host-PC. It sends

signaling and configuration messages to system simulator

(SS) to create real circumstance for UE. What’s more, it

is responsible for making verdict according to the

message received from UE and SS. SS Hardware

provides the adaption to UE to realize all the necessary

Manuscript received November 13, 2014; revised February 26, 2015.

lower protocol layers such as physical layer. UE, i.e. a

mobile phone, is the target under test.

Test control, Logging

TTCN-3

generated

code

Codec

System Adaptor (SA)

Platform Adaptor (PA)

System

dependent layers
Host-PC

Internal interface

System

dependent layers

Protocol layers

System Simulator HW

Internal interface

UE

Air interface

Fig. 1. General system architecture.

At the start of developing, it is helpful and useful for

developer and engineer to run the test suites published by

ETSI in order to understand the specifications correctly

and deeply since the example codes give us much more

details. In general, the actual test system is built up in [3]

and [4] to do the Radio Resource Management (RRM)

protocol conformance testing. In addition, in other

protocol conformance testing fields, the test system is

also built up [5]. However, the TTCN-3 test case can not

be executed without SUT even it is in a commercial

integrated development environment (IDE). It is

expensive and time consuming to build up a standard test

environment.

For the above reasons, this paper proposes a feasible

test model and designs a SUT running on a common PC

to replace the SS and UE in Fig. 1. With this approach, it

is much easier to make the test suites run. Furthermore,

the developed SUT could be a useful reference when

developing SUT for other specifications. For example,

the SUT of Radio Resource Control (RRC) conformance

testing could be very useful for the development of Radio

Resource Management (RRM) test suites since many

procedures of both tests are quite similar or even the

same. It should be emphasized here that the UE and SS

are not totally simulated, but implemented only for the

purpose that the test suites could be run with correct test

procedures and functions.

The rest of this paper is organized as follows. Section

II introduces TTCN-3 language and explains the reason

to use TTCN-3. The reason why TTCN-3 test cases can

not run independently is also explained. In section III, the

LTE concepts which are closely related to SUT are

introduced. In section IV, the test system proposed by doi:10.12720/jcm.10.2.145-153

146

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

ETSI will be analyzed from the view of LTE. On this

basis, the test model of this paper and its mechanism will

be educed. And the test suites are then analyzed to lead to

the structure of SUT. In section V, the implementation

process of SUT is shown. An experiment is given to

verify the correction of SUT in section VI. At last, we

conclude this paper with some future work.

II. TTCN-3 ANALYSIS

A. The Advantages of TTCN

Testing and Test Control Notation Version 3 (TTCN-3)

developed by ETSI is an internationally standardized

language for defining test specifications. It allows the

concise description of test behavior. TTCN-3 provides all

the constructs and features necessary for black box

testing. It contains rich data types and very powerful

matching mechanisms. TTCN-3 also supports message-

based communication, procedure-based communication,

timer handling, and dynamic test configuration. Above all,

TTCN-3 is a language for testing.

To avoid misunderstanding the standards, ETSI uses

TTCN-3 language to develop a large number of test cases

according to the technical specifications. The UE should

pass the entire tests before entering into the market. In

2000s, Global Certification Forum (GCF) confirmed that

the TTCN test suite is the unique and standard test suite

for protocol conformance testing.

Now TTCN-3 has more and more applications in many

testing fields, such as car lights testing system [6],

property testing [7] and web penetration testing [8].

What’s more, the entire test behaviors can also be

described briefly by it, so we designed and implemented

the SUT by TTCN-3.

B. The Structure of TTCN-3 Test System

A TTCN-3 test system can be conceptually defined as

a collection of different test system entities, which

interact with each other during the execution of test suites.

All the entities cooperate with each other to communicate

with SUT. The entire components in the system are

shown in Fig. 2.

Test System User

TM TL

SA PA

CH CDTE

System Under Test (SUT)

TCI

TRI

Fig. 2. The structure of TTCN-3 test system.

