
Decoder FPGA Implementation

Wojciech Sulek

Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland

Email: Wojciech.Sulek@polsl.pl

Abstract—The non-binary Low Density Parity Check (LDPC)

codes over Galois Fields GF(q = 2p) have evolved from the

binary LDPC codes that are today an industry standard for

channel coding. The performance of short block length codes is

significantly higher for non-binary LDPC, at the cost of

increased decoding complexity. The efficient decoder hardware

implementation is still a challenging task. Most of the recently

proposed hardware realizations are ASIC-oriented as they

employ multiplierless computation units. This article concerns a

different decoder design approach that is specifically intended

for an FPGA implementation. The reformulated mixed-domain

FFT-BP decoding algorithm is applied that does not exclude the

multiplication units. This allows mapping a part of the

algorithm to the multiplier cores embedded in an FPGA. In this

article we concentrate on the important issue of the proper

selection of the numeric precision employed. We present the

partially parallel extension of the mixed-domain decoder that

operates for the structured codes. Then we carefully analyze the

finite precision effects on the decoding performance. By

simulation and synthesis results we show that it is advantageous

to segment the decoder dataflow into 3 parts with different

precision. The provided results also facilitate the precision

selection for maximum performance or for some performance-

complexity tradeoff.

Index Terms—Error correcting codes, LDPC codes, Non-

binary codes, Iterative decoder, Hardware decoder

I. INTRODUCTION

Binary LDPC codes, after their rediscovery in the late

90's [1], have attracted great research attention due to

their excellent error-correcting performance and highly

parallel iterative decoding scheme. They have become

one of the industry standards for error correction coding

in wireless communication. However when the codeword

length has to be small to moderate or when higher order

modulation is applied [2], the non-binary LDPC codes

defined over the Galois Field GF(q) [3] can outperform

their binary counterparts.

The major drawback of codes over higher order fields

is their decoding algorithm complexity. Both binary and

non-binary LDPC codes are decoded using Belief

Propagation (BP) on their factor graphs, however the

decoding complexity of GF(q) codes scales exponentially

with the number of bits in the symbol.

Manuscript received June 25, 2014; revised January 30, 2015.

It is known that the complexity of BP can be reduced

with its dual form in the frequency domain [4]. Another

algorithm reformulations use logarithm domain with log-

density [5] or log-density-ratio representation of

messages, which require fewer quantization levels due to

lower sensitivity to quantization [6]. Moreover in [7] the

mixed domain algorithm has been proposed, where the

FFT operation is performed in the real domain and the

VNs and CNs operations in the log domain, so that only

additions and subtractions are needed. Some algorithms

with reduced complexity have also been proposed, such

as Min-Max algorithm [8] and the extended min-sum

(EMS) algorithm [9]. However implementation of these

algorithms is inevitably connected with some decoding

performance degradation.

An FPGA implementation of the mixed domain

decoder serial realization is also presented in [7]. In [10]

the min-max decoder is proved to be more efficiently

implementable than the mixed-domain decoder [7] as

well as the EMS decoder [11]. Other recent state of the

art hardware decoder designs are also based mostly on the

Min-Max or the EMS algorithms, or some variations of

them [12]–[16]. The so-called layered decoding is applied

in some implementations [17].

The common characteristic of the mentioned hardware

implementations is that all of them adopt variations of the

BP decoding algorithm with exclusion of the

multiplication operations. Such an approach makes the

design ASIC (Application Specific Integrated Circuit)

oriented. However in the case of FPGA (Field

Programmable Gate Array) implementation, a large

number of hardware multipliers is available for designer

disposal in a typical modern FPGA chip. It is then often

desirable to make use of the multiplier cores.

The primary motivation for this work is to design a

decoder that is: 1) easily scalable for an FPGA devices of

different sizes; 2) capable of achieving the highest

possible throughput for a single FPGA by means of

utilization most of the available resources. The first goal

is achieved by means of partially parallel decoder

architecture with configurable number of processing units.

