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Abstract—In this paper, we propose an efficient scheduling 

scheme for fading orthogonal frequency division multiplexing 

multiuser networks with user fairness rate constraints. This 

scheme, termed as binary rate scheduling (BRS), allows at most 

one user to transmit at a fixed rate if the selected user has its 

channel gain higher than a certain threshold. BRS scheme 

avoids the complicated interference cancellations and the 

variable-rate transmissions involved in the optimal scheduling 

scheme, hence has very low complexity. The optimization 

problems of BRS for the related channel gain thresholds and 

weight factors are formulated with respect to both adaptive and 

fixed transmit power assumptions. And the optimization 

algorithm is developed by utilizing the decent structure of 

quasi-convexity of the problems. With numerical results, it is 

shown that BRS scheme is capable of achieving near optimal 

performance in both the homogeneous and heterogeneous 

multiuser scenarios. Particularly, in the low-rate regime, it is 

proved that BRS asymptotically achieves the same spectral 

efficiency as the optimal scheme. The results in this paper 

indicate that BRS scheme is a promising scheduler solution in 

practical wireless networks with regard to both hardware 

implementation and power efficiency. 1 

 

Index Terms—Orthogonal frequency division multiplexing 

(OFDM), binary rate scheduling (BRS), BRS with adaptive 

transmit power (BRS-A), BRS with fixed transmit power (BRS-

F), minimum transmit sum power (MTSP), water-filling 

 

I. INTRODUCTION 

The increasing demands for high speed wireless 

connections have posed a great challenge on the design of 

next generation wireless communication systems. One 

promising solution is to employ channel adaptive 

scheduling techniques, which have been demonstrated to 

be capable of improving the spectral efficiency in many 

research studies [1]-[3]. To enable such kind of 

scheduling techniques, transmitters are required to gain 

certain amount of knowledge of the channel state 

information (CSI) and adapt the transmit power and rate 

accordingly.  

For multiuser wireless channels with continuous fading 

states, information theory predicts that a non-orthogonal 

variable-rate scheduler achieves the channel capacity [1], 
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[4]. However, the optimal scheduler is deemed as 

impractical since it involves several high-complexity 

operations, such as multiuser concurrent transmissions, 

variable-rate channel coding and infinite amount of CSI 

feedback [4].   

To resolve the restrictions of complexity, many 

research works have been conducted aiming at designing 

novel schedulers that can achieve a more efficient 

performance-complexity trade-off [5]-[13]. One line of 

these studies focuses on reducing the CSI feedback 

overhead, which is generally referred as to limited 

feedback techniques in the literature [5]-[6], [8]-[9]. 

Unfortunately, most of these proposed schedulers 

implicitly assume a variable-rate Gaussian coding scheme, 

and they generally neglect the cost incurred by the 

transmit rate agreement between the transceivers in each 

channel block. Note that for a channel block comprised of 

Tb quadrature phase-shift keying modulated symbols, the 

overhead incurred by specifying a code rate from the rate 

set with a cardinality of 2
F
 is F/2Tb. Therefore, in 

channels where F/2Tb is not sufficiently close to 0, these 

proposed schedulers may not work as efficiently as 

reported after considering the overhead from the variable-

rate agreements. 

For the above concerns, we investigate a fixed rate 

fading adaption scheme in this paper, aiming at reducing 

the number of rate agreements to 1 time per scheduling 

period. The proposed scheme, termed as binary rate 

scheduler (BRS), is motivated by its simple channel 

allocation method and implied channel coding structures. 

Specifically, BRS allocates each sub channel to a unique 

user according to a linear competitive mechanism, and 

the allocated user either transmits at a fixed rate when its 

channel gain is higher than a certain threshold or keeps 

silent. BRS fully nullifies multiuser interference and only 

requires a fixed-rate coding and modulation scheme. The 

related complexity and feedback overhead of BRS can be 

very low, hence is relatively more implementable than the 

schedulers utilizing the variable-rate coding schemes.  

We study the performance of BRS in the context of 

Rayleigh fading orthogonal frequency division 

multiplexing (OFDM) cellular networks. In addition, to 

support certain level of quality of services (QoS) [10]-

[12], a user fairness rate constraint is imposed that the 

information rate of each user is fixed at the same level. In 

practice, this constraint of the information rate may be 

due to requirements of application layers or wireless 
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services payment covenants. The optimized BRS 

performance is obtained by our developed algorithm and 

is analyzed by comparing it with the optimal scheduler in 

terms of power efficiency.  