Test Management (TM) is responsible for the overall

management of test system. Test Logging (TL) can

generate and maintain test log. Component Handling (CH)

is responsible for managing component, especially in

parallel test system. The main task of Test Execution (TE)

is to execute the abstract test suite. The Codec (CD)

encodes data of TTCN types into bit-stream and vice

versa. The role of SA is to provide the methods for

communication between TE and SUT. It is also the

bridge between the abstract TRI communication and real

communication mechanisms employed by the SUT.

Platform Adaptor (PA) implements TTCN-3 external

functions and provides a TTCN-3 test system with a

single notion of time. TTCN-3 Control Interface (TCI)

provides means for TE to manage test execution,

distributed execution of test components among different

test devices, encoding and decoding operation and log

information about test execution. TTCN-3 Runtime

Interface (TRI) provides means for TE to send test data to

the SUT, to manipulate timers, and to notify the TE of

received test data and timeouts [9].

In general, most entities of the test system are

completed by TTCN-3 Integrated Development

Environment (IDE). Only the SA and CD should be

developed by users. Because of the abstract nature of

TTCN-3 communication mechanism, it will usually be up

to the test system developers to implement these

particular test system entities. And in different

environments, different encode and decode rules may be

required.

C. The Importance of SUT in Test System

In this section, the process of exchanging message

between TE and SUT will be introduced, from which the

function of SA, CD and TE will be shown in detail, and

the importance of SUT will be explained and emphasized.

The whole process is shown in Fig. 3 [10]. At the start,

TE begins executing the control part of test suite. When

TTCN-3 execute statement is encountered, TE invokes

the triExecuteTestCase operation to inform SA that a new

test case is about to be started. This allows SA to prepare

its communication facilities to be used. After mapping

operation, TE invokes the tciEncode operation to encode

the message to be sent. TE starts the timer soon after the

message is sent out.

CD TE SA PA SUT

triExecuteTestCase

triMap

tciEncode

triSend (encode)

question

triStartTimer

triEnqueueMessage

tciDecode

triStopTimer

triUnmap

(encode) answer

Fig. 3. General process of exchanging message.

As we can see, SUT is very important, it is responsible

for receive and send message to continue communication.

Some companies try to develop a plugin to imitate

SUT. However, currently the plugin is so simple that only

the exact received message can be returned to TE, and

obviously it can not be used in most situations.

III. LTE INTRODUCTION

A. LTE Definition

Long Term Evolution (LTE) is a standard for wireless

communication of high data rate mobile phones and

terminals. It is a new technique after the 3rd generation of

mobile communication. LTE was first proposed in 2004.

In May 2007, the LTE/SAE Trial Initiative alliance was

founded with the goal of verifying and promoting the new

standard in order to ensure the global introduction of the

technology as quickly as possible. The LTE standard was

finalized in December 2008, and the first available LTE

service was launched on December 14, 2009 [11].

B. Structure of LTE System

As shown in Fig. 4, LTE system is consisted of

Evolved Packet Core network (EPC) and evolved

universal terrestrial radio access network (E-UTRAN).

EPC splits into Mobility Management Entity (MME) and

Serving Gateway (S-GW). E-UTRAN only includes

evolved Node B (eNode B). EPC connects with eNode B

by S1 interface. ENode B connects with each other by X2

interface [12].

eNB

MME / S-GW MME / S-GW

eNB

eNB

S
1

S
1

S
1

S
1

X2

X
2X

2

E-UTRAN

Fig. 4. LTE system architecture.

In LTE system, eNode B provides a wireless interface

for UE. The UE which conforms to the interface can

communicate with each other even though they produced

by different factories. The test suites developed by ETSI

are used to check whether the UE conforms to the

specification or not.

C. LTE Protocol Stack

The wireless interface protocol stack is divided into

user plane and control plane protocol stack which are

shown in Fig. 5 and Fig. 6. Physical layer is located on

the bottom of protocol stack. It provides all the functions

of the bit-stream transporting in the physical medium.

