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Abstract—This paper investigated the normalized difference 

vegetation index (NDVI) stability in the NOAA/NESDIS 

Global Vegetation Index (GVI) data during 1982-2003, which 

was collected from five NOAA series satellites. An empirical 

distribution function (EDF) was developed to eliminate the 

long-term inaccuracy of the NDVI data derived from the 

AVHRR sensor on NOAA polar orbiting satellite. The 

instability of data results from orbit degradation as well as from 

the circuit drifts over the life of a satellite. Degradation of 

NDVI over time and shifts of NDVI between the satellites were 

estimated using the China data set, because it includes a wide 

variety of different ecosystems represented globally. It was 

found that the data for the years of 1988, 1992, 1993, 1994, 

1995 and 2000 are not stable compared to other years because 

of satellite orbit drift, AVHRR sensor degradation, and 

satellite technical problems, including satellite electronic and 

mechanical satellite systems deterioration. The data for NOAA-

7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 1990), 

NOAA-14(1996, 1997), and NOAA-16 (2001, 2002) were 

assumed to be standard because the crossing time of satellite 

over the equator (between 1330 and 1500 hours) maximized the 

value of the coefficients. These years were considered as the 

standard years, while in other years the quality of satellite 

observations significantly deviated from the standard. The 

deficiency of data for the affected years were normalized or 

corrected by using the method of EDF and comparing with the 

standard years. These normalized values were then utilized to 

estimate new NDVI time series which show significant 

improvement of NDVI data for the affected years. 

 

Index Terms—NDVI, AVHRR, satellite, orbit, drift, empirical 

distribution function  

 

I. INTRODUCTION 

For approximately last three decades, the advanced 

very high resolution radiometer (AVHRR) on NOAA 

polar-orbiting satellites have been observing radiances, 

which have been collected, sampled, and stored for the 

entire world [1]-[3]. These data were intensively being 

used by the global community for studying and 

monitoring land surface, atmosphere, and lately for 

analyzing climate and environmental changes [4], [5]. 

AVHRR data, though informative, cannot be directly 

used in climate change studies because of the orbit drift 
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in the NOAA satellites (particularly, NOAA-9, -11, and -

14) over these satellites’ life time [2], [3], [6]-[9]. 

Devasthale et al. [3] and Price [7] attributed this drift to 

the selection of a satellite orbit designed to avoid direct 

sunshine on the instruments. This orbital drift leads to the 

measurements of normalized difference vegetation index 

(NDVI) being taken at different local times during the 

satellites’ life time, thereby introducing a temporal 

inconsistency in the NDVI data [3], [7], [8]. 

Consequently, a declining trend results in the NDVI data 

calculated by some satellites. 

The objective of this paper is to investigate the NDVI 

stability in the NOAA/NESDIS global vegetation index 

(GVI) data for the period of 1982-2003 [10]. AVHRR 

weekly data for the five NOAA afternoon satellites, 

namely, NOAA-7, NOAA-9, NOAA-11, NOAA-14, and 

NOAA-16, were used for the China data set, because it 

includes a wide variety of different ecosystems 

represented globally. It was found during investigation 

that data for the years of 1988, 1992, 1993, 1994, 1995 

(first eight weeks), and 2000 are not stable compared to 

other years because of satellite orbit drift, AVHRR sensor 

degradation, and satellite technical problems, including 

satellite electronic and mechanical satellite systems 

deterioration and failure. Therefore, the data for NOAA-

7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 

1990), NOAA-14(1996, 1997), and NOAA-16 (2001, 

2002) were assumed to be standard because the crossing 

time of satellite over the equator (between 1330 and 1500 

hours) maximized the value of the coefficients, and these 

years were termed as the standard years. In other years, 

the quality of satellite observations was found to 

significantly deviate from the standard. This paper 

proposes a novel scientific methodology that can be 

easily implemented to generate the desired long-term 

time-series. The goal of proposed method is to correct the 

NDVI data calculated from the AVHRR observations for 

the years of 1988, 1992, 1993, 1994, 1995, and 2000 by 

employing an empirical distribution function (EDF) 

compared to the standard data. The proposed 

methodology can as well be applied to create a global 

vegetation index in order to improve climatology. The 

data sets corrected by the proposed method can be used 

as a proxy to study climate change, epidemic analysis, 

drought prediction and similar applications. 
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II. AREA UNDER INVESTIGATION 