The rest of the paper is organized as follows. Section II 

introduces the system model and the operating principles 

of BRS. In Section III, the performance of BRS is 

analyzed and optimized for both homogeneous and 

heterogeneous multiple access channels (MACs). 

Numerical results are provided and discussed in Section 

IV. Finally, conclusions are drawn in Section V.  

II. SYSTEM MODEL AND BINARY RATE SCHEDULING 

Consider an ideally interleaved K-user block fading 

OFDM MAC with L i.i.d. subcarriers. The discrete-time 

model of the received signal in the t-th time slot, at l-th 

subcarrier, denoted by y(m), can be written as [14] 

1
( ) ( ) ( ) ( ),

K

k k kk
y m h m x m n m


   (1) 

where ,m t L l   denotes the subchannel index and xk(m) 

and hk(m) are, respectively, the transmitted signal and 

Rayleigh fading power coefficient of user k in the m-th 

subchannel, αk the corresponding large-scale fading 

power factor that represents the joint effect of shadow 

fading and path loss, and n(m) the additive white 

Gaussian noise (AWGN) sample. Both {hk(m)} and 

{n(m)} follow independent complex symmetric Gaussian 

distribution with zero mean and unit variance. The large-

scale fading parameters {αk} are assumed fixed while the 

Rayleigh fading coefficients {hk(m)} vary independently 

for different subchannels. They are assumed perfectly 

known at receiver sides. In addition, we assume that the 

long-term average rate of each user is same at C/K 

nats/subchannel where C is referred to as the average sum 

rate. 

A.  Operating Principles of BRS 

For the MAC presented above, the optimal scheduling 

scheme can be obtained by the algorithm proposed in [4]. 

The optimal scheme involves complicated operations, 

hence is difficult to be implemented. To reduce 

complexity, we propose a simpler BRS scheme outlined 

below: 

 In the subchannel m, only the user (denoted by k) with 

the largest weighted channel gain is selected for 

transmission, i.e., k = argmaxi αi βi |hi(m)|
2
 where βi is 

the weight factor of user i;  

 Denote by k the pre-determined threshold for the user 

k, then the selected user k transmits at a fixed rate 

only if αk βk |hk(m)|
2
 ≥k. Otherwise, the system is in 

silence in this subchannel.  

B.  Problem Formulation and Minimum Transmit Sum 

Power of BRS  

According to the above operating principles, user k 

occupies the channel if and only if its weighted channel 

gain αkβk|hk(m)|
2
 is the largest among those of all users. 

Hence, the probability that user k with weighted channel 

gain g=αkβk|hk(m)|
2
 is selected for transmission can be 

written as 
2 2

Pr( argmax ( ) | = ( ) )= ( ),i i i i k k k i

i k

k h m g h m F g   


    (2) 

where
 

( ) 1
g k k

kF g e
 

  is the cumulative density function 

of user k’s weighted channel gain. Thus, with the given 

threshold k, the transmit probability of user k, denoted 

by εk, is given by 

 

2 2
Pr( ( ) , arg max ( ) )

   ( ) ( ) ,
k

k k k k k i i i i

k i

i k

h m k h m

f g F g dg


     





  

 
 (3) 

where ( )

g

k k

k k kf g e
 

 


 is the probability density function 

of user k’s weighted channel gain. For clarity, define the 

function  

 
1

k k i i

g g

k k i

i k i kk k

g f g F g e e
   

 

 

 

       (4) 

that represents the joint effects of user selection and 

channel variation of user k. To satisfy the average rate 

constraint C/K for each user, the fixed active transmit rate 

of user k, denoted by rk , should satisfy 

( )
k

k

k
k

C C
r

K K g dg


 


 


      (5) 

This paper is concerned with achieving the minimum 

transmit sum power (MTSP) of BRS by optimizing the 

weighted factors {βk} and thresholds {k}. And we 

consider two different power adaption schemes as follows. 