Data Link Layer (DLL) includes threes sublayers,

Medium Access Control (MAC), Radio Link Control

(RLC) and Packet Data Convergence Protocol (PDCP)

layer. DLL layer is responsible for transporting, ciphering

and so on. The Radio Resource Control (RRC) layer in

the eNode B control plane is in charge of dealing with all

the interactive signaling between UE and eNode B. Non-

access stratum (NAS) is a functional layer in the LTE

wireless telecom protocol stacks between the EPC and

UE. This layer is used to manage the establishment of

communication sessions and maintain continuous

communication with UE [13].

eNB

PHY

UE

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

Fig. 5. User plane protocol stack.

eNB

PHY

UE

PHY

MAC

RLC

MAC

MME

RLC

NAS NAS

RRC RRC

PDCP PDCP

Fig. 6. Control plane protocol stack.

In conclusion, RRC layer is the core part of E-UTRAN.

All the signaling sent from UE is handled by RRC layer.

It also sends signaling to UE. The physical layer and DLL

give service to the RRC layer. Their main task is to ensure

the correction of signaling.

IV. THE DESIGN OF SUT

In this section, the feasible test model will be proposed

and stated firstly. Then the conformance test suite which

decides the structure of SUT is analyzed in detail. After

that, the standard test system shown in Fig. 1 is analyzed

from the view of LTE protocol stack. We will try to find

out how the SUT can be implemented.

The entire test suites include several parts of UE

conformance testing, such as RLC conformance test,

MAC conformance test, and the ability test of cell

selection in pure E-UTRAN environment. The process to

be shown next takes the test case of cell selection as an

example. The others are similar to it or even easier.

147

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

IPSEC_CTRL

IP_PTC

E_UTRA

SYS_SRBNASEMU

SS

UE
E_SRB

IP_SOCK

IP_CRTL

SYS

DRB

SYSIND

IP_CRTL

IP_SOCK

IPSEC_CTRL

E_DRB

E_SYS

E_SYSIND

IP

EUTRA_CTRL

TC_SRB

SRB NASCTRL

CTRL

Host-PC SUT-PC

Fig. 7. Test model proposed by this paper.

A. Test Model

The feasible test model proposed by this paper is

shown in Fig. 7. Two computers are directly connected

by ethernet cable. The test suites run in the Host-PC and

SUT code runs in SUT-PC. The SUT is logically

consisted of two parts: SS and UE. When Host-PC

communicates with SS, some functions of SS are omitted

to make the SUT more concise. When Host-PC

communicates with UE, the functions of low layers are

omitted.

B. The Analyzing of Test suites

The test suites of cell selection in pure E-UTRAN

environment can be divided into four parts. The

relationships between each part are shown in Fig. 8.

 Main Test Control (MTC): MTC controls the whole

process of testing, which includes exception handling,

Parallel Test Control (PTC) creating, port mapping

and making the final verdict.

 IP_PTC: The IP_PTC configures for UE and SS,

including IP configuration, port number configuration

and so on.

 E-UTRA: E-UTRA is the core part of the code

structure. It is responsible for sending signaling and

configuration information to IP_PTC, NASEMU and

SS. It also needs to make verdict according to the

received message. It mainly communicates with the

SS in practice.

 NASEMU: NASEMU is responsible for Handling of

ASPs from test cases and RRC PDU from system

adaptor. It is responsible for encoding, decoding,

ciphered and deciphered for the NAS PDU.

Every part of the test suite as well as SS communicates

with each other through ports. All the Ports are

responsible for sending and receiving messages. As we

can see from the Fig. 8, the E-UTRA has eight ports to

communicate with outside.

