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Abstract—This paper derives the performance equation of the 

differential calibration algorithm using the time differences of 

arrival (TDOA) and the frequency differences of arrival (FDOA) 

with calibration sources when the positions and velocities of the 

receivers have random errors. By comparing the performance 

with the Cramér-Rao lower bound (CRLB), it proves that the 

ability of the differential calibration algorithm to restrain these 

errors depends heavily on the parameters of the calibration 

sources. Then the influences of their amount, positions and 

measurement accuracy to the location accuracy are discussed. 

Simulations corroborate the theoretical results in this paper. 
 

 

I. INTRODUCTION 

Passive source location has been deeply discussed due 

to its wide use in various applications including radar, 

sonar and sensor networks. The focuses of these research 

efforts are mainly on two points. One is to find optimal 

methods of solving the equations established under 

different location scenarios [1]-[3]. The other is to 

analyze the performance of some practical location 

systems and restrain the drawbacks which degrade the 

accuracy [4]-[7]. The study of this paper belongs to the 

latter. 

The performance of several location systems, such as 

locating the unknown emitter by moving receivers or via 

non-cooperative receivers, depends heavily on the 

availability of accurate receiver location parameters. Ref. 

[5] investigated the loss in the time differences of arrival 

(TDOA) and the frequency differences of arrival (FDOA) 

based location accuracy when the available receiver 

positions and velocities have random errors. By explicitly 

taking the statistics of the receiver location errors into 

account, it developed an improved closed-form algorithm 

which can achieve the Cramér-Rao lower bound (CRLB) 

accuracy for far-field emitters under Gaussian distributed 

noise. Ref. [6] and [7] investigated the differential 

calibration algorithm for satellite uplink signal location in 

the presence of satellite location errors. 

However, [8] showed through geometrical analysis that 

the differential calibration algorithm using TDOA 
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measurements with a single calibration source could not 

be always effective to restrain the receiver position error. 

The fatal factor lies in the position of the calibration 

source. Furthermore, [6] and [7] showed through 

simulations that the amount and the positions of the 

calibration sources played a very important role on the 

performance of the algorithms they proposed. 

This paper extends the work in [6]-[8] and derives the 

explicit performance equation to analyze the effect of the 

differential calibration algorithms for receiver location 

error restraint. The opinion of performance gain over the 

original CRLB accuracy without any calibration source is 

first proposed to measure the effect of receiver location 

error restraint in this paper. The contents of this paper are 

organized as follows. Section II formulates the problem. 

Section III presents the performance analysis of the 

differential calibration algorithm. Section IV provides the 

simulations and section V concludes the paper. 

II. LOCATION MODEL 

A. TDOA and FDOA Measurement Equations 

Consider the passive location scenario shown in Fig. 1. 
N moving receivers and M fixed calibration sources are 

used to estimate the position and velocity of an unknown 

emitter. Let [ ]Tx y zu  and [ ]T

x y zv v vv  be 

the true position and velocity of it, where [ ]T  denotes 

matrix transpose. [ ]T

i i i ix y zs  is the true position 

of the , 1,2, ,ith i N  receiver and 

[ ]T

i xi yi z iv v vv  is the velocity. 

[ ]T

j x j y j z jc c cc  is the true position of the 

, 1,2, ,jth j M  calibration source. 
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Fig. 1. Location scenario. 
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In reality, the true receiver positions and velocities are 

not known and only noisy versions of them are available. 

We represent them as i i i s s d  and i i i v v w . The 

noises id  and iw are assumed to be mutually 

independent zero mean Gaussian random vectors. 

The true range from the unknown to the ith  receiver 

is i i ir   u s d  and its derivative with respect to t  is 

( )T

i i i ir   v v w b , where ( )i i i ir  b u s d ,   is 

Euclidean norm. Those from the jth  calibration source 

are j i j i ir   c s d  and ( )T

ji i i cjir   v w b , where 

( )cj i j i i j ir  b c s d . Then, the TDOA and FDOA 

measurement equations are 

 1 1 ( )uk k k kr r r c n                        (1) 

 1 1 ( )uk k k kr r r f                         (2) 

 ( 1) 1 ( )cjk j k j cjk cjkr r r c n                    (3) 

 ( 1) 1 ( )cjk j k j cjk cjkr r r f                       (4) 

where 1,2, , 1k N  , c  and   are the propagation 

speed and the wavelength of the signal respectively. 

k k kn   , k k kf f     , cjk cjk cjkn    and 

cjk cjk cjkf f      are noisy TDOA and FDOA 

measurements. The noises kn , k , cjkn  and cjk  are 

assumed to be zero mean Gaussian random variables.  

