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Abstract—The non-binary Low Density Parity Check (LDPC) 

codes over Galois Fields GF(q = 2p) have evolved from the 

binary LDPC codes that are today an industry standard for 

channel coding. The performance of short block length codes is 

significantly higher for non-binary LDPC, at the cost of 

increased decoding complexity. The efficient decoder hardware 

implementation is still a challenging task. Most of the recently 

proposed hardware realizations are ASIC-oriented as they 

employ multiplierless computation units. This article concerns a 

different decoder design approach that is specifically intended 

for an FPGA implementation. The reformulated mixed-domain 

FFT-BP decoding algorithm is applied that does not exclude the 

multiplication units. This allows mapping a part of the 

algorithm to the multiplier cores embedded in an FPGA. In this 

article we concentrate on the important issue of the proper 

selection of the numeric precision employed. We present the 

partially parallel extension of the mixed-domain decoder that 

operates for the structured codes. Then we carefully analyze the 

finite precision effects on the decoding performance. By 

simulation and synthesis results we show that it is advantageous 

to segment the decoder dataflow into 3 parts with different 

precision. The provided results also facilitate the precision 

selection for maximum performance or for some performance-

complexity tradeoff. 
 
Index Terms—Error correcting codes, LDPC codes, Non-

binary codes, Iterative decoder, Hardware decoder 

 

I. INTRODUCTION 

Binary LDPC codes, after their rediscovery in the late 

90's [1], have attracted great research attention due to 

their excellent error-correcting performance and highly 

parallel iterative decoding scheme. They have become 

one of the industry standards for error correction coding 

in wireless communication. However when the codeword 

length has to be small to moderate or when higher order 

modulation is applied [2], the non-binary LDPC codes 

defined over the Galois Field GF(q) [3] can outperform 

their binary counterparts. 

The major drawback of codes over higher order fields 

is their decoding algorithm complexity. Both binary and 

non-binary LDPC codes are decoded using Belief 

Propagation (BP) on their factor graphs, however the 

decoding complexity of GF(q) codes scales exponentially 

with the number of bits in the symbol. 

                                                           
Manuscript received June 25, 2014; revised January 30, 2015. 

It is known that the complexity of BP can be reduced 

with its dual form in the frequency domain [4]. Another 

algorithm reformulations use logarithm domain with log-

density [5] or log-density-ratio representation of 

messages, which require fewer quantization levels due to 

lower sensitivity to quantization [6]. Moreover in [7] the 

mixed domain algorithm has been proposed, where the 

FFT operation is performed in the real domain and the 

VNs and CNs operations in the log domain, so that only 

additions and subtractions are needed. Some algorithms 

with reduced complexity have also been proposed, such 

as Min-Max algorithm [8] and the extended min-sum 

(EMS) algorithm [9]. However implementation of these 

algorithms is inevitably connected with some decoding 

performance degradation. 

An FPGA implementation of the mixed domain 

decoder serial realization is also presented in [7]. In [10] 

the min-max decoder is proved to be more efficiently 

implementable than the mixed-domain decoder [7] as 

well as the EMS decoder [11]. Other recent state of the 

art hardware decoder designs are also based mostly on the 

Min-Max or the EMS algorithms, or some variations of 

them [12]–[16]. The so-called layered decoding is applied 

in some implementations [17]. 

The common characteristic of the mentioned hardware 

implementations is that all of them adopt variations of the 

BP decoding algorithm with exclusion of the 

multiplication operations. Such an approach makes the 

design ASIC (Application Specific Integrated Circuit) 

oriented. However in the case of FPGA (Field 

Programmable Gate Array) implementation, a large 

number of hardware multipliers is available for designer 

disposal in a typical modern FPGA chip. It is then often 

desirable to make use of the multiplier cores. 

The primary motivation for this work is to design a 

decoder that is: 1) easily scalable for an FPGA devices of 

different sizes; 2) capable of achieving the highest 

possible throughput for a single FPGA by means of 

utilization most of the available resources. The first goal 

is achieved by means of partially parallel decoder 

architecture with configurable number of processing units. 