For investigation of this paper, we wanted to select an 

area with diverse ecosystems. China has all the major 

types of ecosystems present in the world, and therefore, 

the current study investigated the NDVI stability over 

China. It also reduces the amount of data to a manageable 

state and captures global variety of ecosystems in a single 

geographic region. 

China is located in central Asia between 28
0
 N to 43

0
 

N in latitude and 75
0 
E to 123

0
 E in longitude. It is bound 

by Mongolia, Russia and Kazakhstan to the north, North 

Korea, the Yellow Sea and the East China Sea to the east, 

the South China Sea, the Gulf of Tonkin, Vietnam, Laos, 

Myanmar, India, Bhutan and Nepal to the south as well as 

India, Afghanistan, Pakistan, Tajikistan and Kyrgyzstan 

to the west. Over 66% of China is upland hill, mountains, 

and plateau. The highest mountains and plateau are found 

to the west. To the north and east of the Tibetan Plateau, 

the land decreases to the desert or semi-desert areas of 

Sinkiang and Inner Mongolia. To the northeast side, the 

broad fertile Manchurian Plains are separated from North 

Korea by the densely forested uplands of Changpai Shan. 

East of the Tibetan Plateau and south of Inner Mongolia 

is the Sichuan Basin, which is drained by the Yangtze 

River that flows east across the southern plains to the 

East China Sea. The southern plains along the east coast 

of China have rich, fertile soils and are protected from the 

north winds. Both Hong Kong and Macau are enclosed 

on the southeast coast. 

III. NORMALIZED DIFFERENCE VEGETATION INDEX 

To determine the density of green on a patch of land, it 

needs to observe the distinct colors (wavelengths) of 

visible and near-infrared sunlight reflected by the plants. 

The pigment in plant leaves, chlorophyll, strongly 

absorbs the visible light (from 0.4 to 0.7 µm) for use in 

photosynthesis. The cell structure of the leaves, on the 

other hand, strongly reflects the near-infrared light (from 

0.7 to 1.1 µm).  

The NOAA AVHRR instrument has five detectors, 

two of which are sensitive to the wavelengths of light 

ranging from 0.58–0.68 and 0.725–1.0 micrometers. 

AVHRR’s detectors can be utilized to measure the 

intensity of light coming off the Earth in visible and near-

infrared wavelengths and to quantify the photosynthetic 

capacity of the vegetation in a given pixel (an AVHRR 

pixel is 4 square km) of land surface. Nearly all satellite 

vegetation indices employ this difference formula to 

quantify the density of plant growth on the Earth-near-

infrared radiation minus visible radiation, divided by 

near-infrared radiation plus visible radiation. The 

reflectance measured from Channel 1 (visible: 0.58 - 0.68 

microns) and Channel 2 (near infrared: 0.725 - 1.0 

microns) are used to calculate the index as given by 

 
 1Ch2Ch

1Ch2Ch
NVDI




                               (1) 

NDVI typically ranges from 0.1 to 0.6, with higher values 

representing canopy. Surrounding soil and rock values 

are close to zero; while the differential for water bodies, 

such as, rivers and dams, have the opposite trend to 

vegetation and the index is negative. A range of errors, 

such as, scattering by dust and aerosols, Rayleigh 

scattering, subpixel-sized clouds, plus large solar zenith 

angles and large scan angles, all act to increase Ch1 with 

respect to Ch2 and hence reduce the computed NDVI [5], 

[11]. 