In the first scheme, the transmit power level of active user 

k, denoted by BRS-A

kp , is adapted to its present weighted 

channel gain g. Based on Shannon’s capacity formula, the 

transmit power is given by 

 BRS-A kr

k kp e g                        (6) 

where the coefficient βk is included to compensate the 

ratio between weighted channel gain and real channel 

gain. We refer to this scheme as BRS with adaptive 

transmit power (BRS-A). The corresponding average 

transmit power of user k can be written as 

BRS-A 1k

k

r

k k k

e
P g dg

g
 

 
                   (7) 

Secondly, we consider a fixed transmit power BRS 

scheme (BRS-F). Specifically, the transmit power is fixed 

at the power level that is required when the weighted 

channel gain is equal to the threshold. Thus for user k, the 

fixed transmit power is given by 

BRS-F kr

k k kp e                        (8) 

Similarly, the average transmit power of user k in 

BRS-F can be written as 

             
BRS-F 1k

k

r

k k k

k

e
P g dg


 



 
              (9) 
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The minimum transmit sum powers (MTSP) of BRS-A 

and BRS-F are, respectively, the solutions of the 

following two minimizations:  

( )
BRS-A

{ },{ }

( )k
k

k

k

C

K g dg
k

kk

k

g
P e dg

g





 







    (10) 

( )
BRS-F

{ },{ }

( )k
k

k

k k

C

K g dg
k

kk
k

g
P e dg




 









  

 

(11) 

Henceforth, the solutions of (10) and (11) are 

respectively denoted by BRS-A

MTSPP and BRS-F

MTSPP , and we say 

explicitly “BRS” when referring both BRS-A and BRS-F. 

III. A BRS 

In this section, we analyze the performance of BRS. 

We first consider the homogeneous MAC case where the 

large-scale fading factors {αk} are identical as α for all 

users. The design of BRS in general heterogeneous 

MACs will be discussed later in this section. 

A.  MTSP of BRS-A in Homogeneous MACs 

Due to the symmetry property of users’ channels in 

homogeneous MACs, the optimal {δk} and {βk} in (10) 

and (11) should satisfy 
1 1{ 1 } ,  { }K K

k k k k      , where 

δ represents the identical user threshold. The 

minimization (10) then reduces to the single variable 

minimization problem given below: 

( )
BRS-A 1 ( )

C

g dg

δ

g
P e dg

g












              (12) 

where 1( ) (1 )g g Kg Ke e     . For convenience, we 

define ( )r C g dg





  as the instantaneous rate of each 

user for a given threshold δ. The corresponding optimal 

rate that minimizes BRS-AP is denoted by r*. 

Next, we show that the target function in (12) is a 

strictly quasiconvex function of δ under certain 

conditions. Its minimum is given by a closed-form 

expression of the optimal δ that can be easily obtained via 

a binary search method. We compute the first derivative 

as 

( )
BRS-A

( )

( )

d ( )

d ( )

( 1) ( )( )

( )

C

g dg

C

g dg

C

g dg

P e

g dg

e g dgC g
dg

gg dg
e



















 

  

 


















 


    

   









 (13)   

and denote the part in the bracket of right hand side of 

(13) by A(δ). Note that while ψ(g) = Ke
-g

(1-e
-g

)
K-1

, A(δ) is 

a strictly increasing function of δ. We can prove this by 

separately establishing the monotonicity of the two parts 

of A(δ) in δ. For the first part, its monotonicity can be 

easily proved through infinite series expansion whereas 

the monotonicity of the second part can be established by 

the positivity of the first derivative with respect to δ. 

Combined with the monotonicity of A(δ), the following 

boundary conditions 

0

c cA e e





                     (14) 

A C





                            (15) 

guarantee that there exits one unique positive root for the 

equation A(δ)=0, which establish that BRS-AP  is a 

quasiconvex function of δ. Denote the root by δ
A
. Then, 

the MTSP of BRS-A can be written as  

 
   

A A

A

2 2
[1 (1 ) ]

BRS-A

MTSP
A [1 (1 ) ]

1 1 (1 )
K

K

C e K

C e

e e

P
C e







 





  

 

  

      (16) 

B.  MTSP of BRS-F in Homogeneous MACs 

For BRS-F, (11) can be transformed as the solution of 

the following single variable minimization: 

( )
BRS-F 1

C

g dg

δ

P e g dg
δ










         (17) 

With similar arguments, we can prove that BRS-FP is a 

quasiconvex function of δ as well. Thereby, the solution 

of (17) can be written as 

        
  

F F[1 (1 ) ]

BRS-F

MTSP F

1 1 (1 )
KC e Ke e

P

 



    

       (18) 

where δ
F
 represents the unique positive root of the 

following function  

( )

( )

( 1) ( ) ( )

( )

C

g dg

C

g dg

e g dg g dg
B C

e







 



 


 





   
   
 
 
 

 
(19) 

Note that the significance of BRS-F is that it requires 

only one bit CSI feedback for each subchannel. Note that 

this feedback reduction is achieved at the expense of 

some power waste. Therefore, BRS-A BRS-F

MTSP MTSPP P  holds 

under same C and K. 