In order to achieve the second goal, not only the basic 

Logic Elements (Slices), but also the hardware Multiplier 

Blocks (DSP48s in the case of Xilinx devices) are utilized. 

This is not possible with any multiplierless 

implementation similar to the state of the art works 

mentioned above. Therefore in [18] we have presented 
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the decoding algorithm reformulation and the FPGA 

decoder serial implementation that efficiently utilizes all 

the FPGA resource types, including hardware Multiplier 

Blocks. The decoder operates over mixed (real / 

logarithm) message domains, which enables employing 

the Multiplier Blocks. 

In this article some additional details of the designed 

decoder operation are discussed. Firstly, we present the 

partially parallel extension of the decoder architecture 

that operates for the structured GF(q)-LDPC codes. The 

presented architecture enables the mentioned throughput 

scalability, which is confirmed by the provided synthesis 

results. Secondly, we discuss the messages quantization 

issues and provide experimental results that aid selection 

of the fixed-point messages format and precision. The 

message quantization scheme is very important issue, 

because the wordlength of the fixed-point representation 

defines the performance-area tradeoff of the decoder. We 

will show that in the decoder employing the mixed 

domain algorithm, the wordlength should be chosen 

separately for the decoding domains. Moreover by 

simulation and synthesis results we show that it is 

advantageous to segment the decoder dataflow into 3 

parts with different precision. 

The paper is organized as follows. In the next section 

the structured LDPC codes over GF(q) are defined, then 

in section III the reformulated decoding algorithm that 

has been proposed is recalled. The partially parallel 

decoder FPGA implementation is presented in section IV, 

which is followed by the discussion of the messages 

quantization issues in section V. Finally synthesis results 

and conclusions are presented in section VI and VII 

respectively. 

II. THE STRUCTURED GF(Q) LDPC CODES 

LDPC codes are a class of linear block codes defined 

over the Galois field GF(q) with restriction to fields of 

the size being power of two (q=2
p
). In the case of the well 

known binary codes the field size is 2 (thus p=1), 

whereas for the non-binary codes p>1. 

The (N,K) LDPC code with a source vector length K 

and a code vector length N is defined by a low density 

parity check matrix HM×N with GF(q) entries hmn, where 

M=N-K is the number of parity checks. 

An efficient partially-parallel decoder implementation 

is possible for parity-check matrices with a special 

constraint on their form. The main building blocks of 

partially-parallel decoder are message memories and a 

number of computation units. In order to organize 

memory accesses without contentions, the parity check 

matrix should be in a structured form, partitioned into a 

square submatrices. 

The structured GF(q) LDPC code is defined by the 

parity check matrix H being a composite of a square 

submatrices: 
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where each submatrix Pd,l of size P×P is either an all-zero 

matrix or a matrix with exactly one nonzero element 

(coefficient) in every row and every column. In other 

words it is a permutation of an identity matrix multiplied 

by a coefficient from GF(q). 

The submatrix size P dictates the number of parallel 

computation units in the partially parallel decoder 

architecture that will be presented. Therefore P is directly 

related with the achievable decoder throughput. Remark 

that the structured code definition (1) gives us a more 

flexible submatrix size P election than for the QC-LDPC 

codes subclasses as defined in [19] that are employed in 

most of the other state of the art NB-LDPC decoder 

implementations [13], [14], [20]. 

III. NONBINARY CODES DECODING 

A row vector c (over GF(q)) of length N is a valid 

codeword if it satisfies the parity check equation: 

 
1

T

MHc 0 , (2) 

where the operations are performed in the Galois field 

arithmetic. Equation (2) can be partitioned into M checks 

associated with M rows of H. 

The goal of the decoder is to find the most probable 

originally transmitted vector c that satisfies (2), taking 

into account the received channel values y=[y1,y2,…,yN]. 

In the soft decision decoding system, the values 

initializing the decoder are likelihoods: 

 ( | ),    1, , ,   GF( )a

n n nf P c a y n N a q     (3) 
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Fig. 1. Graph representation of the decoding algorithm. 

The LDPC codes are decoded with iterative algorithms, 

so-called Belief Propagation algorithm or some 

modification of it. Considering the iterative decoding 

algorithm, a convenient representation of the parity check 

matrix is the Tanner graph (Fig. 1). 

