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Abstract—Blind Source Separation (BSS) algorithms based on 

the noise-free model are not applicable when the Signal Noise 

Ratio (SNR) is low. In view of this situation, our solution is to 

denoise the mixtures with additive white Gaussian noise firstly, 

and then use BSS algorithms. This paper proposes a piecewise 

Empirical Mode Decomposition (EMD) thresholding approach 

to denoise mixtures with strong noise. This approach can 

distinguish the noise-dominated IMFs and signal-dominated 

IMFs, and then respectively apply different thresholdings 

methods. Simulation results show that compared with the 

Wavelet denoising, the proposed approach has a better 

denoising performance, and can remarkably enhance the 

separation performance of BSS algorithms, especially when the 

signal SNR is low. 
 
Index Terms—Signal denoising; empirical mode 

decomposition (EMD); wavelet transform (WT); waveshrink 

algorithm; noisy blind source separation.  

 

I. INTRODUCTION 

Blind source separation (BSS) is a well-known domain 

in signal processing. It deals with the separation of 

observed sensor signals into their underlying source 

signals, without knowing the source signals and the 

mixing process. The only assumption is that the source 

signals are mutually statistically independent. A lot of 

BSS models, such as instantaneous linear mixtures and 

convolutive mixtures, are have been presented in some 

publications
[1][2][3]

, and some prominent BSS methods 

with good performance, such as FastICA
[3]

, RobustICA
[4]

 

and etc., have been widely applied to telecommunication, 

speech and medical signal processing. 

However, the best performances of these methods are 

obtained for the ideal BSS model and their effectiveness 

is definitely decreased with observations corrupted by 

additive noise. In order to solve the problem of the BSS 

with additive noise, i.e. Noisy BSS, a good solution is to 

apply a powerful denoising processing before separation. 

At present, the denoising techniques mainly include 

Kalman filtering, particle filtering, wavelet denoising, etc. 

As for the Noisy BSS, for lack of any apriori information 

about the observed mixtures, we cannot build the exact 

model. Wavelet denoising based on wavelet transform 

(WT) is simple and wavelet thresholding has been the 
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dominant technique in the area of non-parametric signal 

denoising for many years. Thus, wavelet denoising is 

suitable for Noisy BSS. Nevertheless, the wavelet 

approach has a main drawback, that is, its basis functions 

are fixed and do not necessarily match varying nature of 

signals
[5]

.  

Huang et al.
 [6]

 proposed Empirical Mode 

Decomposition (EMD) to analyze data from 

nonstationary and nonlinear processes. The major 

advantage of EMD is that the basis functions are derived 

from the signal itself. Hence, the analysis is adaptive, 

which is different from the wavelet approach whose basis 

functions are fixed. Signal denoising based on EMD is a 

novel denoising technique of non-parametric signal 

denoising, and it has a wide range of applications, such 

as in biomedical signals
[7]

, acoustic signals
[8]

 and 

ionospheric signals
[9]

. Considering the good performance 

of EMD denoising, we can apply this technique to Noisy 

BSS. 

This paper aims to combine EMD denoising 

processing with BSS to improve the performance of BSS 

algorithms. Since the thresholds using the method 

explained in [15] decreased so slowly that part of the 

signal will get lost after thresholding, we propose a 

piecewise EMD thresholding approach to denoise 

mixtures with strong noise. This approach can find the 

noise-dominated IMFs and signal-dominated IMFs, and 

then use the different thresholds methods respectively. 

The new thresholds decrease faster than the conventional 

ones. 

This paper is organized as follows: firstly, we 

introduce the Noisy BSS model. Then in Section 3, we 

explain the EMD method and its denoising principle; 

while in Section 4 we analyze the disadvantages of 

conventional thresholding EMD denoising approach, and 

propose a new EMD denoising approach which has a 

better performance than the wavelet denoising approach. 

Finally, we apply this denoising approach to the Noisy 

BSS. A short summary concludes this paper. 

