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Abstract—The estimation accuracy of antenna delay is one of 

the most important parameters for arraying combining 

performance in deep space network. The least squares 

estimation method of delays is presented, considering the 

geometric relation of delays estimated by cross-correlation, and 

theoretical analysis of the method is also presented. The 

complementary Kalman filtering method of delays is also 

presented, according to the different characteristics and inherent 

between delays and phase differences. Theoretical analysis and 

simulation results show that the two methods can both greatly 

improve the estimation accuracy of the delays. For the given 

case, the accuracy of delays improves about two orders of 

magnitude after the least squares filtering. The delay errors can 

also be greatly reduced after the complementary Kalman 

filtering. The estimation accuracy can be further improved, if 

the two methods are properly combined. 
 
Index Terms—Antenna arraying, delay, least squares estimation, 

complementary kalman filtering 

 

I. INTRODUCTION  

As the signal from the deep-space spacecrafts become 

weaker and weaker, the need arises to compensate for the 

reduction in signal-to-noise ratio (SNR) [1]-[3]. With 

maximum antenna apertures and lower receiver noise 

temperatures pushed to their limits, one effective method 

for improving the effective SNR is to combine the signals 

from several antennas. Arraying holds many tantalizing 

possibilities: better performance, increased operational 

robustness, implementation cost saving, more 

programmatic flexibility, and broader support to the 

science community
 
[4], [5]. 

The output of an array is a weighted sum of the input 

signals applied to the combiner. The residual delay 

estimation accuracy between the signals has a direct 

impact on the combine performance, and the higher the 

code rate, the higher the required delay accuracy. With 

the development of deep space exploration, the demand 
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for downlink code rate is growing rapidly. Currently, the 

maximum bit rate of the Deep Space Network can reach 

20Mbps in Mars exploration(From the Earth 0.6Au), and 

may be up to 400Mbps(X-band) and 1.2Gbps(Ka-band) 

in 2020 [6]. Such a high bit rate requires high precision 

delay.  

For the array composed of a large number of small 

antennas, which is usually more than one hundred, it is 

difficult to get enough delay precision only estimated by 

cross-correlation without high precision spacecraft orbit 

data. Therefore, the least squares estimation method of 

delays is presented, considering the geometric relation of 

delays estimated by cross-correlation. The 

complementary Kalman filtering method of delays is also 

presented, according to the different characteristics and 

inherent between delays and phase differences. Finally, 

theoretical analysis and simulation of the two methods is 

presented. 

II. THE INFLUENCE OF DELAY ERRORS TO COMBINING 

 PERFORMANCE IN ANTENNA ARRAYING 

The delay errors can directly reduce the combining 

SNR and also affect the communication signal waveform, 

which affecting the signal demodulation performance, 

especially in the case of high bit rate.  

0 0.1 0.2 0.3 0.4 0.5 0.6
-2.5

-2

-1.5

-1

-0.5

0

Delay standard deviation/Tc

C
o

m
b

in
in

g
 l
o

ss
(d

B
)

 

 
N=10

N=100

N=∞

 
Fig. 1. Combining loss in the case of different delay standard deviation. 

The combining loss of uniform array can be estimated 

as [7]:  
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where L  is the number of antennas, 
0k  is the 

normalized standard deviation of delay error. In 

particular, when L  tends to infinity, the combining loss 

becomes 

 2

0lim 5log 1s
L

D k


  
 

Fig. 1 shows the combining loss in the case of different 

delay standard deviation, where the number of array 

antennas is respectively 10, 100 and infinity. It can be 

seen from that the number of antenna has some influence 

on the combining loss, the greater the number of antennas 

the greater the combining loss, and eventually approaches 

to the solid line. Calculation results show that the 

standard deviation of delay should be less than 0.09 times 

code width (
cT ), to ensure the combining loss caused by 

the delay error less than 0.1dB. 
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Fig. 2. The impact of delay errors to combined signal waveform. (a) 

Original signal waveform, (b) Combined signal waveform. 

Assuming the array is composed by a large number of 

antennas, which are all equal in size and performance, the 

function of combining signal waveform is equivalent to 

[7]: 

    c t c g t 
 

where  c t  is the code signal function,  c t  is the 

combining signal waveform,  g t
 

is Gaussian function 

with the standard deviation of delay error
  , namely 
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An example of signal waveform before and after 

combining is shown in Fig. 2. The waveform of original 

signal which is randomly selected is shown in Fig. 2 (a), 

and the combined signal waveform is shown in Fig. 2 (b). 