IV.  DATA SET 

Satellite data were presented bi-weekly with NDVI 

collected from the NOAA GVI data [10] for the years of 

1982 to 2003. The GVI was developed from the 

reflectance/emission observed by the AVHRR of NOAA 

polar‐orbiting satellite in the visible (VIS), near infrared 

(NIR) and infrared (IR) wavelength [10]. In developing 

the GVI, the measurements were spatially sampled from 

4 km² (global area coverage) to 16 km² and from daily 

observations to seven‐day composite observations. The 

VIS and NIR reflectance were pre‐ and post‐launch 

calibrated and NDVI was calculated as given by 

 
 VISNIR

VISNIR
NVDI




                               (2) 

NDVI has a high frequency noise related to the 

variable transparency of the atmosphere, bidirectional 

reflectance, and orbital drift, which makes it difficult to 

use the parameter in the analysis. The noise was removed 

from the data by applying statistical techniques to NDVI 

time series [5], [12]. The 1982-2003 weekly NDVI data 

were collected for each 16 km² pixel of the China data set, 

because it includes a wide variety of different ecosystems 

such as desert, forest and grassland, which represent the 

global ecosystem. The weekly GVI data from January 

1982 through January 1985 for NOAA-7, from April 

1985 through September 1988 for NOAA-9, from 

October 1988 through August 1994 for NOAA-11, from 

March 1995 through December 2000 for NOAA-14, and 

from January 2001 through December 2003, for NOAA-

16, were used in this paper. 

V.  PROPOSED METHODOLOGY 

For each satellite, we constructed the NDVI time series 

and also approximated the linear trend using the least 

square technique. From trend equation, we estimated two 

values, namely, the largest difference (dNt) between 

NDVI at the beginning (Nb) and the end (Ne) of satellite 

life, and difference (dNs) between NDVI at the beginning 

of the next (n) satellite (Nbn) and at the end of the 

previous (p) one (Nep). Both differences were normalized 

in order to compare NDVI performance for different 

ecosystems [5] as described below. 
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The NDVI time series has upward trend when the dNt 

is positive and downward when it is negative value. The 

parameter, dNs determines the magnitude of NDVI such 

that a positive value indicates larger NDVI at the end of 

the previous satellite and a negative value indicates 

smaller NDVI. 

 

Fig. 1. Equator crossing times  for NOAA-7,  -9,  -11,  -14  and  -16  [13]  

To the best knowledge of the authors, there has been 

no physical or analytical method available in the 

literature that can be used to correct for the stability of 

NDVI. The paper developed a statistical model for the 

correction of NDVI By using an empirical distribution 

function (EDF). The function was used to generate 

normalized data for the years of 1988, 1992, 1993, 1994, 

1995 and 2000 compared with standard years’ data. Data 

for the years of 1982, 1983, 1985, 1986, 1989, 1990, 

1996, 1997, 2001, and 2002 can be used as  the standards 

for other years, as the crossing time of satellite over the 

equator (between 1330 and 1500 hours) as shown in Fig. 

1 [13]. This process maximizes the value of coefficients. 

In other years, the quality of satellite observations 

significantly deviates from the standard. Also the data 

from the afternoon passes of the satellites are affected by 

a drift to 1-2 hours or delay in local overpass time, during 

a nominal three-four year life time [3], [7]. Image data 

from the AVHRR slowly shifts as the overpass time 

moves later, which interferes with the estimation of long-

term changes in the surface properties, such as, 

vegetation conditions, albedo, because the changing angle 

of solar incidence causes variation in observed radiances 

as the AVHRR scans the earth [11]. Therefore, data for 

these years are considerably stable compared to data for 

other years. That is why these data were considered as the 

standards for the normalized data. 

Empirical Distribution Function (EDF) Technique for 

Normalization of Satellite Data 

EDF approach is based on the physical reality that 

each ecosystem may be characterized by very specific 

statistical distribution, independent of the time of 

observation. It is the best available technique to 

normalize satellite data. It allows us to represent global 

ecosystem from desert to tropical forest and to correct 

extreme distortions in satellite data related to technical 

problem. 