Journal of Communications Vol. 10, No. 1, January 2015

87©2015 Engineering and Technology Publishing



The variable nodes (VNs) and the check nodes (CNs) 

represent N decoded code vector elements and M checks 

respectively. The edges in the graph are associated with 

positions of the non-zero entries in H. The values of the 

non-zero entries can be represented in the graph by the 

edge labels or some additional nodes (permutation nodes) 

denoted as P in Fig. 1. The decoding algorithms are based 

on iterative recalculation and exchanging messages 

(beliefs) between graph edges. 

It is well known that the complexity of the classic 

Belief Propagation (BP) decoding algorithm [3] over 

higher order GF fields can be scaled down if its dual form 

in the frequency domain (FFT-BP) is used [4]. Another 

algorithm reformulations use logarithm domain with log-

density [5] or log-density-ratio representation of 

messages, which require fewer quantization levels due to 

lower sensitivity to quantization [6]. 

The logarithm domain implementation for FFT-BP 

algorithm can be proposed as well [5]. In this method it is 

possible to replace product operations with additions for 

both VNs and CNs processing, however the additions and 

subtractions computed in the real domain FFT do not 

have straightforward equivalent in the logarithm domain. 

Therefore in [7] the mixed domain algorithm has been 

proposed, where the FFT operation is performed in the 

real domain and the VNs and CNs operations in the log 

domain, so that only additions and subtractions are 

needed. 

In this article we discuss a decoder implementation 

based on similar to the proposed in [7] mixed domain 

algorithm formulation with the main difference being that 

check nodes (CNs) operate in the real domain. Such an 

approach is intended specifically for FPGA decoder 

implementation and the motivation is as follows: 

 

 

 

 

Here we review the employed mixed real-logarithm 

domain permutation FFT-BP algorithm formulation [18]. 

The algorithm is initialized with logarithms of likelihoods 

log( )a a

n n
F f . The real (probability) domain message 

vectors propagated from VNn to CNm are denoted as 

0 1 2[ , , , ]
p

mn mn mn mnq q qq  and the real domain message 

vectors from CNm to VNn are denoted as 

0 1 2[ , , , ]
p

mn mn mn mnr r rr . The log-domain messages are 

denoted with uppercase, 
a

mnQ  and 
a

mnR respectively. The 

message vector permutations [7] are expressed by matrix-

vector multiplication with permutation matrices 
mnhP  and 

1

hmn


P . The ( )N m  denotes the set of indexes of variable 

nodes adjacent to check node CNm and the ( )M n  

denotes the set of indexes of check nodes adjacent to 

variable node VNn. Notation X \ x represents a set X 

excluding x. The algorithm can be summarized as follows: 

1) Initialization. 

For 1, , ; ( ); GF( )n N m M n a q   : 

 :a a

mn nQ F  (4) 

2) Check Nodes processing. 

For 1, , ; ( ); GF( )m M n N m a q   : 

  : expa a

mn mnq Q  (5) 

gather: 
0 1 2[ , , , ]

p

mn mn mn mnq q qq , then: 
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1
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:

mn
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FFT

IFFT









 
  

 


u P q

r P u
 (6) 

where mn is the normalization factor;  is the term 

by term product of vector elements. CNs output: 

  : loga a

mn mnR r  (7) 

3) Variable Nodes processing. 

For 1, , ; ( ); GF( )n N m M n a q   : 

 

( )\

:a a a

mn n jn

j M n m

Q F R


    (8) 

4) Tentative decoding. For 1, ,n N : 

 

( )

ˆ : arg max a a

n n jn
a j M n

c F R


 
  

 
  (9) 

If ˆT Hc 0  then halt the decoding with c as output, 

otherwise go to the check nodes processing (step 2). 

IV. HARDWARE IMPLEMENTATION OF THE PARTIALLY 

PARALLEL DECODER 

The overall architecture of the designed hardware 

decoder operating under the mixed domain algorithm is 
presented in Fig. 2. The partially-parallel architecture 

provides throughput-complexity tradeoff capabilities by 
means of configurable number P of parallel Variable 

Node Units (VNU) and Check Node Units (CNU). This 

number of units corresponds to the submatrix size of H in 
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 CNs operating in the real domain require

multiplication operations, which fits well into the

contemporary FPGA devices containing a large

amount of hardware multipliers that would remain

unused otherwise.