II. NOISY BSS 

A. Noisy BSS Model 

Consider a linear instantaneous problem of blind 

source separation, and the unknown source signals and 

the observed mixtures are related to: 

( ) ( ) ( ) ( ) ( )t t t t t   y As v x v                (1) 
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in which  1 2( ) ( ), ( ), , ( )
T

mt t t ty y y y is the vector of m 

observed mixtures, and  1 2( ) ( ), ( ), , ( )
T

nt t t ts s s s  is 

the vector of n source signals which are assumed to be 

mutually and statistically independent. A is an unknown 

full rank m n  mixing matrix and ( )tv is an additive 

noise. This paper focuses on the signals with white 

Gaussian noise. We call this model Noisy BSS model 

(Fig. 1). 

Mixing Matrix

A
+

( )s t ( )x t ( )y t

( )v t

ˆ( )s t
BSS algorithm

 

Fig. 1. Noisy blind source separation model 

In normal BSS model (without noise), we can find a 

demixing matrix W  so that ˆ( ) ( ) ( )t t t Wy s s , 

i.e. WA I , and this demixing matrix W  is optimum. 

But in Noisy BSS, even if we can get W , the result of 

demixing is ( ) ( ) ( ) ( ) ( )t t t t t   Wy WAs Wv s Wv  

which is the mixture of the source signals and the noise. 

In practice, we cannot find the optimum demixing matrix 

W  in noisy BSS at all. Therefore, generally, Noisy BSS 

is much more difficult to deal with than normal BSS. 

B. The Solution of Noisy BSS 

A solution of noisy BSS based on wavelet denoising is 

proposed in [10]. The idea of this solution is to transform 

Noisy BSS into normal BSS without noise, i.e. to denoise 

the observed mixtures before BSS, and then directly use 

normal BSS algorithms (Fig. 2).  

Mixing Matrix

A
+

( )s t ( )y t

( )v t

ˆ( )s t
BSS algorithmDenoising

( )x t ˆ( )x t

 

Fig. 2. The principle of the method in [10] 

WaveShrink algorithm
[14]

 is used to denoise the 

observed mixtures in [10]. WaveShrink algorithm is one 

of the most widely used denoising techniques based on 

wavelet transform. However, besides its own drawbacks, 

the wavelet approach is not very efficient when the SNR 

is low. Therefore, in this paper, we use EMD denoising 

method to remove the noise in observed mixtures firstly, 

and then separate them using BSS algorithms. 

III. EMPIRICAL MODE DECOMPOSITION 

A. The EMD Technique 

Empirical Mode Decomposition is an algorithm that 

can decompose a signal into a series of structural 

components, known as Intrinsic Mode Functions (IMFs), 

together with the possibility of providing an estimate of 

the trend of the data. An IMF is defined as any function 

having the same number of zero-crossings and extrema, 

and also having symmetric envelopes defined by the local 

maxima and minima respectively. 

For a discrete time signal ( ), 1,2, ,x n n N , N is the 

sample number of the signal, the algorithm for the 

extraction of IMFs from the real world data is called 

sifting and it consists of the following steps: 

Step1: 
0 ( ) ( )x n x n ,

0 ( ) ( )h n x n . 

Step2: Get the envelopes of the maxima and the 

minima of 0 ( )h n  using cubic splines interpolation, and 

denote them as max ( )E n  and min ( )E n . 

Step3: Calculate the mean of the two envelopes as 

(1) max min
1

( ) ( )
( )

2

E n E n
m n


                   (2) 

Step4: Subtract the mean (1)

1 ( )m n  from the original 

signal ( )x n  as  

(1) (1)

1 0 1( ) ( ) ( )h n x n m n                     (3) 

Step5: Examine the residual (1)

1 ( )h n  to see whether it 

satisfies the definition of IMF.  

a) If it doesn’t, then (1)

0 1( ) ( )h n h n , repeat the steps 

from Step2 to Step5 many times until it satisfies the 

definition of IMF. Thus: 

( ) ( 1) ( )

1 1 1 1( ) ( ) ( )k k kIMF h n h n m n                (4) 

b) If it does, the procedure stops and we get the first 

IMF, i.e. (1)

1 1 ( )IMF h n . 

Step6: After extracting IMF, the new signal under 

examination is expressed as: 

1 0 1( ) ( )x n x n IMF                          (5) 

Then 0 1( ) ( )x n x n  and 0 1( ) ( )h n x n , and repeat 

the previous steps until the final residual is a monotonic 

function.  

After completion of EMD the signal can be written as 

follows: 

1

( ) ( )
K

j
j

x n IMF r n


                        (6) 

where K is the total number of the IMF components and 

r(n) is the residual. 