MTC

IP_PTC E-UTRA NASEMU

IP_SOCK IP_CTRL IPSEC_CTRL

IP EUTRA_CTRL

DRB SYS SYSIND

UT

E_UTUt

NASCTRL

SRB TC_SRB

CTRL

SYS_SRB

Test System Interface (TSI)

IP_SOCK IP_CTRL IPSEC_CTRL E_DRB Ut E_SYS E_SYSIND E_SRB

Fig. 8. The structure of 6-1 test group

We need to send the message to the correct port at the

right time. If something unexpected happened, the MTC

will suspend the testing. For example, before UE selects a

cell to camp on, the RRC layer of UE will use the E_SRB

port to send RRC connection request message to the

NASEMU through SYS_SRB port. NASEMU decodes

and deciphers it and then sends it to the SRB port of E-

UTRA, E-UTRA calls a function to check whether the

message fits to the expected one. If it passes the checking,

the test will continue. On the other hand, if the message

of RRC connection request is send to the wrong ports,

MTC will stop the whole test. For example, once SYS

ports received the message, the exception handling starts.

E-UTRA tells MTC through the UT port, and MTC will

stop the test case.

C. The Analyzing of Test System

The test system shown in Fig. 1 can be described more

clearly from the view of layers. The relationship between

each layer is shown in Fig. 9 [2]. The TTCN Code and E-

UTRAN PTC is a part of the test suite running in the

Host-PC. The PDCP, RLC, MAC and PHY are a part of

SS. SS can create cell circumstance for UE. E-UTRAN

do configuration to low layers through SYS and SYSIND

148

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

ports. After receiving the signal, SS will respond to E-

UTRAN. Only when the response is received by E-

UTRAN correctly, the test suite is able to continue.

TTCN Code

Config

E-UTRAN PTC

RRC/NAS

Emulator

PDCP

Intergrity

Ciphering

RLC
[AM/UM/TM]

MAC

PHY

UE In Normal

Mode

Fig. 9. Test mode for pure environment.

When SS communicates with E-UTRAN, from the

view of E-UTRAN, SS is a part of SUT. But the SUT we

design is not to implement the real SS. For the purpose to

make the test suite run with correct test procedures and

functions, it responds the message expected by E-

UTRAN. Similarly, when the IP_PTC sends a message to

SS, we need to make the SUT return the expected

message to IP_PTC.

UE

PHY

Host-PC&SS

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

RRCE-UTRAN

NASNASEMU

Air

interface

Fig. 10. Protocol stack of test model.

When UE communicates with E-UTRAN, the

relationship between Host-PC and SS from the view of

protocol stack is shown in the Fig. 10. If UE tries to send

RRC connection request to E-UTRAN, after encoded and

ciphered by NAS layer, the signaling will be sent to lower

layers. Then lower layers package it to a specific frame

format. At last, the frame format is send out by the

physical layer to the Host-PC. When SS receives the

frame format, it is unpackaged by the lower layers. After

these steps finish, the message to be decoded and

deciphered is received by NASEMU. Then it will be sent

to E-UTRAN. If it fits to the expected message, the test

suite is able to continue.

In fact, as shown in Fig. 11, the protocol structure

consists of two main layers, Radio Network Layer, and

Transport Network Layer [14]. E-UTRAN functions are

realized in the Radio Network Layer. The Transport

Network Layer represents standard transport technology

which is used for E-UTRAN.

As mentioned above, the Transport Network Layer is

mainly used to transport data and signal. According to the

test model of this paper, the function of transporting can

be realized by socket. For these reasons, when the

communication is between UE and E-UTRAN, the SUT

can be designed to replace UE.

Application

Protocol

Transport
Network

Layer

Physical Layer

Signalling

Bearer(s)

Transport
User

Network
Plane

Control Plane User Plane

Transport
User

Network
Plane

Radio

Network

Layer

Data

Bearer(s)

Fig. 11. General protocol model for E-UTRAN interfaces.

According to the test system in Fig. 1, The TTCN-3

code runs on the host system only and no TTCN-3

components are downloaded to system simulator HW. So

SS together with UE can be regarded as a black box from

the view of Host-PC. What the Host-PC does is to

compare received message with expected message. For

this reason, the black box can be replaced by a PC which

is able to send the expected message to Host-PC for the

purpose of making the test suite run with correct test

procedures and functions. So the test model can be

designed as Fig. 12.

Host-PC SUT-PC
Internal inferface

Fig. 12. Test system proposed by this paper.