C.  Design of BRS in Heterogeneous MACs 

For general heterogeneous MACs, where large-scale 

coefficients α1, α2,…,αK do not equal to each other, the 

performance of BRS has to be improved with the joint 

optimization of the channel thresholds {δk} and weight 

factors {βk}. For clarity, we define the joint threshold 

vector and joint weight vector as δ = [δ1, δ2, , δK] and β 

= [β1, β2, , βK].  

Our first step for solving the minimizations of (10) and 

(11) is to study the relationship between the optimal δ 

and β, and it can be identified that for a given joint 

weight vector β, the optimal user k’s threshold that 
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min ( 1)
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min    ( 1)

( ) 1

min    ( 1) ( )

lim ( ) ( 1) 0

lim ( ) 0



minimizes (10) or (11) is the unique root of the first 

partial derivative of (10) or (11) with respect to δk. We 

can prove this by establishing that each part in the sum of 

(10) or (11) is a strictly quasi convex function as 

discussed above. This property of the problem provides 

us a way of mapping β to δ. And utilizing the quasi 

convexity, the mapping relationship from β to δ can be 

numerically computed with an efficient binary search 

method. 

After establishing the mapping between the two groups 

of variables, the variable dimensions of the problems are 

reduced and both BRS-AP and BRS-FP can be represented as 

functions of β which needs to be optimized according to 

the joint large-scale fading coefficients vector (denoted 

by α). We propose a simple gradient descent algorithm 

(GDA) outlined below to optimize β. Although GDA 

does not necessarily converge to the optimal point due to 

the non-convexity of the problems, we can show by 

numerical results that the GDA-optimized BRS 

performance is sufficiently close to the MTSP. 

Gradient Descent Algorithm (GDA) for BRS-A (or 

BRS-F): 

 Initialization: set β
(0)

=1/α, and calculate the threshold 

vector δ
(0)

 that minimizes BRS-AP (or BRS-FP ) by binary 

search. Denote the optimized average transmit power 

achieved in the first iteration by P
(0)

; 

 Given β
(l)

, δ
(l) 

and P
(l)

, numerically calculate the 

gradient BRS-A ( )( )lP  β β (or BRS-F ( )( )lP  β β ); 

 Choose a step length t with backtracking line search 

method given in[15]; 

 Update β
(l+1)

= β
(l)

+tΔβ. Calculate δ
(l+1) 

and
 
P

(l+1)
; 

 If ( 1) ( )l lP P    , go to 6); Else, go to 2);  

 Output β=β
(l+1)

, δ=δ
(l+1) 

and the optimized 

performance BRS-A ( 1)lP P  (or BRS-F ( 1)lP P  ).
 
 

The convergence of this algorithm is obvious, and the 

parameter  in step 5) is a small positive number that 

determines the convergence speed and precision of the 

optimization algorithm. 

In order to illustrate the optimized performance of 

BRS by our proposed GDA, we introduce a lower bound 

for the MTSP of BRS. This lower bound is based on the 

simple idea that all users in the system are assumed 

interference free. By applying the obtained results in 

subsection B) and C), the lower bounds for BRS-A and 

BRS-F can be respectively written as   

 
A A

A

2
2

BRS-A

LB
A

1
1

 ,

C e

kC e
k

e e

P
C e















   (20) 

 
F F

BRS-F

LB F

1
1

 ,

C e

k
k

e e

P

 

 

 

    (21) 

where δ
A
 and δ

F
 are respectively the solutions of the 

equations A(δ)=0 and B(δ)=0 with K=1, i.e., ( ) .gg e  . 

D.  BRS Performance in the Low-Rate Limit 

In this subsection, we study the BRS performance in 

the low-rate limit, i.e., C asymptotically approaches 0, 

which is written as C→0 in our notation. For practical 

systems, this corresponds to the scenarios with large 

allocated bandwidth. We derive the close-form 

performance of BRS in such a special limit. 

As C→0, δk→∞. Then the following is shown that 

( )

1 .
( )

k
k

k

C

K g dg

k

C
e

K g dg












 


           (22) 

By substituting (22) into (11), we have 

BRS-F .k

k
k

C
P

K




      (23) 

As discussed above, the average power of BRS-F in 

(23) should be strictly lower bounded by the average 

power of the corresponding interference free networks. 