In order to achieve the second goal, not only the basic

Logic Elements (Slices), but also the hardware Multiplier

Blocks (DSP48s in the case of Xilinx devices) are utilized.

This is not possible with any multiplierless

implementation similar to the state of the art works

mentioned above. Therefore in [18] we have presented

Journal of Communications Vol. 10, No. 1, January 2015

86©2015 Engineering and Technology Publishing

doi:10.12720/jcm.10.1.86-92

Message Quantization Scheme for Nonbinary LDPC

the decoding algorithm reformulation and the FPGA

decoder serial implementation that efficiently utilizes all

the FPGA resource types, including hardware Multiplier

Blocks. The decoder operates over mixed (real /

logarithm) message domains, which enables employing

the Multiplier Blocks.

In this article some additional details of the designed

decoder operation are discussed. Firstly, we present the

partially parallel extension of the decoder architecture

that operates for the structured GF(q)-LDPC codes. The

presented architecture enables the mentioned throughput

scalability, which is confirmed by the provided synthesis

results. Secondly, we discuss the messages quantization

issues and provide experimental results that aid selection

of the fixed-point messages format and precision. The

message quantization scheme is very important issue,

because the wordlength of the fixed-point representation

defines the performance-area tradeoff of the decoder. We

will show that in the decoder employing the mixed

domain algorithm, the wordlength should be chosen

separately for the decoding domains. Moreover by

simulation and synthesis results we show that it is

advantageous to segment the decoder dataflow into 3

parts with different precision.

The paper is organized as follows. In the next section

the structured LDPC codes over GF(q) are defined, then

in section III the reformulated decoding algorithm that

has been proposed is recalled. The partially parallel

decoder FPGA implementation is presented in section IV,

which is followed by the discussion of the messages

quantization issues in section V. Finally synthesis results

and conclusions are presented in section VI and VII

respectively.

II. THE STRUCTURED GF(Q) LDPC CODES

LDPC codes are a class of linear block codes defined

over the Galois field GF(q) with restriction to fields of

the size being power of two (q=2
p
). In the case of the well

known binary codes the field size is 2 (thus p=1),

whereas for the non-binary codes p>1.

The (N,K) LDPC code with a source vector length K

and a code vector length N is defined by a low density

parity check matrix HM×N with GF(q) entries hmn, where

M=N-K is the number of parity checks.

An efficient partially-parallel decoder implementation

is possible for parity-check matrices with a special

constraint on their form. The main building blocks of

partially-parallel decoder are message memories and a

number of computation units. In order to organize

memory accesses without contentions, the parity check

matrix should be in a structured form, partitioned into a

square submatrices.

The structured GF(q) LDPC code is defined by the

parity check matrix H being a composite of a square

submatrices:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

L

L

D D D L



 
 
 
 
 
 

P P P

P P P
H

P P P

 (1)

where each submatrix Pd,l of size P×P is either an all-zero

matrix or a matrix with exactly one nonzero element

(coefficient) in every row and every column. In other

words it is a permutation of an identity matrix multiplied

by a coefficient from GF(q).

The submatrix size P dictates the number of parallel

computation units in the partially parallel decoder

architecture that will be presented. Therefore P is directly

related with the achievable decoder throughput. Remark

that the structured code definition (1) gives us a more

flexible submatrix size P election than for the QC-LDPC

codes subclasses as defined in [19] that are employed in

most of the other state of the art NB-LDPC decoder

implementations [13], [14], [20].

III. NONBINARY CODES DECODING

A row vector c (over GF(q)) of length N is a valid

codeword if it satisfies the parity check equation:

1

T

MHc 0 , (2)

where the operations are performed in the Galois field

arithmetic. Equation (2) can be partitioned into M checks

associated with M rows of H.

The goal of the decoder is to find the most probable

originally transmitted vector c that satisfies (2), taking

into account the received channel values y=[y1,y2,…,yN].