 Since the CNs processing include FFT and IFFT,

which is calculated in the real domain anyway, our

proposition requires only two domain changes per

iteration (on the input and output of the CNs) instead

of four domain changes in [7].

 Using logarithm domain on the VNs side allows

memory savings, because messages stored in

memories require substantially fewer bits due to the

mentioned lower sensitivity to quantization effects.



(1). In the extreme case of P=1 the architecture is serial 

(see Fig. 3). 
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Output

Input
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Fig. 2. Partially parallel decoder architecture. 
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Fig. 3. Serial decoder architecture. 

The log-domain messages are exchanged between 

computation units: every CNU accepts the vector of q 

values 
a

mnQ  (for every GF( )a q ) of woldlength Wl 

and produces the vector of q values 
a

mnR . Outputs of P 

parallel CNUs are combined to a single memory word of 

length PqWl stored in RAMR. The shuffle networks 

perform configurable cycle shifts according to the 

structure of submatrices of H. Every VNU accepts 

vectors from RAMR memory and the input data 
a

nF from 

RAMF memory and produces 
a

mnQ  values that are saved 

to RAMQ memory. Moreover the VNU delivers data to 

the Hard Decision Unit (HDU), which makes tentative 

decisions according to (9). 

A. Variable Node Unit 

The VNU is composed of q parallel subunits (see Fig. 

4), where every subunit realizes (8) for a single value a. 

For the nth variable node, VNU calculates messages for 

every ( )m M n . At first the sum of 
a

nF  and all 

incoming values 
a

mnR is calculated in the accumulator. 

This sum is outputted to the hard decision unit (HDU). 

Then the input values (delayed by the shift register) are 

subtracted from the sum to form the exclusive sums over 

( ) \j M n m  in (8). The shift register is dynamic, thus 

it enables variability of VN degrees. 

+

+

+

–

CE

input R

input F

output Q

Dynamic Shift Register

catch

sum

output to HDU

 
Fig. 4. Subunit of the Variable Node Unit (VNU). 

B. Check Node Unit 

Architecture of the check node unit (CNU) operating 

according to (5)-(7) is shown in Fig. 5. The data 

propagated through the CNU block are message vectors 

of size q with elements represented by a fixed point 

numbers with diversified precision. The finite precision 

issues will be discussed in the next section. 

The permutation blocks realize a message vector cyclic 

shifts defined by 
mnhP matrices (and its inverse 

respectively) for every nonzero hmn entry of H. The 

permutation blocks are composed of multiplexers 

allowing to process those cyclic shifts. To efficiently 

implement these blocks block we have adopted the 

structure of a Banyan switch that is known to be an 

efficient interconnection structure for a configurable 

cyclic shifter [21]. The domain transformations are 

performed with q Look Up Tables (LUT) realizing exp(.) 

and log(.) nonlinear functions for every message vector 

element separately. Each of the domain transformation 

LUTs as well as each of the permutation blocks contains 

a single layer of pipeline registers that are applied in 

order to achieve a relatively high clock frequency. The 

FFT and IFFT blocks are implemented with networks of 

adders and subtractors [18] with embedded pipeline 

registers as well. 
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Fig. 5. Check Node Unit (CNU). 
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Since the core operation in (6) is the term by term 

product of vectors, it is realized in q blocks, separately 

for every message vector element. The operation of a 

multiplier block associated with an element a of the 

message vector for the mth check node can be expressed: 

 

( )\

:a a

mn mj

j N m n

v u


   (10) 

where 
a

mju  is an element of mju  in (6) and 
a

mnv is an 

element of mn mj v u  in (6). For the mth check 

node processing, the multiplier block calculates 
a

mnv  

values for every ( )n N m . It is therefore convenient to 

realize this calculations by a well known forward-

backward recursion scheme. In the designed decoder, the 

recursive multiplier subblocks operate under this scheme. 