To generate the normalized data, the proposed method 

begins with selection of samples of un-normalized earth-

scene data covering as much of the range of intensities as 

possible. For NOAA satellites, the area is rectangular, 

extending several thousand pixels from desert to tropical 

forest (both east to west and north to south). 

Corresponding to the incoming radiance from any pixel, 

the instrument responds with an output x in digital counts. 

One can compile the discrete density function, i.e., the 

histogram, describing the relative frequency of 

occurrence of each possible count value for each year.  

For the ith year, let the histogram be Pi(x). An EDF Pd(x) 

can then be generated using the following relation [12], 

14]. 

   
x

id xPxP
0

                 (5) 

  
Fig. 2.  Empirical distribution function [12] 

The EDF is also known as a cumulative histogram of 

relative frequency, which is a non-decreasing function of 

x with a maximum value of unity as depicted in Fig. 2. 

The basic premise of normalization is that for each output 

value x in the ith year, the normalized value x’ should 

satisfy the empirical relation given by  

   xPxP ds '                                 (6) 

where the subscript s refers to the standard year. In 

practice, not only is Ps non-decreasing, but it is also 

monotonically increasing as a function of x’ in the 

domain of x’ where there are data. Therefore, it can be 

inverted, yielding the solution for x’ as follows 

  xPPx ds

1'                              (7) 

When it is applied sequentially for every possible 

count value x, Eq. (7) generates the normalized data 

relating each x to an x’. Fig. 3 demonstrates how the 

procedure can be applied in practice to generate the 
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normalized data [12], [14]. Idealized EDFs are shown in 

the figure for the ith standard and un-normalized year. 

Though the EDFs are shown to be continuous, but in 

practice they can be discrete, being specified only integer 

values of x. To find x1 , the normalized count value 

corresponding to the un-normalized count value of x1 , the 

following procedure needs be employed using Fig. 3. 

 For the count value of x1 in an un-normalized ith year, 

find the decimal or percentage value from the EDF of 

the ith year, which is shown as Pi(x1). 

 Find the point on the standard year’s EDF with the 

same decimal or percentage value. As per Eq. (6), that 

decimal or percentage can also be expressed as Ps(x’1). 

 Finally, use the EDF of the standard year to find the 

normalized count value of x’1. Since the data are 

actually discrete, we needed to interpolate within the 

EDF of the standard year to find the value x1.  

After normalization of satellite data, some errors were 

observed that the EDFs of un-normalized ith year and the 

standard years were not identical. The error is measured 

as the differences between the EDF of the standard and 

the un-normalized years and expressed in counts or 

percent. 

 

Fig. 3.  Procedure to generate normalized data [12] 

 
Fig. 4. NDVI time series (yearly old NDVI data) for study area China 

VI.  RESULTS and DISCUSSION 

A.  Analysis of NDVI Time Series for Study Area in China  

NDVI time series data of five NOAA satellites were 

evaluated as shown in Fig. 4. Data from the afternoon 

polar orbiters is preferred for yielding the NDVI time 

series because of the high sun elevation angle (low solar 

zenith angle). However, the time it takes to cross the 

equator drifts to a later hour as the satellites age [3], [7], 

[8]. Satellite orbit drift results in a systematic change of 

illumination conditions which is one of the main sources 

of non-uniformity in multi-annual NDVI time series  

Fig. 4 shows that the NDVI data of 1988, 1992, 1993, 

1994, 1995 (week # 1-8), and 2000 are non-uniform as 

compared to other years because of satellite orbital drift, 

and sensor degradation. Therefore, the proposed EDF 

technique was applied to correct data of those years 

compared with standard year’s data. First, the EDF for 

the un-normalized data were constructed which is then 

used to generate the normalized data compared with 

standard. Fig. 5 demonstrates how the procedure can be 

applied in practice to normalized NDVI value [12], [14]. 