In the soft decision decoding system, the values

initializing the decoder are likelihoods:

 (|), 1, , , GF()a

n n nf P c a y n N a q    (3)

Edges Interconnection

VN1

CN1 CN2 CNM

P P

VN2

P P

VNN

P P

Variable Nodes

Processing

Check Nodes

Processing

Messages
exchange

f1 f2 fN
Initialization

Fig. 1. Graph representation of the decoding algorithm.

The LDPC codes are decoded with iterative algorithms,

so-called Belief Propagation algorithm or some

modification of it. Considering the iterative decoding

algorithm, a convenient representation of the parity check

matrix is the Tanner graph (Fig. 1).

Journal of Communications Vol. 10, No. 1, January 2015

87©2015 Engineering and Technology Publishing

The variable nodes (VNs) and the check nodes (CNs)

represent N decoded code vector elements and M checks

respectively. The edges in the graph are associated with

positions of the non-zero entries in H. The values of the

non-zero entries can be represented in the graph by the

edge labels or some additional nodes (permutation nodes)

denoted as P in Fig. 1. The decoding algorithms are based

on iterative recalculation and exchanging messages

(beliefs) between graph edges.

It is well known that the complexity of the classic

Belief Propagation (BP) decoding algorithm [3] over

higher order GF fields can be scaled down if its dual form

in the frequency domain (FFT-BP) is used [4]. Another

algorithm reformulations use logarithm domain with log-

density [5] or log-density-ratio representation of

messages, which require fewer quantization levels due to

lower sensitivity to quantization [6].

The logarithm domain implementation for FFT-BP

algorithm can be proposed as well [5]. In this method it is

possible to replace product operations with additions for

both VNs and CNs processing, however the additions and

subtractions computed in the real domain FFT do not

have straightforward equivalent in the logarithm domain.

Therefore in [7] the mixed domain algorithm has been

proposed, where the FFT operation is performed in the

real domain and the VNs and CNs operations in the log

domain, so that only additions and subtractions are

needed.

In this article we discuss a decoder implementation

based on similar to the proposed in [7] mixed domain

algorithm formulation with the main difference being that

check nodes (CNs) operate in the real domain. Such an

approach is intended specifically for FPGA decoder

implementation and the motivation is as follows:

Here we review the employed mixed real-logarithm

domain permutation FFT-BP algorithm formulation [18].

The algorithm is initialized with logarithms of likelihoods

log()a a

n n
F f . The real (probability) domain message

vectors propagated from VNn to CNm are denoted as

0 1 2[, , ,]
p

mn mn mn mnq q qq and the real domain message

vectors from CNm to VNn are denoted as

0 1 2[, , ,]
p

mn mn mn mnr r rr . The log-domain messages are

denoted with uppercase,
a

mnQ and
a

mnR respectively. The

message vector permutations [7] are expressed by matrix-

vector multiplication with permutation matrices
mnhP and

1

hmn


P . The ()N m denotes the set of indexes of variable

nodes adjacent to check node CNm and the ()M n

denotes the set of indexes of check nodes adjacent to

variable node VNn. Notation X \ x represents a set X

excluding x. The algorithm can be summarized as follows:

1) Initialization.

For 1, , ; (); GF()n N m M n a q   :

 :a a

mn nQ F (4)

2) Check Nodes processing.

For 1, , ; (); GF()m M n N m a q   :

  : expa a

mn mnq Q (5)

gather:
0 1 2[, , ,]

p

mn mn mn mnq q qq , then:

 

1

()\

:

:

mn

mn

mn mn h mn

mn h mj

j N m n

FFT

IFFT









 
  

 


u P q

r P u
 (6)

where mn is the normalization factor;  is the term

by term product of vector elements. CNs output:

  : loga a

mn mnR r (7)

3) Variable Nodes processing.

For 1, , ; (); GF()n N m M n a q   :

()\

:a a a

mn n jn

j M n m

Q F R


   (8)

4) Tentative decoding. For 1, ,n N :

()

ˆ : arg max a a

n n jn
a j M n

c F R


 
  

 
 (9)

If ˆT Hc 0 then halt the decoding with c as output,

otherwise go to the check nodes processing (step 2).