Two computers are connected by cable. The SUT

sends the correct message to Host-PC, all the internal

processing in the “black box” is omitted. Above all, the

concrete test model proposed by this paper can be

designed in detail as Fig. 7.

If the SUT is used to simulate more than one user,

every user has an individual port to communicate with

Host-PC. Some settings can be done in Adaptor to make

Host-PC sent the message to specific port. So each user

can communicate with Host-PC independently.

V. THE IMPLEMENTATION OF SUT

As mentioned in section II, the behaviors of SS and UE

are described by TTCN-3 language. In order to achieve

the flow of test case, developer and engineer need to

develop the TTCN-3 SUT code, Codec and Adaptor. In

this section, the implementation of SUT and the develop

process of Codec and Adaptor will be stated in detail.

A. TTCN-3 SUT

The main task of SUT is to send and receive messages.

As a preparation work, several ports are defined. Every

149

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

port of SUT is mapped to a specific port of test suite as

shown in Fig. 7. Timer is always necessary in order to

avoid program deadlock. Some exception conditions,

such as unexpected message is received, should be taken

into consideration. Alt statement is used to deal with these

situations. At last, the connection between SUT and test

suites should be released.

The brief code of SUT is shown next. The function of

“NasEmu” is mentioned. The port of “NasEmu” and

some relevant operations are defined in this “NasEmu”

header file. Other header files are the definition of the

messages. What needs to concern is that if message

exchanging happened more than once in the whole

process, the relevant part of the code needs to add in

order.
module SUT{

 import from NasEmu all

 //import from other header files

 type port myPort message {
 inout all;

 }

 type component mtcType {

 port myPort IP_SOCK;
 port myPort IP_CTRL;

 port myPort IPSEC_CTRL;

 port myPort E_DRB;
 port myPort Ut;

 port myPort E_SYS;
 port myPort E_SYSIND;

 timer localtimer := 15.0;
 }

 type component systemType {

 port myPort IP_SOCK;

 port myPort IP_CTRL;
 port myPort IPSEC_CTRL;

 port myPort DRB;
 port myPort Ut;

 port myPort SYS;

 port myPort SYSIND;
 }

 testcase tc() runs on mtcType system systemType {

 map(mtc:IP_SOCK, system:IP_SOCK);

 map(mtc:IP_CTRL, system:IP_CTRL);
 map(mtc:IPSEC_CTRL, system:IPSEC_CTRL);

 map(mtc:E_DRB, system:DRB);
 map(mtc:Ut, system:Ut);

 map(mtc:E_SYS, system:SYS);

 map(mtc:E_SYSIND, system:SYSIND);

 localtimer.start;

alt {
[] receive(correct message) // correct message is received

{
localtimer.stop;

 send (expected message);

 }

[] receive() //Unexpected message received
{

 localtimer.stop;

 log(“Unexpected message received”);
}

[] localtimer.timeout{ }

}

 unmap(mtc:IP_SOCK, system:IP_SOCK);

 unmap(mtc:IP_CTRL, system:IP_CTRL);

 unmap(mtc:IPSEC_CTRL, system:IPSEC_CTRL);
 unmap(mtc:E_DRB, system:DRB);

 unmap(mtc:Ut, system:Ut);
 unmap(mtc:E_SYS, system:SYS);

 unmap(mtc:E_SYSIND, system:SYSIND);

 }
}

B. Codec

Technical specification has some Codec regulations,

that is, specific data types need to be encoded and

decoded by specific Codec. But in this paper, for the

purpose to show the flow path of test suites, common

Codec is a proper choice.

TE send

message

Call encode

operation

Define

ByteArrayoutputstream

Is this field

composite type

Get out the

subfield

YES

NO

What type is

the subfield

integer
Call the encode

method of

integer

float
Call the encode

method of float

default
Exception

handling

Convert the field

into bitstream

Write the bitstream into

ByteArrayoutputstream

Is this field the last one

YES

Enqueue the

cncoded data to

TE

convert

ByteArrayoutputstream

into Trimessage type

NO

Turn to next

field

Fig. 13. The flowchart of encoding.