B. Analysis of Wavelet Transform and EMD 

In this section, we compare the decomposition results 

of Wavelet Transform (WT) with Empirical Mode 

Decomposition (EMD) at different SNR levels. The 

signal “Heavysine” obtained using MATLAB software is 

corrupted by white Gaussian noise, and the SNR levels 

are 15dB and 0dB respectively (Fig. 3). The sample size 

of the signals is 1024N  .  

The parameters of WT are set as follows: the chosen 

wavelet basis function is “sym7” and the number of the 

decomposition level is 4. The decomposition results of 

WT and EMD are depicted in Fig. 4 and Fig. 5 

respectively. Comparing the decomposition results of 

WT with those of EMD, we can see that WT is linear 

transform and WT of the noise is superposed on the 

507

Journal of Communications Vol. 9, No. 6, June 2014

©2014 Engineering and Technology Publishing



 

 

corresponding WT of the noise-free signal. The number 

of decomposition level is fixed no matter the SNR is high 

or low. On the other hand, EMD is non-linear, and the 

decomposition level is adaptive. The stopping criterion of 

EMD is that the final residual is a monotonic function. 

Therefore, the number of decomposition level increases 

with the decrease of the SNR level. We can see from Fig. 

5(b) that there are four levels at the SNR level of 15dB 

which contains more noise than signal, compared with 

decomposition results of the noise-free signal, shown in 

Fig. 5(a). While the SNR level decreases to 0dB, there 

are five levels containing more noise than signal. EMD 

can separate more noise from the noisy signal than WT. 
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Fig. 3. The signal “Heavysine” at different SNR levels 
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        (a)                                                              (b)                                                              (c) 

Fig. 4. Decomposition results of WT: (a) Original signal, (b) Noisy signal with SNR=15dB, (c) Noisy signal with SNR=0dB. 
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(a)                                                      (b)                                                       (c) 

Fig. 5. Decomposition results using EMD: (a) original signal, (b) Noisy signal with SNR=15dB, (c) Noisy signal with SNR=0dB. 
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As we all know, the nature of the sources is not known 

in BSS. Both the WT basis function and the WT 

decomposition level are needed to select apriori, i.e. they 

are predetermined by the user. This affects the quality of 

the analysis especially when the WT basis and the level 

are not compatible with the signal parameters. On the 

other hand, EMD is an adaptive method and its 

decomposition results are driven by the signal itself. 

Therefore, EMD is preferable with no predetermined 

decomposition basis.  

It can be obtained from the above preliminary analysis 

that EMD is more suitable for decomposing noisy signal 

than WT and EMD is more capable in separating the 

noise from noisy signal than WT. 

C. EMD Denoising 

The first attempt to use EMD as a denoising tool 

emerged from the need to know whether a specific IMF 

contains useful information or primarily noise. Then the 

significance IMF test procedures were simultaneously 

developed by several researchers based on statistical 

analysis. Just as in wavelet analysis, the lower frequency 

temporal modes are dominated by the signal, while the 

higher ones are dominated by the noise. According to this, 

we can separate the original signal from the noisy signal. 

Let jC be a clean deterministic IMF with a length of 

L . jIMF is the corrupted IMF which contains the 

additive noise jn  with a variance of 2

j , jIMF can be 

written as follows. 

j j jIMF C n                              (7) 

The purpose of denoising is to get the estimation of the 

clean deterministic IMF ˆ
jC . We can get the denoising 

signal as follows: 

1

ˆˆ( ) ( )
K

j
j

x t C r t


                           (8) 

Then, the key problem is how to get ˆ
jC . The simplest 

approach is to pick out and remove the high frequency 

IMF only with noise. A denoising method based on the 

autocorrelation characteristics of white Gaussian noise is 

proposed by Wang 
[11]

.  Moreover Huang et al.
 [12]

 find 

that the mean period of any IMF component almost 

doubles that of the previous one through studying the 

characteristics of the white noise using EMD. Using this 

characteristic of the white noise, we can find the IMF 

only with noise. However, using this method to judge 

whether the IMF only contains noise is not precise and 

robust. To solve this problem, Higher Order Statistics 

criteria
 [13]

 can be applied to detect the IMFs which only 

capture white Gaussian noise, and then they can be safely 

excluded from the final signal reconstruction process. 