B. Mathematical Model of Differencial Calibration 

For all the possible values of k  and j , we represent 

the range difference measurements from the unknown 

emitter by the vector 1 2 1[ ]T

Nc c     r r n  

and represent those from the calibration sources by 

11 12 ( 1)[ ]T

c c c cM N c cc c     r r n ,where the true 

range difference vectors are 1 2 ( 1)[ ]T

u u u Nr r r r  

and 11 ( 1)[ ]T

c c cjk cM Nr r r r . The measurement 

noise vectors are 1 2 1[ ]T

Nn n n n  and 

11 12 ( 1)[ ]T

c c c cM Nn n n n  with the covariance 

matrices tQ  and tcQ . 

Correspondingly, we represent the range difference 

differential measurements by r  and cr  which can be 

written as  1 2 1[ ]T

Nf f f      r r η  and 

11 12 ( 1)[ ]T

c c c cM N c cf f f      r r η . r  and cr  

represent the true values. 1 2 1[ ]T

N   η  and 

11 12 ( 1)[ ]T

c c c cM N   η  represent the noises 

with the covariance matrices fQ  and fcQ . 

Rewrite the equations from (1) to (4) as 

 
c c c

 
 

α α e
α α e

                         (5) 

where [ ]T T Tα r r , [ ]T T T

c c cα r r , [ ]T T Tc e n η , 

and [ ]T T T

c c cc e n η . Subtracting the 1N   equations 

corresponding to the jth  calibration source in the lower 

part of (5) from the upper part of (5) and repeating the 

operation M  times yield 

 dc dc dc α α e                           (6) 

where  

dc c c α R α α  

1 1 1 1

1 1 1 1

M N M N

c

M N M N

   

   

  
  

  

1 I 0 I
R

0 I 1 I
 

dc c c α R α α  

dc c c e R e e ,  

and   is Kronecher product. 1M1  and 1M0  are column 

vectors with all one and all zero elements respectively. 

III. DIFFERENTIAL CALIBRATION ALGORITHM 

Some additive system errors in practical location 

systems, such as the time errors and the frequency errors 

existing in different receivers, can be removed by 

differential calibration obviously. In this section, we will 

investigate the ability of differential calibration to restrain 

the receiver location errors. 

A. Algorithm 

As described in section II, we represent the noisy 

locations of the receivers by the vector  β β n , where 

1 1[ ]T T T T T

N Nβ s s v v  has the true values, 

1 1[ ]T T T T T

N N n d d w w  is the noise vector 

with the covariance matrix Q . n , η , cn , cη  and n  

are mutually independent. 

Suppose [ ]
TT Tθ u v  and [ ]T T TΘ θ β . Expand 

dcα  and β  around 0Θ  in Taylor’s series. Keeping only 

the terms below second order yields 

 ˆˆ
d d d  α Jδ α e                      (7) 

where 0 δ Θ Θ , 
0 0,

ˆ [ ]T T T

d dc  
α α β , [ ]T T T

d dcα α β , 

[ ]T T T

d dc e e n . Ĵ  is the sample of the Jacobian matrix 

6 6 6

c c c

N N

 
  
 

R A R D D
J

0 I
 at 0Θ  and the partial derivatives 

are defined as   A α θ ,   D α β  and c c  D α β  

whose values are listed in Appendix A. 
Applying the best linear unbiased estimator (BLUE) [9] 

of Θ  from (7) yields the best location accuracy for 

differential calibration which can be represented as 

1 1cov( ) ( )T

d

 Θ J Q J                       (8) 

where  

2 ( 1) 6

6 2 ( 1)