Common Codec is a Codec which can encode and

decode all the TTCN-3 data types including composite

type. The programme flowchart of common Codec is

shown in Fig. 13. After TE starts to send message, it

calls the encode operation. At the beginning of the

operation, the ByteArrayoutstream is defined which is

used to store the result of encoding. Then, the data is

verdicted whether it is a composited type or not. If not,

the exact type is found out, and the data will be encoded

by the relevant method. If it is actually a composite type,

the subfield of the data will be get out to be encoded. Of

course, if the subfield is still composite type, its subfield

150

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

must also be get out untill the type is one of the basic

types. The encode methods of basic types can be

developed freely by developers. But what needs to

concern is that all the methods must be based on the

framework provided by the technical specification. After

the data is converted into bitstream, the bitstream is

copied to the ByteArrayoutstream. If all the fields of the

data have already been encoded, the result needs to be

converted into Trimessage type which can be recognized

by TE. At last, the encoding result will be returned to TE.

Once TE receives the result, the encode result will be sent

to SUT.

On the other hand, the methods of decoding must

highly conform to the encode methods. The whole

process of decoding is quite similar to the encode process.

C. Adaptor

All operations used in test case and transport protocol

must be implemented in adaptor. Because messages need

to be received by special port, the ports defined in test

case should be mapped one-to-one with the ports of SUT.

The brief code of Adaptor is shown next. The main

task of triExecuteTestcase is to get the parameters.

Usually, the IDE provides an interface for users to get the

configurations. In the part of trimap, the socket is used to

receive the message. Then the message will be converted

into Trimessge type before sending to TE. The interface

of trisend is responsible for getting the encoded message

and packet it into a datagram before sending out. At the

end of the test suite, triunmap will be called to stop

listening to ports and close the sender soceket.
triExecuteTestcase(final TriTestCaseId testcase,

final TriPortIdList tsiList){
 //get the remote IP address, port number and local address, port

//number from the configuration of IDE
 }

triMap(final TriPortId compPortId,
 final TriPortId tsiPortId) {

// prepare to be ready to communicate
 rxSocket = new DatagramSocket(localPortNumber);

 txSocket = new DatagramSocket();

// listen on the receiver socket

while (mylock){
udpReceiverThread = new Thread() {

rxSocket.setSoTimeout(100);

rxSocket.receive(packet);

final byte[] trimmedMsg = new byte[packet.getLength()];
System.arraycopy(msg, 0, trimmedMsg, 0, packet.getLength());

// convert the received message to Trimessage
final TriMessage rcvMessage = new TriMessageImpl(trimmedMsg);

// enqueue the received message to TE
triEnqueueMsg(tsiPortId, new TriAddressImpl(

new byte[] {}), compPortId.getComponent(), rcvMessage);

// close the receive socket

rxSocket.close();}
}

}

triunmap(final TriPortId compPortId,

 final TriPortId tsiPortId)){

// stop listening
Mylock=false;

//close the sender socket
txSocket.close();

}

triSend(final TriComponentId componentId,

final TriPortId tsiPortId, final TriAddress address,
final TriMessage sendMessage) {

// get the encoded message
final byte[] mesg = sendMessage.getEncodedMessage();

//get the remote IPAddress
final InetAddress addr = InetAddress.getByName(remoteIPAddress);

// packet the message

final DatagramPacket packet = new DatagramPacket(mesg,

mesg.length, addr, remotePortNumber);
}

In this example, UDP is adopted. Other transport layer

protocols such as TCP can also be implemented in the

adaptor if necessary.

In conclusion, the message is encoded by Codec and

then sent to special port of SUT by adaptor. Once the

message arrives, it is sent to TE by adaptor. After the

message decoded, other expected message is sent out by

SUT. Similarly, Host-PC receives it and makes verdict. If

everything goes well, the test case continues.