This is because the Higher Order Statistics of Gaussian 

signals are equal to zero, which is not the case for non-

Gaussian ones. However, in practice, the cumulants 

estimation of a noisy signal may still be invalid, 

especially when the samples of the signal are not 

numerous enough. Besides, the computational cost of this 

method is much higher. 

Although the approach of removing the high frequency 

IMFs only with noise is very simple, the noise is 

distributed not only over the high frequency IMFs but 

also over the other IMFs which contain both the signal 

and the noise. So this denoising approach cannot remove 

the noise completely, and we need a more efficient 

approach. Considering the success of WaveShrink 

algorithm, we can apply this classical technique to EMD 

denoising. In the next section, we propose a new 

denoising approach which combines EMD with 

WaveShrink algorithm. When the SNR is low, this 

approach works better than WaveShrink algorithm. 

IV. A NEW EMD DENOISING APPROACH 

A. Disadvantages of Conventional Thresholding EMD 

Denoising 

Copsinis and McLaughin
[15] 

proposed a thresholding 

EMD denoising algorithm which applied the wavelet 

thresholding principle to EMD denoising, hereafter 

referred to as EMD thresholding. The threshold they used 

is as follows: 

2lnk kThr C V N                         (9) 

in which C is a constant experimentally found to take the 

values from 1 to 0.7 depending on the type of  the signal, 

and N  is the sample number of the signal. We also have: 

1 , 2,3,4k

k

V
V k



                    (10) 

 
2

1 1
1

1 N

n

V IMF
N 

                        (11) 

where 1V  is the energy of the first IMF, and  and  are 

the parameters and Flandrin et al. 
[16] 

specifically 

proposed that the values of   and   are 0.719 and 2.01 

respectively when the noise is white Gaussian noise.  

However, we find the thresholds of IMFs decrease so 

slowly from the first to the last that part of the signal may 

get lost from some signal-dominated IMFs after 

thresholding. Therefore, we should first find the IMFs 

which are dominated by noise and the ones dominated by 

the signal. Then, we apply the thresholds explained in [15] 

to the noise-dominated IMFs, and another estimating 

threshold method which is able to decrease faster to the 

signal-dominated IMFs. 

In this section, we propose a new denoising approach. 

This approach consists of three key steps: firstly, find the 

IMFs dominated by the noise, and then compute their 

thresholds separately; secondly, compute the thresholds 

of the other IMFs using a new estimating threshold 

method which is able to decrease faster; lastly, apply the 

thresholding technique to each IMF, and then reconstruct 

the signal by adding the thresholded IMFs. We will 

explain them in detail. 
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B. Three Key Steps 

1) Find the IMFs dominated by the noise 

We have introduced several methods to find the noise-

dominated IMFs in section 3. In practice, the signal 

samples we can get are always limited. Under this 

condition, some characteristics of white Gaussian noise 

cannot be satisfied strictly. For example, theoretically, 

the kurtosis of the white Gaussian noise is always equal 

to zero, but in practice, kurtosis estimation may still be 

invalid, especially when the signal samples are not 

numerous enough to ensure convergence. Through 

studying the white noise using EMD, it can be found that 

the mean period of IMF almost exactly doubles that of 

the previous IMF. Therefore, in practice, in deciding 

whether the IMF is noise dominated or not, judging the 

mean period of the IMFs is more suitable than others 

methods. We just need to get the number of the peak of 

each IMF 1 2, , , KNP NP NP , where K is the total number 

of the IMF components. Then, the ratio of the mean 

period of the IMFs is equivalent to the following 

expression. 

1

1,2, , 1i
i

i

NP
R i K

NP

                 (12) 

when 1 2 , 2k kR R      , where   is a small 

number (such as 0.1  ), the first k  IMFs are 

considered to be noise-dominated. 

Then we use (9) and (10) to get the thresholds of these 

IMFs. However, the method of estimating the threshold 

in [15] is based on the assumption that the total noise 

energy is captured by the first IMF. But, generally, this 

assumption is not valid. Therefore, the noise variance of 

the first IMF can be estimated using the better estimator 

proposed in [17], as is shown in the following equation. 

  
2

1 1

1
0.6745

madian IMF median IMF
V

 
 
 
 

     (13) 

A series of simulations conclude that this estimator 

performs better for all types of signals. Then we get the 

thresholds of the first k  IMFs 1, , kThr Thr . 