The multiplication operations are realized making use of 

the hardware resources available in the FPGA devices, 

e.g. DSP48E1 Slices in the Virtex6 family. More details 

about the decoder implementation can be found in [18]. 

V. RECOMMENDED MESSAGE QUANTIZATION SCHEME 

The data propagated through the CNU block is in the 

form of vectors of q=2
p
 messages. A very important issue 

is the selection of the numeric precision, because the 

wordlength of the fixed-point representation defines the 

performance-area tradeoff of the decoder. When the 

decoder employs mixed domain algorithm, the 

wordlength should be chosen separately for the decoding 

domains. Due to the lower sensitivity of log-domain 

messages to the quantization effects [6], it is possible to 

set the wordlength in the logarithm domain side (Wl) 

significantly lower than in the probability domain side, 

without performance degradation. Moreover, we 

recommend additional partition of the probability domain 

side into normalized section with wordlength Wp and 

non-normalized section with extended wordlength Wpe 

(see Fig. 5). It is motivated by the fact that the messages 

before normalization possess higher dynamic range, 

thereby their representation requires more bits. 

Since the values of messages in the probability domain 

are in the range [0,1], the suitable representation is a 

standard unsigned fixed-point notation constrained to the 

fractional part. The situation is different for the logarithm 

domain case, because logarithms of likelihoods are 

always negative. Moreover the lower limit is equal to the 

logarithm of the smallest representable probability, i.e. 

log(2
–Wpe

). Therefore the logarithm domain messages are 

limited to [log(2
–Wpe

),0], uniformly quantized and 

represented by unsigned numbers with precision Wl bits 

(the always negative sign is omitted). 

Here we provide some experimental results that 

facilitate the message wordlength selection and confirm 

that the proposed wordlength differentiation (Wl, Wp, Wpe) 

is reasonable. The simulation and synthesis results 

presented in Fig. 6- Fig. 7 have been obtained with FPGA 

implementation of the decoder in the Xilinx Virtex6 

device. The BIAWGN channel model has been employed 

for simulations and two rate-1/2 codes have been used: a 

(600,300) code over GF(16) and a (400,200) code over 

GF(64). The parity check matrices were generated 

making use of the classic PEG algorithm [22] with 

nonzero entries selected row by row with a method 

similar to the proposed in [23]. The synthesis results 

concern the serial implementation, P=1. 
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Fig. 6. Decoder performance (BER) and area (Virtex6 Slices) with 

respect to the wordlength Wl, for Wp = 16, Wpe = 20. 
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Fig. 7. Decoder performance (BER) and area (Virtex6 Slices) with 
respect to the wordlength Wpe. 

Let us comment the presented results. According to the 

results in Fig. 6, increasing the Wl over 8bits is pointless 

because of the Bit Error Rate (BER) saturation. Therefore 

Wl=8 should be chosen for an optimum performance. 

Lower wordlength could also be useful for area reduction 

at the cost of performance reduction; for instance Wl=6 

entails the loss of about 0.1dB for GF(16) and about 

0.2dB for GF(64). 

Results presented in Fig. 7 facilitate Wp and Wpe 

selection. First remark that for Wp=14 (red curve) and 
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Wp=16 (green curve) there is little to no difference in 

performance, regardless of the Wpe value. Meanwhile 

increasing Wpe up to 20 results in a significant BER 

improvement. This observation justifies our 

recommendation for the probability domain segmentation. 

Without Wp–Wpe distinction, for the optimum 

performance Wpe=Wpe=20 should be chosen. The FPGA 

area would then be enormous. The proposed 

segmentation allows fixing Wpe=20 while reducing Wp 

down to 14 without performance degradation. Significant 

FPGA resources can then be saved, which is confirmed 

by the synthesis results provided also in Fig. 7. For 

example reducing the Wp from 16 down to 14 enables 

saving about 30% of Slices. Remark that the Wpe 

reduction (with fixed Wp) would not enable such a large 

savings. Concluding we claim that for optimized 

performance, relatively large Wpe and reduced Wp should 

be set, for instance we recommend Wpe=20 and Wp=14 for 

near optimal performance with reduced area. Meanwhile 

lower wordlengths could be used for the FPGA area 

reduction at the cost of performance reduction. 