The lower bound can obtained by summing up K single 

user water-filling average power in the low-rate limit 

which is explicitly derived in [13] where it is shown that  

/

2
( ) ,

e
P

 

 


   (24) 

/

( ) ,
e

C
 

 


  (25) 

where P(Θ) and C(Θ)  are respectively the average power 

and capacity, Θ the water-level. By solving the 

constraint ( )C C  , we obtain the optimal water-level as 

ln( ) ln ln( ).K C K C               (26) 

After applying (26) into (24) and combining the result 

with idea of the lower bound, the lower bound BRS-F

LBP is 

shown to converge to 

BRS-F

LB

1

1

ln( )

K

k k

C
P

K K C 

   .       (27) 

From (27) and (23), it is shown that the performance of 

BRS-F can converge to the optimal performance (27) in 

the low-rate limit by setting β=1/α and δk=ln(K/C).  

Since BRS-A can be thought as a lower bound of BRS-

F, the MTSP of BRS-A in the low-rate limit converges to 

(27) as well. This result implies that in wideband 

communication scenarios, BRS achieves the optimal 

variable-rate performance.  

IV. NUMERICAL RESULTS AND DISCUSSTION 

This section presents some numerical results to 

illustrate the performance of BRS. For clear intuition, the 

average sum rate C is expressed in bits/subchannel.  

Fig. 1 and Fig. 2 depict the MTSPs of BRS and the 

optimal scheme in homogeneous MACs with respect to C 

and K. It is observed from Fig. 1 that the performance of 

BRS-A is fairly close to that of the optimal scheme even 
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under a substantially high sum rate C=4 bits/subchannel, 

indicating that in the case where relatively accurate CSI 

feedback is available, fixed rate channel adaption is 

sufficiently effective. Thus, complicated variable-rate 

channel coding structure is not necessary in this case.  
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Fig. 1. Average transmit sum power versus average sum rate C for BRS-
A, BRS-F in a 2-user homogeneous MAC. 
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Fig. 2.  Average transmit sum power versus the number of users K for 

BRS-A, BRS-F in a homogeneous MAC with average sum rate C=4 
bits/subchannel. 

In addition, the performance gap between BRS and the 

optimal scheme is reduced as C diminishes. This 

phenomenon suggests that great potentials of binary rate 

adaption can be exploited in the low-rate regime. 

Moreover, we can see that when C is near 0.25 bit/sub 

channel, BRS-F renders nearly the same performance 

with BRS-A. Hence, feedback reduction potentials can 

also be exploited in the low-rate regime. This observation 

is in line with the asymptotic optimality of BRS in the 

low rate limit as we proved in the previous section. 

Therefore, BRS-F is preferable when C is near or smaller 

than 0.25 bit/sub channel. In contrast, when C grows 

larger, the performance gap between BRS-A and BRS-F 

is more distinct and BRS-F becomes less efficient.  

Fig. 3 shows the impact of the choice of active rate r 

on BRS-A and BRS-F.  It  can be seen that  the 

performances of both BRS-A and BRS-F are not sensitive 

to the choice of active rate. For example, when C=1 

bit/s/Hz, if we double the active rate (the corresponding 

transmit probability is reduced by 50% as well), only 1.7 

dB and 2.3 dB performance losses are observed 

respectively for BRS-A and BRS-F. This observation 

reveals another merit in the design of BRS that we can 

conveniently choose an active rate in the favor of the 

channel code and modulation configurations without 

incurring much performance loss. Note that BRS-A is 

less sensitive than BRS-F particularly when C grows 

large. Hence, BRS-A is more flexible to the requirements 

of channel codes and modulation schemes.  
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Fig. 3. Average transmit sum power versus the ratio r/r* for BRS-A and 

BRS-F in a 2-user homogeneous MAC. The system parameters are K=2, 

C=0.5, 1, 1.5 bits/subchannel. 
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Fig. 4. Average transmit sum power versus average sum rate C for the 

GDA optimized BRS, α-inverse BRS and the lower bound (20) in 2-

user heterogeneous MACs with α={1, 0.02} and {1, 0.005}. 