2) Get the thresholds of the other IMFs 

We use (9) and (10) to get the thresholds of each 

noise-dominated IMF, and we have to find another 

estimation method to get the thresholds of the signal- 

dominated IMFs. Since the estimation method of (9) and 

(10) decreases slowly, we need one which can decrease 

faster for signal-dominated IMFs.  

First, through studying the threshold in [15], and 

substituting (10) into (9), we obtain: 

 1 2ln , 2,3,4i

iThr C V N i        (14) 

Removing the constant term in the above formula, and 

substituting 2   into the above equation, we get: 

 2 , 2,3,4
i

iThr i


           (15) 

In order to make the threshold decreased faster, the form 

of improved threshold that we propose remains 

exponential function. Then we set 

, 2,3,4i

iThr i            (16) 

The new threshold function needs to be proportional to 

the threshold of the last noise-dominated IMF with the 

constant term C the same as in (9). Thus, the expression 

of the threshold is set as: 

, 1, ,k
i i k

Thr
Thr C i k K

 
           (17) 

The value of   is determined by the following 

experiment. In order to make the threshold decrease 

faster 2  has to be satisfied. For this,   is selected 

as 1.6, 1.8, 2, 2.2, and 2.4 for noisy signal denoising. The 

experiments select “Heavysine” and “Bumps” and SNR 

from 5dB to 30dB. The experiments are repeated 100 

times for each test point, and the signal mean square error 

of the signal is calculated, as is shown in Fig. 6. 

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05
Denoising results of "Heavysine"

SNR(dB)

S
ig

n
a

l 
M

e
a

n
 S

q
u

a
re

 E
rr

o
r

 

 

1.41421

1.6

1.8

2

2.2

2.4

 
5 10 15 20 25 30

0

0.05

0.1

0.15

Denoising results of "Bumps"

SNR(dB)

S
ig

n
a

l 
M

e
a

n
 S

q
u

a
re

 E
rr

o
r 

 

 

1.41421

1.6

1.8

2

2.2

2.4

 
Fig. 6. Denoising results of “Heavysine” and “Bumps” at different 

values of  

We can see from Fig. 6 that the best results are 

obtained when 2  , so the threshold is expressed as 

follows: 

, 1, ,
2

k
i i k

Thr
Thr C i k K


                (18) 

where C  is a constant as explained in section A. Then, we 

can get the thresholds of the rest IMFs  1, ,k KThr Thr . 

For example, 10, 3K k  , comparing the conventional 

threshold with the new threshold (Fig. 7), we can see that 

when the IMF is signal-dominated, the new thresholds 

decrease faster than the conventional ones. 
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Fig. 7. Comparison of the two different threshold methods 

3) Use the estimated thresholds to each IMF 
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Now with the thresholds of each IMF 

 1, , KThr Thr being determined, the WaveShrink 

algorithm can be used. However, due to the nature of the 

IMF, directly applying WaveShrink algorithm to each 

IMF is incorrect in principle and can lead to catastrophic 

consequences for the continuity of the reconstructed 

signal
[18]

. In order to maintain the nature of the IMF, the 

thresholding operation for EMD in [15] is used. The 

thresholding operation can be expressed as follows: for 

every two successive zero crossings interval of the i th 

IMF      
1

i i i

j j jz z z 
 
 

, we can get the thresholded 

interval  i
jz  for the hard thresholding case, as is shown in 

the following. 

 

   

 
0

i i

j j i
i

j
i

j i

z r Thr
z

r Thr

 


 




                   (19) 

where 
 i
jr  is the extremum of the interval 

 i
jz , i.e. the jth 

extremum of the ith IMF, and   1,2, , 1
i

zj N  ,  i
zN  

is the number of the zero crossings of the i th IMF. 
Similarly, for the soft thresholding case, we can get  
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           (20) 

And then the thresholded IMF is formed by 

concatenating the thresholded intervals, i.e. 

   
 

 
1 2 1

i
z

ii i

i N
IMF z z z



 
  

            (21) 

C. A New EMD Denoising Approach 

The above EMD denoising approach, hereafter 

referred to as piecewise EMD thresholding (EMD-PieThr) 

is summarized in the following steps and depicted in flow 

chart in Fig. 8. 