The delay standard deviation is taken as 0.3
cT , and the 

number of antennas is 100. 

It can be seen delay errors have an impact on the 

combined signal waveform. When the array is composed 

by a large number of antennas, the impact of delay errors 

to combined signal waveform can be equivalent to 

Gaussian filtering. Because the Gaussian filter doesn’t 

meet the Nyquist criteria, delay errors can cause 

intersymbol interference. 
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Fig. 3. Signal receiving diagram of antenna array  

III. THE LEAST SQUARES ESTIMATION AND 

PERFORMANCE ANALYSIS OF SIGNAL DELAYS 

As the spacecraft is generally very far from Earth, 

when the distance between antennas is small, the signal 

can be as far-field. In other words, the signal direction of 

arrival (DOA) of every antenna is the same. The signal 

receiving diagram of antenna array is shown in Fig. 3, 

where 
ib
 

and 
jb
 

represent the baseline vectors of the 

antenna i  and j
 

relative to
 
the

 
phase

 
center

 
o  of the 

array,  te  represents the unit vector of DOA at time t , 

 id t
 

and
 

 jd t
 

represent the distance difference of 

the signal received by the antenna i  and j
 

relative to 

the phase
 
center

 
o . So the distance difference  id t , 

baseline vector 
ib  and unit vector

 
of DOA  te  

satisfy the following formula [8]: 

   i id t t b e
       

(1) 

It can be seen from Eq. (1) that  te is the same for all 

antennas. As baseline vector 
ib ( 1, ,i L ) can be 

accurately measured in advance, the delay estimation 

accuracy can be greatly improve by proper filtering 

method for the delay calculated by correlator, without 

additional correlator added. Firstly,  te  can be 
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accurately estimated from  id t ( 1, ,i L ) using the 

least squares estimation. Then more accurate estimates 

 id t
 

of
 

 id t can be calculated using Eq. (1). 

A. The Least Squares Estimation Method 

From Eq. (1), delay measurements and the DOA can 

be expressed as 

   i i id t t n   b e
    

(2) 

where 
in  

is delay measurement error and  id t delay 

measurement of the antenna i . Assuming all antennas 

are located in x y
 

plane of the coordinate system, 
in  

is normal distribution with zero mean and independent 

with each other, and  id t  is expressed in the form of 

distance. Eq. (2) can be re-written in matrix form that 

 t  D Be N
     

(3) 

where 

 
T

1 2( ) Lt d d d   D  

T

1 2

1 2

x x Lx

y y Ly

b b b

b b b

 
  
 

B  

T

x ye e   e  

 
T

1 2 Ln n n   N  

where 
ixb and

 iyb
 

are components of baseline vector 

ib
 

with respect to x and y axis, 
xe
 

and 
ye  are the 

direction cosines with respect to the x and y axes and L  

is the antenna number of array. 

Since there are lots of antennas in array, DOA can be 

estimated from using the least squares estimation method. 

Then more accurate delay estimates can be gotten from 

this DOA estimate. 

Assuming the baseline matrix B  is known and 

measurement error can be ignored, by the least squares 

estimation method, we get the following estimate of 

( )te  

 
1

T T( ) ( )t t



e B B B D
       

(4) 

Replace ( )te  with ( )te  of Eq. (3). We get the 

following estimate of  tD  

( ) ( )t t D Be
           

(5) 

From Eq. (4), the Covariance matrix of ( )te  can be 

expressed as 

   
1 1

T T T

n 

 


e

M B B B C B B B
  

(6) 

where 
n

C
 

is the covariance matrix of initial delay 

estimation error, and 

 T

n
E  C N N

 

So the Covariance matrix of ( )tD  can be expressed 

as 

T

n
 

eD
M BM B GC G

   

(7) 

where 

 
1

T T


G B B B B  

B. Performance Analysis of the Least Squares 

Estimation  

Assuming all the antennas are equal in size and 

performance, matrix 
n

C  becomes 

2

n C E
 

where 2

  is the variance of initial delay estimates. 