IV. HARDWARE IMPLEMENTATION OF THE PARTIALLY

PARALLEL DECODER

The overall architecture of the designed hardware

decoder operating under the mixed domain algorithm is
presented in Fig. 2. The partially-parallel architecture

provides throughput-complexity tradeoff capabilities by
means of configurable number P of parallel Variable

Node Units (VNU) and Check Node Units (CNU). This

number of units corresponds to the submatrix size of H in

Journal of Communications Vol. 10, No. 1, January 2015

88©2015 Engineering and Technology Publishing

 CNs operating in the real domain require

multiplication operations, which fits well into the

contemporary FPGA devices containing a large

amount of hardware multipliers that would remain

unused otherwise.

 Since the CNs processing include FFT and IFFT,

which is calculated in the real domain anyway, our

proposition requires only two domain changes per

iteration (on the input and output of the CNs) instead

of four domain changes in [7].

 Using logarithm domain on the VNs side allows

memory savings, because messages stored in

memories require substantially fewer bits due to the

mentioned lower sensitivity to quantization effects.

(1). In the extreme case of P=1 the architecture is serial

(see Fig. 3).

VNU1 VNUP

RAM R

RAM Q

CNU1 CNUP

Inv. Shuffle Network

Shuffle Network

RAM F

HDU

VNU – Variable Node Unit

CNU – Check Node Unit

HDU – Hard Decisions Unit

P·qWl

P·qWl

 qWl qWl

Output

Input

 qWl qWl

Fig. 2. Partially parallel decoder architecture.

VNU

CNU

RAMQ

HDURAMF

RAMR

Decoder

output

Fig. 3. Serial decoder architecture.

The log-domain messages are exchanged between

computation units: every CNU accepts the vector of q

values
a

mnQ (for every GF()a q) of woldlength Wl

and produces the vector of q values
a

mnR . Outputs of P

parallel CNUs are combined to a single memory word of

length PqWl stored in RAMR. The shuffle networks

perform configurable cycle shifts according to the

structure of submatrices of H. Every VNU accepts

vectors from RAMR memory and the input data
a

nF from

RAMF memory and produces
a

mnQ values that are saved

to RAMQ memory. Moreover the VNU delivers data to

the Hard Decision Unit (HDU), which makes tentative

decisions according to (9).

A. Variable Node Unit

The VNU is composed of q parallel subunits (see Fig.

4), where every subunit realizes (8) for a single value a.

For the nth variable node, VNU calculates messages for

every ()m M n . At first the sum of
a

nF and all

incoming values
a

mnR is calculated in the accumulator.

This sum is outputted to the hard decision unit (HDU).

Then the input values (delayed by the shift register) are

subtracted from the sum to form the exclusive sums over

() \j M n m in (8). The shift register is dynamic, thus

it enables variability of VN degrees.

+

+

+

–

CE

input R

input F

output Q

Dynamic Shift Register

catch

sum

output to HDU

Fig. 4. Subunit of the Variable Node Unit (VNU).

B. Check Node Unit

Architecture of the check node unit (CNU) operating

according to (5)-(7) is shown in Fig. 5. The data

propagated through the CNU block are message vectors

of size q with elements represented by a fixed point

numbers with diversified precision. The finite precision

issues will be discussed in the next section.

The permutation blocks realize a message vector cyclic

shifts defined by
mnhP matrices (and its inverse

respectively) for every nonzero hmn entry of H. The

permutation blocks are composed of multiplexers

allowing to process those cyclic shifts. To efficiently

implement these blocks block we have adopted the

structure of a Banyan switch that is known to be an

efficient interconnection structure for a configurable

cyclic shifter [21]. The domain transformations are

performed with q Look Up Tables (LUT) realizing exp(.)

and log(.) nonlinear functions for every message vector

element separately. Each of the domain transformation

LUTs as well as each of the permutation blocks contains

a single layer of pipeline registers that are applied in

order to achieve a relatively high clock frequency. The

FFT and IFFT blocks are implemented with networks of

adders and subtractors [18] with embedded pipeline

registers as well.