Step1: Apply the EMD and decompose the noisy 

signal in the IMFs. 

Step2: Calculate the mean period of the IMFs, and get 

the ratio iR  using equation (12). 

Step3: Find the first k  IMFs which are considered 

noise dominated when 1 2 , 2k kR R      , 0.1  . 

Step4: Evaluate the thresholds of the first k  

IMFs 1, , kThr Thr using equation (9), (10), and (13). 

Step5: Evaluate the thresholds of the rest IMFs 

 1, ,k KThr Thr  using equation (18). 

Step6: Apply the thresholding technique explained in 

section 4, use the estimated thresholds to every IMF, and 

get iIMF , i.e. the thresholded IMF. 

Step7: Reconstruct the signal by adding iIMF , 

i.e.
1

ˆ( ) ( )
K

i
i

x t IMF r t


  . 

Input noisy signal

Empirical Mode Decomposition

Get the ratio of mean 

period of IMFs

IMF 

noise dominated 

or not?

Evaluate the thresholds 

using conventional method

Evaluate the thresholds 

using new method 

Apply the Interval 

thresholding technique

Reconstruct the signal

Yes No

 
Fig. 8. New EMD denoising approach scheme 

V. EXPERIMENTAL RESULTS 

The experimental analysis of this section aims at 

objectively evaluating the denoising performance of 

denoising algorithms and the separation performance of 

FastICA and RobustICA after denoising preprocessing. 

In order to precisely describe the performance of the 

algorithms, we employ signal mean square error (SMSE), 

a contrast-independent criterion defined as 

 2

1

1
ˆSMSE E

N

j j
jN 

  x x                 (22) 

where jx is the source signal or the noise-free signal, 

ˆ
jx is estimated signal, and N is the sample number of the 

signal. The performance is better when the value of 

SMSE is smaller.  

A. Denoising Experiment 

In order to test the EMD denoising method, we 

performed numerical simulations for two test signals: 

“Heavysine” and “Blocks” obtained using MATLAB 

Software. The sample size of the signals is 1024N  . 

The denoising performance of four denoising approaches 

is evaluated: WaveShrink, removing the IMFs noise-only 

based on EMD (EMD-ReIMF), EMD Thresholding 

proposed in [15] (EMD-Thr), piecewise EMD 

thresholding we proposed (EMD-PieThr).  

The signal  , 1,2, ,1024x n n   is corrupted by i.i.d 

zero-mean white Gaussian noise,    2~ 0,v n N  , and 

2  is unknown. The parameters of WaveShrink are set 

as follows: the chosen wavelet is “sym7”; the number of 

decomposition level is 4; and the data-adaptive threshold 

selection rule is SureShrink
[19]

. We evaluate the 

performance of the four denoising approaches at different 

SNR levels, and for each SNR level the performance 
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criteria SMSE are averaged over 100 Monte Carlo 

simulations.  

The test signals (noise free) and noisy signals are 

depicted in Fig. 9. The SNR of the signal “Heavysine” is 

-5dB and the SNR of the signal “Blocks” is 3dB. Fig. 10 

displays the outcomes of applying the four denoising 

approaches to the two signals. Each reconstructed signal 

plot (black line) is superposed on the corresponding 

noise-free signal (red line). We can see that the denoising 

result of applying piecewise EMD thresholding is much 

closer to their corresponding original signals than the 

other three approaches. Table I and Table II compare the 

SMSE values of the four denoising approaches to the two 

signals respectively. As indicated in Table I and Table II, 

the EMD-PieThr outperforms the other approaches at 

different SNR levels. Comparing Table I with Table II, it 

can be got that the denoising result of the signal 

“Heavysine” is much better than the signal “Blocks” at 

the same SNR. The reason is that the oscillations of 

“Blocks” is more rapid than “Heavysine”, and the same 

problem is seen in WaveShrink.  
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Fig. 9. Test signals with 1024N   and Noisy signals (Heavysine: 

SNR=-5dB;   Blocks: SNR=3dB) 
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Fig.10. Denoising results of the four approaches. The noise-free signals (red line). The reconstructed signals (black line). (Heavysine: SNR=-5dB;   

Blocks: SNR=3dB) 