From Eq. (7) the covariance matrix 
D

M
 

becomes 

2


D

M G  

To study the nature of the matrix 
D

M , the matrix F  

is defined as 

 F E G         (8) 

where E  is unit matrix. It is easy to verify the following 

fomula 
2 =F F  

It can be seen F  is an idempotent matrix. Because 

any idempotent matrices are positive semi-definite [9], 

the following formula can be obtained 

0, 1,2, ,if i L 
        

(9) 

where 
if （ 1,2, ,i L ）is the diagonal elements of 

matrix F . Assuming 
ig （ 1,2, ,i L ） is the diagonal 

elements of matrix G , the following formula is gotten 

0 1, 1,2, ,ig i L  
    

(10) 

According to the nature of the matrix trace, we get the 

following equation 

   
1

T T

1

trace trace 2
L

i

i

g




   
   G B B B B

   

(11) 

It can be seen from Eq. (10) and Eq. (11) that the 

diagonal elements of matrix 
n

C , the delay variance 

after the least squares estimation, are greater than 0 and 

less than 2

 , and the sum of which is equal to 2 2

 . It 

proves the least squares estimation method can 

significantly reduce the time delay error compared with 

the initial estimation error, for the large uniform antenna 

array. 

IV. THE COMPLEMENTARY KALMAN FILTERING OF 

SIGNAL DELAYS 
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If the Eq. (1) is described by the phase difference 

rather than delay, then we get 

 t    D Be M N
   

(12) 

where 

1 2

T

( )
L

t d d d   
   D  

1 2

T

L
M m m m   

     

1 2

T

L
n n n   
   N  

where 
i

m  
is the carrier-cycle integer ambiguities, 

i
n  

is phase difference measurement error and 
i

d  
is phase 

difference measurement of the antenna i . Assuming all 
antennas are located in x y

 
plane of the coordinate 

system, 
i

n  is normal distribution with zero mean and 

independent with each other, and 
i

d  is expressed in the 

form of distance. 
In the previous discussion, two models are established 

which respectively described by delay and phase 

difference in Eq. (2) and Eq. (12). The first model is 

based on the low noise but ambiguous carrier phase 

difference measurements, and the second one is formed 

from the unambiguous but noisier delay measurements. 

The two models of measurements can be combined to 

produce smoothed and more accurate delay 

measurements. 

Reference the complementary Kalman filter of 

differentia GPS [10], the delay filter equations can be as 

follows: 

 

 

 
 

1 1

1

1

n n n n

n n n n

s s

n n

n n n

s s n s

n n n

 



 

 

 




 

  

 

  

 

 
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 

D D D D

P P Q

K P P R

D D K D D

P E K P

   

(13) 

where E  is a unit matrix,  1 2diag Lq q qQ
 

is the variance matrix of phase difference measurements 

and  1 2diag Lr r rR
 

is the variance matrix of 

delay measurements. 
The first equation of Eq. (13) propagates the smoothed 

delay 
1ns 


D  to the current time epoch n  using the 

previous epoch 1n   and the difference of the phase 

difference  
1n n  

D D  across the current and past 

epochs. The estimate
 ns


D  centers the averaging of the 

delay D , and the D  (phase difference) difference 

adds the latest low-noise information. Note that 
differencing two phase difference across an epoch 
removes the integer ambiguity, thus the estimate of delay 
remains unambiguous, but the measurement noise is 

greatly reduced. The estimation error variance 
n


P  is 

brought forward in the second equation, using its 
previously estimated value plus the variance matrix of the 

phase difference Q . In the third equation the Kalman 

gain 
nK  is calculated in preparation for weighting the 

effect of the current delay measurement. It can be seen 
that when the delay variance approaches zero, the 
Kalman gain tends to unity. Because the higher the 
accuracy of a measurement, the greater is its effect on the 
outcome of the process. In the last two equations, the 

estimate of the smoothed delay 
ns


D  and estimation error 

variance 
n


P  are propagated to the current epoch n  in 

preparation for repeating the process in the next epoch. 

ns


D involves the sum of the current value of the 

smoothed delay 
ns


D  and its difference from the current 

delay 
n

D  weighted by the Kalman gain. Intuitively, if 

the prediction is accurate, then there is little need to 
update it with the current measurement. 

From the above analysis, the least squares estimation 

method can significantly improve the estimation accuracy 

of delays. If the complementary Kalman filter is 

combined with the least squares estimation method, the 

estimation accuracy can be further improved, then the 

expressions of Eq. (13) become 

 

 

 

 

1 1

1

1

n n n n

n n n n

s s

n n

n n n

s s n s

n n n

 



 

 

 




 

  

 

  

 

 

  

 

D D D D

P P Q

K P P R

D D K D D

P E K P
   

(14) 

where 
n n D GD .