Rec. Multiplier 1

Rec. Multiplier 2

Rec. Multiplier q

Normalization

FFT IFFT

exp
(x) 1

exp
(x) 2

exp
(x) q lo

g
(x

)
 1

lo
g

(x
)

 2

lo
g

(x
)

 q

Permutation P Permutation P
-1

qWl

qWpe

qWpe

qWp

qWp

qWp

qWl

qWl

qWl

Fig. 5. Check Node Unit (CNU).

Journal of Communications Vol. 10, No. 1, January 2015

89©2015 Engineering and Technology Publishing

Since the core operation in (6) is the term by term

product of vectors, it is realized in q blocks, separately

for every message vector element. The operation of a

multiplier block associated with an element a of the

message vector for the mth check node can be expressed:

()\

:a a

mn mj

j N m n

v u


  (10)

where
a

mju is an element of mju in (6) and
a

mnv is an

element of mn mj v u in (6). For the mth check

node processing, the multiplier block calculates
a

mnv

values for every ()n N m . It is therefore convenient to

realize this calculations by a well known forward-

backward recursion scheme. In the designed decoder, the

recursive multiplier subblocks operate under this scheme.

The multiplication operations are realized making use of

the hardware resources available in the FPGA devices,

e.g. DSP48E1 Slices in the Virtex6 family. More details

about the decoder implementation can be found in [18].

V. RECOMMENDED MESSAGE QUANTIZATION SCHEME

The data propagated through the CNU block is in the

form of vectors of q=2
p
 messages. A very important issue

is the selection of the numeric precision, because the

wordlength of the fixed-point representation defines the

performance-area tradeoff of the decoder. When the

decoder employs mixed domain algorithm, the

wordlength should be chosen separately for the decoding

domains. Due to the lower sensitivity of log-domain

messages to the quantization effects [6], it is possible to

set the wordlength in the logarithm domain side (Wl)

significantly lower than in the probability domain side,

without performance degradation. Moreover, we

recommend additional partition of the probability domain

side into normalized section with wordlength Wp and

non-normalized section with extended wordlength Wpe

(see Fig. 5). It is motivated by the fact that the messages

before normalization possess higher dynamic range,

thereby their representation requires more bits.

Since the values of messages in the probability domain

are in the range [0,1], the suitable representation is a

standard unsigned fixed-point notation constrained to the

fractional part. The situation is different for the logarithm

domain case, because logarithms of likelihoods are

always negative. Moreover the lower limit is equal to the

logarithm of the smallest representable probability, i.e.

log(2
–Wpe

). Therefore the logarithm domain messages are

limited to [log(2
–Wpe

),0], uniformly quantized and

represented by unsigned numbers with precision Wl bits

(the always negative sign is omitted).

Here we provide some experimental results that

facilitate the message wordlength selection and confirm

that the proposed wordlength differentiation (Wl, Wp, Wpe)

is reasonable. The simulation and synthesis results

presented in Fig. 6- Fig. 7 have been obtained with FPGA

implementation of the decoder in the Xilinx Virtex6

device. The BIAWGN channel model has been employed

for simulations and two rate-1/2 codes have been used: a

(600,300) code over GF(16) and a (400,200) code over

GF(64). The parity check matrices were generated

making use of the classic PEG algorithm [22] with

nonzero entries selected row by row with a method

similar to the proposed in [23]. The synthesis results

concern the serial implementation, P=1.

6 7 8 9 10

10
-6

10
-5

10
-4

10
-3

B
E

R

 W
l

GF(16)

6 8 10 6 7 8 9 10

 W
l

GF(64)

6 8 10

 5000

10000

15000

20000

S
lic

es

SNR= 1.4dB

SNR= 1.6dB

SNR= 1.8dB

Slices

Fig. 6. Decoder performance (BER) and area (Virtex6 Slices) with

respect to the wordlength Wl, for Wp = 16, Wpe = 20.