TABLE I: DENOISING RESULTS OF “HEAVYSINE” AT DIFFERENT SNR LEVELS 

SNR(dB) -10 -7 -5 -3 0 3 5 7 10 

WaveShrink 0.5874 0.3209 0.2020 0.1309 0.0742 0.0411 0.0303 0.0220 0.0144 

EMD-ReIMF 0.8262 0.4344 0.3585 0.1980 0.1173 0.0635 0.0456 0.0339 0.0250 
EMD-Thr 0.3773 0.2284 0.1821 0.1544 0.0941 0.0607 0.0483 0.0344 0.0226 

EMD-PieThr 0.2891 0.1605 0.1228 0.1062 0.0644 0.0341 0.0248 0.0176 0.0121 

TABLE II: DENOISING RESULTS OF “BLOCKS” AT DIFFERENT SNR LEVELS  

SNR(dB) -10 -7 -5 -3 0 3 5 7 10 

WaveShrink 0.8908 0.6185 0.4879 0.4074 0.3048 0.2225 0.1714 0.1319 0.0810 
EMD-ReIMF 1.4097 1.0493 0.7193 0.5932 0.3764 0.2592 0.2246 0.1880 0.1150 

EMD-Thr 1.8524 1.3625 1.0755 0.8522 0.5347 0.3411 0.2579 0.1980 0.1332 

EMD-PieThr 0.8239 0.6079 0.4590 0.3776 0.2633 0.1839 0.1459 0.1152 0.0721 
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Fig. 11. Comparison of the separation results (SNR=3dB): (a) Original sources, (b) Noisy mixtures, (c) Separation results of FastICA only, (d) 
Separation results of FastICA with EMD denoising preprocessing 
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B. BSS Experiment 

In the following, the case of three original source 

signals  ix n , 1,2,3i  , 1,2, ,2048n  mixed by a 

3 3 mixing matrix is considered. Assuming that the 

mixed source signals are corrupted by additive white 

Gaussian noise,    2~ 0,v n N  , and 2  is unknown. 

In order to visualize the performance improvement in 

restoring the original source waveforms, the three 

original sources, the noisy mixture (SNR=3dB) and the 

estimated sources from denoising the mixtures (with 

FastICA) are depicted in Fig. 11. We can see that the 

separation waveforms without EMD denoising 

preprocessing almost cannot be recognized compared 

with the original sources and the denoising preprocessing 

provides more accurate waveforms for the estimated 

sources. 

 Then, the denoising preprocessing using Wave-Shrink 

approach and EMD-PieThr approach we proposed are 

performed individually for each noisy mixture. The 

parameters of WaveShrink are the same as in Section A. 

And then the separation performances of two prominent 

BSS algorithms: FastICA
[3]

 and RobustICA
[4]

 are 

evaluated. Assuming different SNR levels for the 

observed mixtures, for each SNR level the performance 

criteria SMSE are averaged over 100 Monte Carlo 

simulations. The comparison of separation performance 

is depicted in Fig. 12. 

As indicated in Fig. 12, denoising preprocessing is 

very efficient for improving the performance of BSS 

algorithms in the presence of strong noise. Moreover 

EMD denoising preprocessing outperforms Wavelet 

denoising preprocessing, especially in the cases where 

the signal SNR is low. 
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Fig. 12. Comparison of the separation performance of two prominent 
BSS algorithms with two denoising preprocessing approaches 

VI. CONCLUSIONS 

Noise strongly reduces the separation performance of 

BSS algorithms, which is known as Noisy BSS problem. 

A direct and simple solution is to denoise the noisy 

mixtures before BSS. In this paper, a new signal 

denoising approach which is called piecewise EMD 

thresholding approach is proposed. This denoising 

scheme, based on EMD, is simple and fully data-driven. 

Moreover, this approach does not use any apriori 

information. Since the thresholds using the conventional 

method decrease so slowly that part of the signal will get 

lost after thresholding, the approach we proposed is able 

to distinguish the noise-dominated IMFs and the signal-

dominated IMFs, and then apply different thresholds 

methods respectively. The new thresholds decrease faster 

than the conventional ones. The novel denoising 

approach exhibits an enhanced performance compared 

with wavelet denoising in the cases where the signal SNR 

is low. Simulation results show that denoising 

preprocessing before BSS is an efficient solution, 

especially for strong noisy mixtures, and EMD denoising 

preprocessing outperforms Wavelet denoising 

preprocessing.  
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