{ }
d M N NT

d d d

N M N

E




 

 

 
   

 

Q 0
Q e e

0 Q
 

{ }T T

d dc dc c c cE   Q e e R Q R Q  
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2

( 1) ( 1)

2

( 1) ( 1)

t N N

N N f

c




  

  

 
  
  

Q 0
Q

0 Q
 

2

( 1) ( 1)

2

( 1) ( 1)

tc M N M N

c

M N M N fc

c



  

  

 
  
  

Q 0
Q

0 Q
. 

B. Performance Equation 

Using the method similar to [8], we can get the Fisher 

matrix F  under the location scenario as shown in Fig. 1. 

 1T F H Q H . (9) 

where  

2( 1) 6 2( 1) 2 ( 1)

6 2( 1) 6 2 ( 1)

2 ( 1) 2( 1) 2 ( 1) 6

N N N M N

N N N M N

M N N M N N c





    

   

    

 
 

  
 
 

Q 0 0

Q 0 Q 0

0 0 Q

 

6 6 6 2 ( 1)

6

T
T N M N

T T

N c

  
 

  
 

A 0 0
H

D I D
. 

Suppose  

2 ( 1) 6 2 ( 1)

6 2( 1) 6 6 2 ( 1)

c M N N M N

N N N N M N

  

   

 
  
 

R 0 I
V

0 I 0
. 

Substituting J VH  and T

d Q VQV  in (8) and 

taking the inverse of (8) yield 

 1 1cov( ) ( )T T T

d

  F Θ H V VQV VH . (10) 

Subtracting dF  from F yields T

d  F F H BH , where 

1 1( )T T  B Q V VQV V . Applying the values of V  

and Q  in matrix B  yields 

 

1 1 1

2( 1) 6

6 2( 1) 6 6 6 2 ( 1)

1 1 1

2 ( 1) 6

T T

c d c N N c d

N N N N N M N

d c M N N c d

  

 

  

 

    

  

 

 
 

  
  

Q R Q R 0 R Q

B 0 0 0

Q R 0 Q Q

. (11) 

Substituting 
1 1 1 1 1 1 1( )T T

d c c c c c c c c 
        Q Q Q R Q R Q R R Q  [10] in (11) 

yields 

1 1 1 1 1 1( )T

c d c cc    
       Q R Q R Q Q L Q (12) 

1 1 1 1 1 1( ) T

c d c c cc c c 
       Q Q Q R Q L R Q (13) 

1 1 1 1 1( )T T

c d cc c c  
     R Q Q Q L R Q (14) 

1 1 1 1 1 1( ) ( )T T

d c c d c c cc   
       Q R R Q Q R Q L Q (15) 

1T

Rc

B γ Q γ (16) 

where 
1T

cc c c c

L R Q R , 
1 1

2( 1) 6[ ]T

N N c c
 

 γ Q 0 R Q  

and 
1

Rc cc
 Q Q L  is positive definite if Q  is positive 

definite. 

Thus, dF  can be represented as 

1T

d Rc

 F F U Q U                       (17) 

where U γH . Because RcQ  is positive definite, the 

second term in (17) is positive semi-definite. 

Suppose 1 [ ]L A D  and 2 2 ( 1) 6[ ]M N c L 0 D . The 

former represents the relative relationships of the location 

among the unknown emitter and the receivers. And the 

latter represents those among the calibration sources and 

the receivers. Let sF  be the Fisher matrix without 

calibration sources and F  can be represented as 

1

2 2

T

s c

 F F L Q L                      (18) 

If cQ  is positive definite, the second term in (18) is 

positive semi-definite too. 