VI. AN EXAMPLE OF TEST PROCEDURE

TABLE I: MAIN BEHAVIORS

Step Procedure
Message sequence

S-U Message type

1 Cause the UE to be

switched off at the

beginning of a test
case

 UT_SYSTEM_REQ

2 UT_COMMON_CNF

3
Cell Configuration

p_SYSTEM_CTRL_R

EQ

4 car_CellConfig_CNF

5
Radio Bearer

configuration

CommonRadioBearerC

onfig_REQ

6
CommonRadioBearerC

onfig_CNF

7

DRB configuration

CommonRadioBearerC

onfig_REQ

8
CommonRadioBearerC

onfig_CNF

In this section, the process from the beginning of test

case to the cell creation is chosen to be the example.

Nearly all the test cases in the pure environment and

multi-mode environment start with this operation. The

main behaviors of the process are shown in Table I.

Before executing the test case, the code of Codec and

adaptor should be compiled and loaded to the IDE. It is an

important step to make test suites run successfully.

As mentioned in section V, several ports and timer

need to be defined. According to the main behavior of the

process, the core part of SUT code which shows the first

message exchanging is shown below.
localtimer.start;

alt {

151

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

 //received the right messsage
[] Ut.receive(cs_ UT_SYSTEM_REQ)

{

 localtimer.stop;
Ut.send(car_UT_COMMON_CNF);

}

 //received other messge

[] Ut.receive()
{

localtimer.stop;
log(“Unexpected message received”);

}

//nothing is received until the ending of the timer

[] localtimer.timeout{ }
}

MTC SUT E-URTA

UT_SYSTEM_REQ

UT_COMMON_CN

PASS

P_SYSTEM_CTRL

car_CellConfig_CNF

PASS

CommonRadioBea

rerConfig_REQ

CommonRadioBea

rerConfig_CNF

PASS

CommonRadioBea

rerConfig_REQ

CommonRadioBea

rerConfig_CNF

PASS

Fig. 14. The experiment result of this process.

The message named cs_UT_SYSTEM_REQ is sent

through the UT port of TE. Before sent from TE, the

message is encoded by the codec and TE calls the trisend

method to send it out. After sending it, TE is waiting for

the message car_UT_COMMON_CNF. After SUT

receives cs_UT_SYSTEM_REQ, the message expected by

test case is sent from SUT. When test case receives the

message named car_UT_COMMON_CNF, TE calls the

method of Trienqueue to enqueue the message to TE.

Then the message will be sent to decode. The decoded

message will be sent to TE again. If everything goes well,

the test case passes. So the test suite is able to go on. The

rest part of SUT is similar with above.

The experiment result of this process is illustrated in

Fig. 14. The experiment result indicates that the first

several steps in this test suite passed. The right message is

sent to the right port. In reality, the rest flow of the test

suite is similar to it. If the received message matches with

the expected one, the step of test will pass and next step

continues. If all the steps of the test case pass, the

equipment is in accord with the relevant standards.

The experiment result shown in Fig. 14 implies the

correction of the method proposed by this paper.

Currently, the protocol conformance test suites can only

been run in actual test system [3]-[5]. But to build an

actual test system is expensive and time consuming. So

the cost of development rises. With the method proposed

by this paper, the test system is more concise and

convenient to be realized.

VII. CONCLUSIONS

The main contribution of this paper is that a feasible

test model is designed and the SUT of the test model is

implemented. In this test model, a computer is used to

simulate the SUT to instead UE and SS. Test suites could

be run with correct test procedures and functions. In this

paper, a typical process of all the test suites is chosen as

an example to verify its correction.

In the near future, the RRM conformance test suite

may be also published. The method proposed by this

paper is also suitable for using. With the widely used of

TTCN-3, more and more fields such as Intelligent

Transportation System (ITS) and Wimax (802.16) have

chosen TTCN as a standard language to develop test

suites. Authoritative organizations release more and more

TTCN-3 test suites for manufacturers to test their

products. So the method of this paper may be more and

more useful.

As going on work, the structure of SUT can be smarter.

The code efficiency of the common codec can be

improved by trying some other encode technique.