The idealized EDFs for the standard year and for the year 

of 1988 are shown in the figure. As EDFs are based on 

cumulative histograms, they are supposed to be discrete 

quantities. However, they resemble a continuous function 

as can be obvious from Fig. 5. For example, for the 

NDVI value of 0.16 in the year of 1988, the EDF value 

was found to be 0.6. We can find the point on the 

standard data correction sets as well as evaluate the EDF 

value using Eq. (6) which also results in a value of 0.6. 

Finally, the EDF of the standard data correction was 

utilized to find the normalized count value as 0.18. Since 

the data are actually discrete, the EDF of the standard 

data correction sets needs be interpolated to find the value 

of 0.18. Therefore, the new NDVI value for the year of 

1988 is [NDVI1988 + (NDVIstandard –NDVI 1988)] which 

yields 0.16 + (0.18 – 0.16) = 0.18. Using this technique, 

EDFs produce the normalized or corrected data for the 

year of 1988 (new 1988 NDVI data) compared with 

standard year’s data which are illustrated in Fig. 6. 

Similarly, we normalized data for the years of 1992, 1993, 

1994, 1995 (week# 1-8), and 2000 compared with 

standard years’ data using the proposed technique. The 

normalized data were used to produce new NDVI time 

series for the study area in China. Fig. 7 shows the 

improvement in the NDVI data (pink line) for the years 

of 1988, 1992, 1993, 1994, 1995, and 2000. 

 
Fig. 5. Procedure to generate normalized NDVI data in 1988 

 
Fig. 6. EDFs for normalized data of 1988 compared with standard data 

NDVI trends for China and the jumps between the 

satellites are illustrated in Fig. 7 and the errors are 

estimated as listed in Table I using Eqs. (3) and (4). 

Considering old NDVI trends (Table I), for China, 
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NOAA-9, -11, and -14 have negative trends and NOAA-7, 

-16 have positive trends. Therefore, NOAA-7, and -16 

show clear tendency to NDVI increase during its three 

years in operation. However, the more important features 

here are the trend rates. The analysis shows that the high 

rate of NDVI change for NOAA-9, -11, and -14 by 

reduction of NDVI in 1988, 1992-1994, and 2000, are 

due to considerable degradation of satellite orbit. 

Regarding the NDVI jump from one satellite to the next 

in Table I (Column B), the general tendency is a 

reduction of NDVI between the beginning of NOAA-9 

and the end of NOAA-7, and between the beginning of 

NOAA-16 and the end of NOAA-14. An increase in 

NDVI is observed only during satellite change from 

NOAA-9 to NOAA-11, NOAA-11 to NOAA-14, and 

NOAA-14 to NOAA-16, and is due to the orbit drift of 

the satellite. After correction of NDVI data, the errors of 

NDVI trends and jumps between the satellites were also 

computed and listed in Table I. The results in Table I 

show improvement of the NDVI trends for each satellite 

and the jump from one satellite to the next one. But there 

remain other potential sources of error in the NDVI data, 

such as, an incomplete drift correction, and inaccurate 

NDVI calculation. The EDF method was designed to 

reduce errors due to orbit drift and the dominant 

uncertainty in temperature variation during the satellite 

life time. 

TABLE  I. ESTIMATION OF ERRORS IN (A) NDVI TREND AT THE END OF 

A SATELLITE LIFE AND (B) JUMPS BETWEEN THE SATELLITES (% TO THE 

BEGINNING LEVEL) 
 

Target 
A B 

N-7 N-9 N-11 N-14 N-16 N-7/9 N-9/11 N-11/14 N-14/16 

China 

Old 

NDVI 
3 -10 -12 -11 7 10 30 16 5 

New 

NDVI 
3 -5 0 0 7 7 19 0 -5 

 

However, it may be difficult to accurately and 

completely remove this effect and hence the orbit remains 

as an error source, though at a reduced level. Another 

large uncertainty lies in the NDVI calibration which 

includes all errors, such as, incomplete atmospheric 

corrections, surface corrections, and sensor degradation. 