Substituting 1 1

1 2

T

c c
  U Q L R Q L  and  F  in (17) 

yields 

1 1 1 1

2 2 1 1

1 1 1 1 1 1

2 1 1 2

T T

d s d Rc

T T T

c c Rc Rc c c

  

 

   

     

   



F F L Q L L Q Q Q L

L Q R Q Q L L Q Q R Q L
           (19) 

C. Performance Analysis 

Taking the inverse of (17) and (18) [10] yields 

1 1 1 1 1 1( )T T

d d Rc d d

       F F F U Q UF U UF          (20) 

1 1 1 1 1 1

2 2 2 2( )T T

s s c s s

       F F F L Q L F L L F         (21) 

Because the second terms in (20) and (21) are positive 

semi-definite, the relationships among 1 ( )CRLB F Θ , 

1 ( )s sCRLB F Θ  and 1 cov( )d

 F Θ  can be represented 

as 

1 1

1 1

( ) ( )

( ) ( )

T T

d
T T

s

tr tr

tr tr

 

 

 




PF P PF P

PF P PF P
            (22) 

where 6 6 6[ ]NP I 0 , ( )tr   denotes matrix trace.  

As 1( ) ( )TCRLB tr θ PF P , 1( ) ( )T

s sCRLB tr θ PF P  

and 1cov( ) ( )T

dtr θ PF P , (22) shows that the location 

accuracy with calibration sources is the best one when 

Q  and cQ  is positive definite. Such conditions are 

fulfilled without doubt in realistic location systems. 

Equation (21) shows the use of calibration sources will 

not degrade the original location accuracy. If calibration 

sources are used properly, they will provide performance 

gain. And their amount, positions and measurement 

statistics will influence the quantity of the gain.  

Though the location accuracy of differential calibration 

will not be better than ( )CRLB θ , (19) shows it could be 

worse than ( )sCRLB θ  under some circumstances where 

the positions and measurement statistics of calibration 

sources are badly designed. The reason lies in the 

subtraction operation shown in (6) which mixes the 

effects from the unknown emitter, the receivers and the 

calibration sources together. 

Substituting J  and dQ  in (8) yields 
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1

cov( )
dc dc

T

dc dc


 

  
 

X Y
Θ

Y Z
                            (23) 

1( ) ( )T

dc c d c
X R A Q R A                         (24) 

1( ) ( )T

dc c d c c
 Y R A Q R D D                 (25) 

1 1( ) ( )T

dc c c d c c 
    Z Q R D D Q R D D       (26) 

The upper left 6 6  block of (23) is 

1 1cov( ) ( )T

dc dc dc dc

  θ X Y Z Y            (27) 

Substituting 1

d


Q  in dcX yields 

1 1 1 1 1( )T T T

dc c c c c c c 
       X A Q Q R Q R R Q R A (28) 

Suppose ( 1) ( 1) 10.5 0.5N N N     R 1 I  and let 

2

tcj tcQ R , 2

fcj fcQ R , 2

t tQ R  and 2

f fQ R  

represent the covariance matrices of the TDOA and 

FDOA measurements from the jth  calibration source 

and the unknown emitter respectively, where 2

tc , 2

fc , 

2

t  and 2

f  are the corresponding noise power. We get 

2 2 1

( 1) ( 1)1

2 2 1

( 1) ( 1)

tc N NT

c c c

N N fc

c M

M



 

  

  

  

  

 
  
  

R 0
R Q R

0 R
    (29) 

Substituting (29) in (28) yields 

22
1 1 1 1

2 2
(1 ) ( ) (1 ) ( )

fctc
dc t f

t f

CRLB CRLB
M M



 

      X θ θ   (30) 

where 2 1 1( ) ( )T

t t t tCRLB c  θ A Q A , t   A r θ , 

2 1 1( ) ( )T

f f f fCRLB   θ A Q A , f   A r θ . ( )tCRLB θ  

and ( ) fCRLB θ  are the CRLB of θ  without receiver 

location errors using TDOA and FDOA respectively. 

Their values keep unvaried if the unknown emitter and 

the receivers are assigned. 

Because 1 T

dc dc dc


Y Z Y  is positive semi-definite, the 

optimal value of cov( )θ  is 1

dc


X  when 1 T

dc dc dc


Y Z Y  takes 

the value of zero. However, the optimal location accuracy 

is still worse than that without receiver location errors 

because 2 0tc   and 
2 0fc   are always true. To restrain 

the performance degradation, adding the amount of the 

calibration sources is effective according to (30). 

Equation (30) also shows that the optimal value of  

cov( )θ  increases along with the increase of 
2

tc  and 2

fc . 