 

V.
 

SIMULATION ANALYSIS
 

Fig.
 
4(a)

 
shows an

 
antenna array

 
composed of

 
275

 

antennas,
 
which are distributed in

 
10

 
concentric circles

 

centered
 
on

 
the coordinate origin. The

 
distance between

 

adjacent
 

concentric circles
 

is 50 meters,
 

and the arc 

length
 
between

 
adjacent antennas on the same

 
circle is

 

62.8 meters. Assuming all antennas are equal in size and 

performance, the
 
delay

 
variances of all antennas are

 
one, 

and the
 
phase center is

 
the coordinate origin.

  

The delay variances after the least squares filtering
 
are 

showed in Fig. 4(b), where the
 
greater the serial number 

of antenna
 
is,

 
the closer

 
it is

 
from the

 
phase center. It can 

be seen that the least squares method
 
can significantly 

reduce the
 
delay

 
errors

 
and

 
the delay variances of the 

antennas which are near the phase center are smaller than 

those far away. Fig. 4(c) and Fig.
 
4(d) respectively

 
show 

the delay errors
 
of the No. 250 antenna

 
before and after

 

filtering. The variance before filtering is 0.2 cT
 

in Fig. 

4(d), where cT
 

is the code wide.
 
It can be seen from Fig. 

4(c) and 4(d) the estimation errors are
 

significantly 

reduced after filtering, and the precision is improved 

about two orders of magnitude.
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Fig. 4. The estimation errors of antenna No. 250 before and after the least squares filtering. (a) The antenna distribution of array, (b) The variances of 
delay after filtering, (c) The delay errors before filtering, (d) The delay errors after filtering 
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(d)                                          (e) 

Fig. 5. The delay errors of the No. 250 antenna before and after the complementary Kalman filtering. (a) The initial delay estimation errors, (b) The 

phase estimation errors, (c) The delay errors after the least squares filtering, (d) The delay errors after the complementary Kalman filtering using Eq. 

(13), (e) The delay errors after the complementary Kalman filtering using Eq. (14). 
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The simulation is presented to verify the effect of the 

complementary Kalman filtering using the same array 

showed in Fig. 4(a). Assuming the signal code rate is 

10Mbps, the center frequency is 2GHz, the initial 

variance of delay obtained by correlation is 0.2
cT
 

and 

the variance of phase is 30°. The delay errors of the No. 

250 antenna before and after the complementary Kalman 

filtering are shown in Fig. 5.  

The initial delay and phase estimation errors are shown 

in Fig. 5(a) and (b), which are all expressed as a multiple 

of the code width. The delay errors after the least squares 

filtering are shown in Fig. 5(c), the delay errors after the 

complementary Kalman filtering using Eq. (13) are 

shown in Fig. 5(d) and the errors after the complementary 

Kalman filtering using Eq. (14) are shown in Fig. 5(e). 

From Fig. 5(d) and 5(e), it can be seen the delay errors 

can be greatly reduced after the complementary Kalman 

filtering with the use of the phase difference estimation 

which has higher accuracy. Comparing Fig. 5(d) and Fig. 

5(e), the convergence of delay errors is slow and there are 

significant fluctuations in stable, when only using the 

complementary Kalman filtering. The errors converge 

rapidly and the fluctuations are greatly reduced, when the 

complementary Kalman filter is combined with the least 

squares estimation method, which shows that the 

estimation accuracy of delay is further improved. 

The least squares estimation method of delays is 

presented, considering the geometric relation of delays 

estimated by cross-correlation, and theoretical analysis of 

the method is also presented. The complementary 

Kalman filtering method of delays is also presented, 

according to the different characteristics and inherent 

between delays and phase differences.  

VI. CONCLUSIONS 

Theoretical analysis and simulation results show that 

the two methods can both greatly improve the estimation 

accuracy of the delays. For the given case, the accuracy 

of delays improves about two orders of magnitude after 

the least squares filtering. The delay errors can also be 

greatly reduced after the complementary Kalman filtering 

with the use of the phase difference estimation which has 

higher accuracy. The estimation accuracy can be further 

improved, when the two methods are properly 

combined. 

It doesn’t consider the error of baseline in the least 

squares estimation method of delays. In practice, the 

baseline error is inevitable, so it is necessary to study 

the influence of the baseline to the estimation of delays 

in the future. 
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