1000

2000

3000

4000

S
li
ce
s

GF(16)

16 17 18 19 20 21 22
10

-7

10
-6

10
-5

10
-4

10
-3

 W
pe

B
E
R

E
b
/N
0
=1.4dB

E
b
/N
0
=1.6dB

E
b
/N
0
=1.8dB

Wp = 12

Wp = 14

Wp = 16

Fig. 7. Decoder performance (BER) and area (Virtex6 Slices) with
respect to the wordlength Wpe.

Let us comment the presented results. According to the

results in Fig. 6, increasing the Wl over 8bits is pointless

because of the Bit Error Rate (BER) saturation. Therefore

Wl=8 should be chosen for an optimum performance.

Lower wordlength could also be useful for area reduction

at the cost of performance reduction; for instance Wl=6

entails the loss of about 0.1dB for GF(16) and about

0.2dB for GF(64).

Results presented in Fig. 7 facilitate Wp and Wpe

selection. First remark that for Wp=14 (red curve) and

Journal of Communications Vol. 10, No. 1, January 2015

90©2015 Engineering and Technology Publishing

Wp=16 (green curve) there is little to no difference in

performance, regardless of the Wpe value. Meanwhile

increasing Wpe up to 20 results in a significant BER

improvement. This observation justifies our

recommendation for the probability domain segmentation.

Without Wp–Wpe distinction, for the optimum

performance Wpe=Wpe=20 should be chosen. The FPGA

area would then be enormous. The proposed

segmentation allows fixing Wpe=20 while reducing Wp

down to 14 without performance degradation. Significant

FPGA resources can then be saved, which is confirmed

by the synthesis results provided also in Fig. 7. For

example reducing the Wp from 16 down to 14 enables

saving about 30% of Slices. Remark that the Wpe

reduction (with fixed Wp) would not enable such a large

savings. Concluding we claim that for optimized

performance, relatively large Wpe and reduced Wp should

be set, for instance we recommend Wpe=20 and Wp=14 for

near optimal performance with reduced area. Meanwhile

lower wordlengths could be used for the FPGA area

reduction at the cost of performance reduction.

VI. SYNTHESIS AND SIMULATION RESULTS

The decoder has been implemented and verified with

Xilinx Virtex-4 as well as Virtex-6 devices. Synthesis

results for a code with block length 2160 bits over GF (8),

similar to the code used in [7], are presented in Table I.

We have also included the synthesis results taken from

[7]. The Table I includes the numbers of Slices utilized,

the numbers of Block RAMs and the numbers of

DSP48E1 Slices (multipliers) along with the throughput

assessment. The serial implementation (P=1) is used in

this case. The wordlength selected according to the

results presented in the previous section guarantees nearly

full-precision performance.

TABLE I: FPGA SYNTHESIS RESULTS FOR THE DESIGNED DECODER

OVER GF(8) IN COMPARISON WITH THE RESULTS PRESENTED IN [7]

 [3] This work

Field order GF(8) GF(8)

Code (720,360) (720,360)

Decoding Algorithm FFT-BP FFT-BP

Number of iterations unknown 15

Precision 8 bits Wl=8, Wp=14

Synthesis Target Virtex-2P Virtex-4

Slices 4660 1920

BRAMs 16 25

Multipliers (DSP48s) 0 16

Max. clock frequency 99.7 MHz 177 MHz

Throughput 1.09 Mbps 2.02 Mbps

The Virtex-2P family from the prior implementation [7]

is no longer supported by the recent software. However

the Slices embedded in the Virtex4 devices hold structure

very similar to the Virtex-2P Slices, comprising two 4-

input LUTs. Block RAMs (BRAMs) and Multipliers have

also the same parameters. Therefore the utilization results

can be compared directly with [7]. The serial

implementation of the designed decoder utilizes

significantly less Slices, at the cost of 16 Multiplier Cores.