As for 
1 0T

dc dc dc

 Y Z Y , cov( )θ  is larger than 
1

dc


X  and 

the location accuracy becomes worse.  

From the above analysis of differential calibration, we 

can conclude that improperly located calibration sources 

and large noise powers of TDOA and FDOA degrade the 

location accuracy. And the degradation could be so 

severe as to get a worse estimator of the unknown emitter 

than that without calibration sources. 

IV.  SIMULATIONS 

In this section, we shall show through simulations how 

the location accuracy are influenced by the parameters of 

the calibration sources. The units used in the simulations 

are m  for positions and /m s  for velocities. 

The position and the velocity of the unknown emitter 

are [600 650]T u  and [ 20 15]T v . Six receivers 

are used to do the location task whose positions and 

velocities are listed below. 

1 [300 100]Ts , 1 [30 20]T v  

2 [400 150]Ts , 2 [ 30 10]T v  

3 [300 500]Ts , 3 [10 20]T v  

4 [350 200]Ts , 4 [10 20]Tv  

5 [ 100 100]T  s , 5 [ 20 10]T v  

6 [200 300]T s , 6 [20 10]T v  

A. Two-Dimensional Location Scenario with One Single 

Calibration Source 

In the first simulation, we investigate the influence of 

the position to the location accuracy. 

The TDOA and FDOA measurements from the 

unknown emitter and the calibration sources are obtained 

by adding Gaussian noise with 1ns  to each true TDOA 

and 0.1Hz  to each true FDOA respectively. The receiver 

location noises are set to be Gaussian noises with 

1p m   and 0.7 /v m s  . Defining the performance 

gain as 1 [cov( )] [ ( ) ]dc sG tr tr CRLB  θ θ , we get the 

trend of dcG  over calibration source position ( , )x y  in 

Fig. 2. 
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Fig. 2. Location accuracy gain. 

Fig. 2 shows that there do exist some positions where 

the performance gain 0dcG  . Because the differential 

calibration degrades the original accuracy at those 

positions, we must eliminate them . 

The trend of CRLBG  over the calibration source position 

is in Fig. 3, where the performance gain CRLBG  is defined 

as 1 [ ( )] [ ( ) ]CRLB sG tr CRLB tr CRLB  θ θ . 
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Fig. 3 shows that the use of a single calibration source 

improves the location accuracy. Different position makes 

different gain and 
CRLBG  should  not be lower than zero. 
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Fig. 3. Location accuracy gain. 
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Fig. 4. Position accuracy curve. 

-10 0 10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

10lg(Ratio of TDOA /FDOA noise power dB)

2
0

lg
(V

e
lo

c
it
y
 R

M
S

E
 m

/s
)

CRLB without calibration source

CRLB with calibration source

Differential calibration

without receiver location error

 
Fig. 5. Velocity accuracy curve. 

In the second simulation, we investigate the influence 

of the accuracy of the TDOA and FDOA measurements 

from the calibration sources to the location accuracy.  

The calibration source locates at 1 [600 326]T c  

where 0.6dcG  . The statistics of the TDOA and FDOA 

measurements from the unknown emitter and those of the 

receiver location noises are the same as being defined in 

the first simulation. The trends of the location accuracy 

over the ratio of 2 210lg( )tc t   where 2 20.1fc tc   are in 

Fig. 4 and Fig. 5. 

Fig. 4 and Fig. 5 show that the location accuracy 

becomes worse as the noise powers of TDOA and FDOA 

measurements increase. Moreover, differential calibration 

provides performance gain when 2 210lg( ) 20tc t dB   . 

Yet, the CRLB curve with a calibration source shows 

properly used calibration source may not degrade the 

original location accuracy even if the measurements are 

too noisy to use. 

B. Two-Dimensional Location Scenario with Multiple 

Calibration Sources 

In the third simulation, we investigate the influence of 

the amount of the calibration sources to the location 

accuracy. 
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Fig. 6. Position accuracy curve. 