 
Fig. 7. New NDVI time series (yearly) in China (old NDVI data , new NDVI  data ) 

   
(a)                                                                         (b)                                                                          (c) 

Fig. 8. NDVI image of: (a) old NDVI in week number 26 of 1988,  (b)  old NDVI (corrected data) in week number 26 of 1988, (c) standard in week 

number 26 of 1988 

B.  Analysis of NDVI Image for Study Area in China 

Fig. 8 shows the NDVI image of week number 26 (end 

of June) of the year of 1988, which was visually checked 

for navigation accuracy, remapped if necessary, and 

assembled into a time series data. It also shows various 

ecosystems in China, such as, desert, grassland, forest, 

and mixed, based on the range of NDVI data. Desert 

targets are designated in both gray and purple. Vegetative 

targets include grassland, forest (broadleaf, coniferous 

and tropical) ecosystems, and crop areas, which are 

designated in green and yellow. Blue indicates water, soil, 

and rock, and red represents mixed fields between deserts 

and vegetative. Fig. 8(b) shows an example of the 

corrected NDVI image, which is similar to the standard 

NDVI image of Fig. 8(c). 

It can observe from Fig. 8 (b) that over China the value 

of NDVI significantly improved after correction of week 

number 26 of 1988. Small increases are observed in the 

tropical forest area. Although the overall corrections are 
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reasonable, fine straight lines are observed in Fig. 8 over 

certain areas, including desert and water. It can also be 

obvious from these figures that the corrected NDVI 

distribution appears reasonable, suggesting that the 

artificial lines noted in this figure, while undesirable, do 

not cause significant error on the corrected NDVI value 

and, therefore, the corrected data may still be useful for 

further study or application. 

 
Fig. 9. Corrected NDVI time series (yellow line) by the trend estimation method (based on consistent value) 

 
Fig. 10. Corrected NDVI time series (pink line) by the trend estimation method (based on standard years) 

C.  Comparison of EDF with Other Methods 

1)  Method 1: Trend estimation based on consistent 

value 

Performance of the proposed EDF method was 

compared with that of the trend estimation method for the 

correction of satellite data. Given the monotonic decrease 

in reflectance, it was chosen to fit a trend line to the 

NDVI data (parallel to the X-axis), using the monitor 

output from NOAA-7 (January 1982- January 1985), 

NOAA-9 (April 1985 - September 1988), NOAA-11 

(October 1988-August 1994), and NOAA-14 (March 

1995-December 2000) satellites. The trend lines were 

derived for the un-normalized NDVI values for each 

satellite. The degradation trends were normalized by 

comparing with the trend which is a straight line in Fig. 7 

for each week of each satellite. For example, the un-

normalized NDVI value of the week number 18 of 1988 

is 0.18. First, the NDVI value was determined for the 

same week on the trend straight line, which was found to 

be 0.20. Then the difference of two NDVI values for the 

same week was estimated as 0.02. Thus the normalized 

NDVI value for that week was determined by adding 0.2 

to 0.18. Similarly, the NDVI value for the weeks of 

NOAA-7, NOAA-9, NOAA-11, and NOAA-14 were 

normalized. Finally, the new NDVI time series data were 

calculated using the new values of each satellite. Fig. 9 

shows the new NDVI for each satellite (yellow line).  

The NDVI values of NOAA-16 satellites were not 

normalized using this method because these satellites did 

not have a trend. Fig. 7 shows the comparative 

performance of the proposed technique and the trend 

estimation method. It can be obvious from the figure that 

the EDF method performs better because the trend 

estimation method corrects all years’ data. Also the EDF 

Method does not need to correct the first two years for 

each satellite since the first two years produced data of 

good quality. Therefore, the EDF method was used to 

correct satellite data in this study because the normalized 

data are relatively closer to the standard data. In addition, 

unlike with the trend estimation method, the proposed 

method does not need to correct all years’ data. 