The utilization is equally distributed among Slices,

BRAMs and DSPs, thus employing efficiently the FPGA

fabric in the case of semi parallel implementation.

Fig. 8 and Fig. 9 show the Word Error Rate (WER)

performance for codes with block length 2400 bits, binary

and nonbinary over GF(2
2
), GF(2

4
) and GF(2

6
). The

parity check matrices for the codes have been constructed

making use of the PEG algorithm [22], structured with an

algorithm [24], and the nonzero entries selection method

similar the proposed in [23]. QPSK modulation (Fig. 8)

as well as QAM-64 modulation (Fig. 9) with AWGN

channel model have been used for the simulations. The

presented results confirm that the higher order Galois

Fields allow achieving higher performance with the same

code block length.

Fig. 8. Nonbinary codes decoding simulation results for 64-QAM

modulation over AWGN channel and different field orders.

Fig. 9. Nonbinary codes decoding simulation results for QPSK

modulation over AWGN channel and different field orders.

VII. CONCLUSIONS

The efficient partially parallel GF(q)-LDPC decoder

implementation devoted for FPGA devices is proposed.

This construction is an extension of the serial architecture.

The partially parallel implementation can achieve an

Journal of Communications Vol. 10, No. 1, January 2015

91©2015 Engineering and Technology Publishing

increased throughput and allows throughput-complexity

tradeoff. Efficiency of the presented realization is based

on the balanced utilization of all the types of FPGA

resources, particularly making use of the multiplier

blocks.

The important issue of the messages quantization

method and precision has been discussed in this paper.

We have shown that the message wordlength of the

designed decoder should be chosen separately for the

logarithm domain (Wl) and probability domain (Wp) parts

of the decoder dataflow. Moreover yet other precision

should be selected for non-normalized messages (Wpe).

We provided experimental results that facilitate the

message wordlength selection and confirm that the

proposed wordlength differentiation is reasonable. The

recommendations for the precision selection have also

been given for the three parts of the decoder dataflow.

Specifically the decoder with precision Wl=8, Wpe =20

and Wp =14 achieves near optimal performance, while the

FPGA resources are significantly reduced in comparison

with the solution without the proposed precision

differentiation.

REFERENCES

[1] D. J. C. MacKay, “Good error-correcting codes based on very

sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, pp. 399–431,

March 1999.

[2] J. Huang, S. Zhou, and P. Willett, “Nonbinary LDPC coding for

multicarrier underwater acoustic communication,” IEEE J. Sel.

Areas Commun., vol. 26, pp. 1684–1696, December 2008.

[3] M. C. Davey and D. MacKay, “Low-density parity check codes

over GF(q),” IEEE Commun. Lett., vol. 2, pp. 165– 167, June

1998.

[4] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC

over GF(2q),” in Proc. (IEEE) Information Theory Workshop,

Paris, France, 2003.

[5] H. X. Song and J. R. Cruz, “Reduced-complexity decoding of q-

ary LDPC codes for magnetic recording,” IEEE Trans. Magn., vol.

39, pp. 1081–1087, March 2003.

[6] H. Wymeersch, H. Steendam, and M. Moeneclaey,

“Computational complexity and quantization effects of decod- ing

algorithms for non-binary LDPC codes,” in Proc. (IEEE)

International Conference on Acoustics, Speech, and Signal

Processing, Montreal, Canada, 2004.

[7] C. Spagnol, E. M. Popovici, and W. P. Marnane, “Hardware

implementation of GF(2m) LDPC decoders,” IEEE Trans. Circuits

Syst. I, vol. 56, pp. 2609–2620, December 2009.

[8] V. Savin, “Min-Max decoding for non binary LDPC codes,” in

Proc. (IEEE) International Symposium on Information Theory,

Toronto, Canada, 2008, pp. 960–964.

[9] D. Declercq and M. Fossorier, “Decoding algorithms for

nonbinary LDPC codes over GF(q),” IEEE Trans. Commun., vol.

55, 633–643, April 2007.