VI. SYNTHESIS AND SIMULATION RESULTS 

The decoder has been implemented and verified with 

Xilinx Virtex-4 as well as Virtex-6 devices. Synthesis 

results for a code with block length 2160 bits over GF (8), 

similar to the code used in [7], are presented in Table I. 

We have also included the synthesis results taken from 

[7]. The Table I includes the numbers of Slices utilized, 

the numbers of Block RAMs and the numbers of 

DSP48E1 Slices (multipliers) along with the throughput 

assessment. The serial implementation (P=1) is used in 

this case. The wordlength selected according to the 

results presented in the previous section guarantees nearly 

full-precision performance. 

TABLE I: FPGA SYNTHESIS RESULTS FOR THE DESIGNED DECODER 

OVER GF(8) IN COMPARISON WITH THE RESULTS PRESENTED IN [7] 

 [3] This work 

Field order GF(8) GF(8) 

Code (720,360) (720,360) 

Decoding Algorithm FFT-BP FFT-BP 

Number of iterations unknown 15 

Precision 8 bits Wl=8, Wp=14 

Synthesis Target Virtex-2P Virtex-4 

Slices 4660 1920 

BRAMs 16 25 

Multipliers (DSP48s) 0 16 

Max. clock frequency 99.7 MHz 177 MHz 

Throughput 1.09 Mbps 2.02 Mbps 

 

The Virtex-2P family from the prior implementation [7] 

is no longer supported by the recent software. However 

the Slices embedded in the Virtex4 devices hold structure 

very similar to the Virtex-2P Slices, comprising two 4-

input LUTs. Block RAMs (BRAMs) and Multipliers have 

also the same parameters. Therefore the utilization results 

can be compared directly with [7]. The serial 

implementation of the designed decoder utilizes 

significantly less Slices, at the cost of 16 Multiplier Cores. 

The utilization is equally distributed among Slices, 

BRAMs and DSPs, thus employing efficiently the FPGA 

fabric in the case of semi parallel implementation. 

Fig. 8 and Fig. 9 show the Word Error Rate (WER) 

performance for codes with block length 2400 bits, binary 

and nonbinary over GF(2
2
), GF(2

4
) and GF(2

6
). The 

parity check matrices for the codes have been constructed 

making use of the PEG algorithm [22], structured with an 

algorithm [24], and the nonzero entries selection method 

similar the proposed in [23]. QPSK modulation (Fig. 8) 

as well as QAM-64 modulation (Fig. 9) with AWGN 

channel model have been used for the simulations. The 

presented results confirm that the higher order Galois 

Fields allow achieving higher performance with the same 

code block length. 

 
Fig. 8. Nonbinary codes decoding simulation results for 64-QAM 

modulation over AWGN channel and different field orders. 

 

Fig. 9. Nonbinary codes decoding simulation results for QPSK 

modulation over AWGN channel and different field orders. 

VII.   CONCLUSIONS 

The efficient partially parallel GF(q)-LDPC decoder 

implementation devoted for FPGA devices is proposed. 

This construction is an extension of the serial architecture. 

The partially parallel implementation can achieve an 
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increased throughput and allows throughput-complexity 

tradeoff. Efficiency of the presented realization is based 

on the balanced utilization of all the types of FPGA 

resources, particularly making use of the multiplier 

blocks. 

The important issue of the messages quantization 

method and precision has been discussed in this paper. 

We have shown that the message wordlength of the 

designed decoder should be chosen separately for the 

logarithm domain (Wl) and probability domain (Wp) parts 

of the decoder dataflow. Moreover yet other precision 

should be selected for non-normalized messages (Wpe). 

We provided experimental results that facilitate the 

message wordlength selection and confirm that the 

proposed wordlength differentiation is reasonable. The 

recommendations for the precision selection have also 

been given for the three parts of the decoder dataflow. 

Specifically the decoder with precision Wl=8, Wpe =20 

and Wp =14 achieves near optimal performance, while the 

FPGA resources are significantly reduced in comparison 

with the solution without the proposed precision 

differentiation. 
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