For general heterogeneous MACs, the proposed GDA-

optimized BRS performance and the lower bound (21) 

are compared in Fig. 4. We also include the performance 

curve with β=1/α and refer to this scheme as α-inverse 

BRS. From Fig. 4, we can observe that the GDA 

optimized performance is very close to the lower bound, 

which indicates that GDA almost achieves the BRS 

MTSP. Moreover, compared with the α-inverse scheme, 

the GDA optimized β achieves an evident performance 

gain when C grows large and when the large-scale fading 

coefficients among users become more distinct. On the 

other hand, when C becomes small, the performance gain  

by the optimization of β is marginal. In this case, simply 

inversing the large-scale fading with β=1/α is sufficient. 
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In Fig. 5, we investigate the performance of BRS in a 

practical single-cell uplink channel where the large-scale 

fading coefficients in {αk} are produced by the 

multiplication of two random factors, namely normalized 

lognormal fading with log-variance σs=8 and path-loss in 

an edge-length-1 single hexagon cell with uniform user 

distribution. The path loss factor model follows a fourth 

power path-loss law. To avoid the average dominated by 

minority extremes and guarantee its convergence, each 

user is not allowed to transmit if its large-scale fading 

coefficient is below a given threshold. And the user 

outage probability is set to be 1% [14].  
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Fig. 5. Average transmit sum power versus average sum rate C for BRS-

A, BRS-F, lower bounds (20) of BRS-A and optimal scheme in a 4-user 

general heterogeneous single-cell uplink over 10000 {αk} realizations 
with 1% outage. 

From Fig. 5, the performance gap between BRS and 

the optimal scheme in heterogeneous MACs is averagely 

enlarged compared with that in homogeneous MACs. 

Particularly for BRS-F, the gap becomes almost 

unacceptable. The situation for BRS-A is better and we 

can see that it’s still close to the optimal performance 

especially with the optimization by proposed GDA. For 

example, at the typical rate C = 2 bits/sub channel, the 

GDA optimized BRS-A is only 1 dB away from 

optimality which is quite impressive. When sum rate is 

higher than 2 bits/s/Hz, the proposed GDA optimization 

over β is very effective. 

V. CONCLUSION 

In this paper, we identified that a simple BRS scheme 

with very low complexity can achieve near optimal 

variable-rate performance in the multiuser OFDM 

Rayleigh fading networks. Compared to the variable-rate 

scheme, BRS reduces the number of handshakes between 

transceivers in each scheduling period, hence it is more 

desirable in systems where frequent handshakes may 

incur much system overhead.  

The performance of BRS was analyzed and optimized 

with respect to the channel gain thresholds and weight 

factors. For homogeneous networks where users share 

symmetric channel conditions, we obtained the closed- 

form expression of the MTSP of BRS after identifying 

the decent structure of quasi-convexity of the problem. 

On the other hand, for general heterogeneous scenarios 

where users experience asymmetric large-scale fading, a 

numerical gradient descent algorithm was proposed to 

approach the MTSP of BRS. Through comparisons 

between optimized performance and the BRS MTSP 

lower bound, the proposed GDA was shown to be 

efficient and effective. In addition, we showed that the 

potentials of BRS can be further exploited in low-rate 

wireless environments that its performance can converge 

to that of the optimal scheme as the sum rate diminishes. 

The theoretical proof of the asymptotical optimality of 

BRS was given, which was also confirmed by the 

numerical results. This observation is in line with the one 

obtained in [13] for point-to-point fading channels. 

Moreover, two different power allocation schemes for 

BRS were discussed and compared. BRS-A requires 

accurate CSI available at the transmitter whereas BRS-F 

requires only 1 bit CSI per. For BRS-A, we found that it 

can operate quite close to the optimal scheme in both 

homogeneous and heterogeneous networks. This implies 

that, when the feedback budget is sufficient, we can 

aggressively simplify the channel coding modules 

without much performance loss. In contrast, BRS-F 

generally incurs considerable power waste. It only can 

approach the optimal scheme either when the sum rate is 

low or the number of users is large. This observation 

indicates that great potentials of complexity reduction 

exist in the low-rate regime and the systems with large 

number of users. Therefore, we can greatly simplify the 

overall communication complexities and in the 

meanwhile still maintain a good performance in certain 

special wireless communication scenarios, e.g., ultra 

wideband wireless networks or centralized sensor 

networks with the nodes installed at nearly symmetric 

positions. Although BRS was studied in MAC in this 

paper, the obtained results can be extended to broadcast 

channel by utilizing the duality principle [16]. 
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