[10] X. Zhang and F. Cai, “Efficient partial-parallel decoder

architecture for quasi-cyclic non- binary LDPC codes,” IEEE

Trans. Circuits Syst. I, vol. 58, pp. 402–414, February 2011.

[11] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard,

“Architecture of a low-complexity non-binary LDPC decoder for

high order fields,”

in

Proc. (IEEE) International Symposium on

Communications and Information Technologies, Sydney, Australia,

2007, pp. 1201–1206.

[12]

T. Lehnigk-Emden and N. Wehn, “Complexity evaluation of non-

binary galois field LDPC code decoders,”

in

Proc. (IEEE) 6th

International Symposium on Turbo Codes & Iterative Information

Processing, Brest, France, 2010.

[13]

X. H. Chen and C. L. Wang, “High-throughput efficient non-

binary LDPC decoder based on the simplified min-sum

algorithm,”

IEEE Trans. Circuits Syst. I, vol. 59, pp. 2784–2794,

November 2012.

[14]

E. Boutillon, L. Conde-Canecia, and A. A. Ghouwayel, “Design

of

a GF(64)-LDPC decoder based on the EMS algorithm,”

IEEE

Trans. Circuits Syst. I, vol. 60, pp. 2644–2656, October 2013.

[15]

E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-

sum algorithm for non-binary LDPC codes and its hardware

structure,”

IEEE Trans. Commun., vol. 61, pp. 2600–2611, July

2013.

[16]

F. Cai and X. Zhang, “Relaxed min-max decoder architectures for

nonbinary low-density parity-check codes,” IEEE Trans. VLSI

Syst., vol. 21, pp. 2010–2023, November 2013.

[17]

Y. L. Ueng, C. Y. Leong, C. J. Yang, C. C. Cheng, K. H. Liao,

and S. W. Chen, “An efficient layered decoding architecture FOR

Nonbinary QC-LDPC codes,” IEEE Trans. Circuits Syst. I, vol. 59,

pp. 385–398, February 2012.

[18]

W. Sulek, M. Kucharczyk, and G. Dziwoki, “GF(q) LDPC

decoder design for FPGA implementation,”

in

Proc. (IEEE) 10th

Annual Consumer Communications & Networking Conference

(CCNC), Las Vegas, USA, 2013, pp. 445–450.

[19]

B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. N.

Xu, “Construction of non-binary quasi-cyclic LDPC codes by

arrays and array dispersions,”

IEEE Trans. Commun., vol. 57, pp.

1652–1662, June 2009.

[20]

J. Lin, J. Sha, Z. F. Wang, and L. Li, “Efficient decoder design for

nonbinary quasicyclic LDPC codes,”

IEEE Trans. Circuits Syst. I,

vol. 57, pp. 1071–1082, May 2010.

[21]

C.

L.

Wu and T.

Y. Feng, “On a class of multistage

interconnection networks,”

IEEE Trans. Comput., vol. C-29, pp.

694–702, 1980.

[22]

X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and

irregular progressive edge-growth tanner graphs,”

IEEE Trans. Inf.

Theory, vol. 51, pp. 386–398, January 2005.

[23]

C. Poulliat, M. Fossorier, and D. Declercq, “Design

of regular

(2,dc)-LDPC codes over GF(q) using their binary images,”

IEEE

Trans. Commun., vol. 56, pp. 1626–1635, October 2008.

[24]

M. E. O’Sullivan, “Algebraic construction of sparse matrices with

large girth,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 718–727,

February 2006.

Wojciech Sulek was born in Tarnowskie

Gory, Poland, in 1978. He received the Ph.D.

in the discipline of

Electronics from Silesian

University of Technology, Gliwice, Poland, in

2009. He

is

an assistant professor in the

Institute of Electronics at this University. His

Ph.D. thesis regarded Architecture Aware

LDPC codes design and hardware decoder

implementation. Modern coding theory and

coding systems hardware design are under his main research interests up

till today.

Journal of Communications Vol. 10, No. 1, January 2015

92©2015 Engineering and Technology Publishing