2) Method 2: Trend estimation based on standard 

years 

The trend equation was estimated for the first two 

years (104 weeks) of each satellite’s life because these 

years were considered as standards. The number of weeks 

is plotted along the X-axis while the Y-axis contains the 

NDVI value. Next, the trend equation was calculated for 

a number of total weeks of each satellite. For example, 

the total weeks of X=183 were used for NOAA-9 (April 
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1985- September 1988) to find the trend equation of that 

satellite. The decline trend for old NDVI value of each 

satellite was also derived. Then the decline trend was 

normalized by comparing it with the trend equation based 

on standard years of each satellite. For example, the old 

NDVI value of the week number 26 of 1988 is 0.25. First, 

the NDVI value for the week number 169 was calculated 

by using the old NDVI trend equation asy= -0.0001x + 

0.1983, x =169, which resulted in a value of 0.18.  

Second, the NDVI value was estimated for the same 

week by using the trend equation as y = 0.0003x + 0.1705, 

x = 169, based on standard years (1985 and 1986). The 

estimated NDVI value is 0.22. Then the difference of two 

NDVI values for the same week was estimated as 0.04. 

Finally, the normalized NDVI value for that week was 

determined by adding 0.04 to 0.25. Similarly, the NDVI 

values were normalized for each week of NOAA-7, 

NOAA-9, NOAA-11, and NOAA-14 except for the 

standard years. The new NDVI time series data were 

derived using the new value of each satellite and shown 

in Fig. 10 (pink line). The main disadvantage of that 

method is that there is a bigger shift between estimated 

data from any two satellites during transition between 

satellites. Consequently, data for all years are shifted 

except for the standard year which is not desirable. 

Therefore, the EDF method was used to correct the 

satellite data of Fig. 7 in this study because normalized 

data are relatively closer to the standard data. In addition, 

the EDF method does not need to correct all years’ data.  

VII. CONCLUSIONS 

The behavior of 22 year NOAA/NESDIS global 

vegetation index (GVI) data were analyzed in this paper 

to eliminate the long-term error of the NDVI data in 

China data set, because it includes a wide variety of 

different ecosystems represented globally. To correct this 

error, some possible techniques were considered, 

including empirical distribution functions, and trend 

estimation methods based on consistent value, and the 

standard years, respectively. The analytical performance 

of the techniques was compared to those of the most 

optimum EDF. Based on the simulation results of the 

normalization of AVHRR data in this study, it can be 

obvious that the proposed EDF method yields more 

accurate and effective performance than other methods. 

The main disadvantage of other methods is that they 

correct data for all the years. On the other hand, the EDF 

Method does not need to correct data for the first two 

years for each satellite since the first two years produce 

data of good quality. In addition, the EDF method offers 

an exact technique for satellite data normalization which 

depends on an adequate sample size for the 

approximations to be valid. Therefore, the EDF method 

was used to correct satellite data in this study because 

normalized data are relatively closer to the standard data. 

These analyses and results provide strong support to the 

contention that normalization by EDF is a more efficient 

method for eliminating the drift effect and sensor 

degradation. 

Despite these advantages, the EDF technique has a 

couple of limitations, including limited resolutions by the 

available representative sample. Perhaps the most serious 

limitation is that the distribution must be fully specified, 

which means that if the location, scale, and shape 

parameters are estimated from the data, the critical region 

of the EDF technique is no longer valid. Typically, it 

should be determined by simulation. In addition, EDFs 

are only applicable to continuous distribution. EDF 

provide the best metric by approximating probabilistic 

distribution of the sample at hand. Error exists when 

EDFs of the un-normalized year and the standard data 

validation years are not identical.  

The proposed EDF approach shows encouraging 
results which can be used globally to create vegetation 

index to improve climatology. This method can also be 

derived from satellite observations, such as, GOES, 

assuming the retrievals have proven quality. The 

correction of NDVI images was found to be excellent. 

The AVHRR data were derived from seven-day 

composites using days when the maximum and minimum 

NDVI occurs. Therefore, the dataset containing the 

seven-day AVHRR data composites may itself be discrete. 

The line evident in the correction term seems to be more 

related to the standard, which suggests that the dataset 

may still be useful in climate studies.  
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