REFERENCES

[1] H. Dong, L. Liu and X. Li, “The Application of TTCN-3 in The

Conformance Testing of TD-LTE System,” presented at 2nd

International Conference on Business Computing and Global

Informatization, Shanghai, China, Oct. 12-14, 2012.

[2] 3GPP TS 36.523-3, User Equipment (UE) conformance

specification; Part 3: Test suits, Sep. 2012.

[3] F. Chen and G. Zhou, “RRM Conformance testing in TD-LTE

system based on TTCN-3,” presented at IEEE International

Conference on Information and Automation, Yinchuan, China,

Aug. 2013.

[4] Q. Li and G. Deng, “Research and implementation of 3G/4G inter-

RAT terminal RRM conformance testing system (in Chinese),”

Computer Engineering and Design, vol. 34, no. 12, pp. 4081-4088,

Dec. 2013.

152

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

[5] Y. Liang, B. Zhao, C. Gao and J. Sun, “Research on conformance

testing for the safety communicaion protocol of high-speed

railway control system based on TTCN-3,” presented at

International Conference on Transportation, Mechanical and

Electrical Engineering, Changchun, China, Dec 16-18, 2011.

[6] D. Wang, J. Kuang and W. Tan, “Conformance testing for the car

lights system based on AUTOSAR standard,” presented at IEEE

International Conference on communication Software and

Networks, Xi’an, China, May 27-29. 2011.

[7] S. Zhang, H. Li, Y. Xue and X. Wang, “Using TTCN-3 to test

SPDY Protocol Interaction Property,” presented at IEEE

International Computers, Software and Applications Conference

Workshops, Västerås, Sweden, July 27-29. 2014.

[8] B. Stepien, L. Peyton, and P. Xiong, “Using TTCN-3 as a

Modeling Language for Web Penetration Testing,” presented at

IEEE International Conference on Industrial Technology, Athens,

Greece, March 19-21, 2012.

[9] ETSI, Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3, Part 1: TTCN-3 Core

notation, ETSI ES 201 873-1, June 2014.

[10] C. Willcock, et al., An Introduction to TTCN-3, Chichester, U.K.:

Wiley, 2005, ch 12, pp. 204-208.

[11] S. Sesia, I. Toufik and M. Baker, The UMTS Long Term Evolution

From Theory to Parctice, Beijing, China: Posts and Telecom Press,

2009, pp. 1-3.

[12] 3GPP TS 36.300, E-UTRA and E-UTRAN Overall Description,

June 2013.

[13] Y. Wang and Z. Sun, TD-LTE Principles and System Design,

Beijing, China: Posts and Telecom Press, 2010, pp. 33-35.

[14] 3GPP TS 36.401, E-UTRA Architecture Description, June 2010.

Yin Chen received his B.S. degree in

Information and Computing Science from

Hefei University of Technology, Anhui

province, China. He is currently working

toward Master’s degree at Hefei University of

Technology. His research interests include

protocol conformance testing and wireless

networks.

Zhizhong Ding received his B.E. degree in

Radio Communications from Nanjing

University of Aeronautics and Astronautics,

Nanjing, China, Master’s degree in Circuit

and System from Hefei University of

Technoloy, Hefei, China, and Ph.D. in

Information and Communication Engineering

from University of Science and Technology

of China. He currently is a Professor with the

Department of Communication Engineering and with the Institute of

Communications and Information Systems, Hefei University of

Technology. His research intersests include wireless communications,

network communications and information theory.

Dingliang Wang received his B.E degree in

Communication Engineering from Hefei

University of Technology, Anhui province,

China. He is currently working toward

Master’s degree at Hefei University of

Technology. His research interests include

protocol conformance testing and wireless

communication.

Teng Huang received his B.E degree in

Communication Engineering from Anqing

Normal University, Anhui province, China.

He is currently working toward Master’s

degree at Hefei University of Technology. His

research interests include protocol

conformance testing and OFDM system.

153

Journal of Communications Vol. 10, No. 2, February 2015

©2015 Engineering and Technology Publishing