-20 -15 -10 -5 0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

60

20lg(Receiver position RMSE m)

2
0

lg
(V

e
lo

c
it
y
 R

M
S

E
 m

/s
)

one calibration source     

two calibration sources      

three calibration sources

without receiver location error

without calibration sources

 
Fig. 7. Velocity accuracy curve. 

The statistics of the TDOA and FDOA measurements 

from the unknown emitter and the calibration sources are 

the same as those in the first simulation. Fig. 6 and Fig. 7 

show the trends of the location accuracy over the receiver 

location errors. The velocity noise power 2

v  is set to be 

half of the position noise power 2

p  which varies as 

220 10lg 30pdB dB   . 
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By use of the calibration source c1 selected in the 

second simulation according to Fig. 2, differential 

calibration provides performance gain at large receiver 

location errors. Though the gain increases along with the 

increase of the calibration source number, the increment 

between j sources and j+1 sources becomes less as j 

becomes larger. 

Differential calibration fails to provide performance 

gain when the receiver location errors are small. The 

threshold depresses as the calibration source number 

increases. For example, it is 12dB  for one calibration 

source and 16dB  for two sources as is shown in Fig. 6. 

The other two calibration sources used in the third 

simulation are located at 2 [500 427]T c  and 

3 [1000 1528]T c . The position optimization process 

is illustrated in Appendix B. 

In the fourth simulation, we compare the location 

accuracy of these three calibration sources with that of 

arbitrary distributed ones located at 4 [600 184]Tc , 

5 [400 120]Tc  and 6 [1000 200]Tc . 

The statistics of the TDOA and FDOA measurements 

from the unknown emitter and the calibration sources are 

the same as those in the first simulation. 
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Fig. 8. Position accuracy curve. 
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Fig. 9. Velocity accuracy curve. 

Fig. 8 and Fig. 9 show the trends of the location 

accuracy over the receiver location errors defined in the 

third simulation. The curves marked as “1” represents the 

calibration source group 1 4 5 6[ ]T T T Tp c c c  and those 

marked as “2” represents 2 1 2 3[ ]T T Tp c c c . 

[cov( )] [ ( )]tr tr CRLBθ θ  is permanent established in 

the same location scenario. Using optimized calibration 

sources provides better location accuracy which is close 

to the CRLB. And the convergence can be ensured for 

large receiver position and velocity errors after the 

calibration source position optimization. 

V. CONCLUSIONS 

This paper investigated through CRLB analysis the 

performance of differential calibration algorithm in the 

presence of receiver location uncertainty. It gives out the 

performance equation of differential calibration algorithm 

and reveals that differential calibration may not provide 

performance gain if the amount and positions of the 

calibration sources are badly selected. When the amount 

and positions are selected properly, the measurements 

from the calibration sources must be accurate enough to 

improve the location accuracy. 

APPENDIX A IMPORTANT VARIABLES 

The values of matrices A , D  and cD  is essential to 

get the simulation results. They are listed as follows. 

Suppose [ ]T T T

t fA A A . The kth  row of tA  and 

fA  are tkA  and fkA  respectively. Their values are 

1 1 1 3( ) [( ) ]T T T

tk uk kr      A θ b b 0  

1 1 1 1( ) [( ) ( )]T T T T T

fk uk k kr       A θ q q b b . 

where 2( ) ( ) ( )T

i i i i i i ir r     q v v v v b u s . 

The kth  and ( 1)k N th   rows of D  are 

1 1 3( 1) 1 1 3( 1) 1 3( ) [ ]T T T

uk k k N k Nr          β b 0 b 0 0  

( ) [ ]T

uk fqk fbkr  β D D . 

where 1 1 3( 1) 1 1 3( 1)[ ]T T

fqk k k N k      D q 0 q 0  and 

1 1 3( 1) 1 1 3( 1)[ ]T T

fbk k k N k      D b 0 b 0 . 

The [ ( 1) ]j N k th   and [( )( 1) ]j M N k th    rows 

of cD  are  

1 1 3( 1) ( 1) 1 3( 1) 1 3( )    T T T

cjk cj k cj k N k Nr       
     β b 0 b 0 0 , 

 ( ) [ ]T

cjk cfqk cfbkr  β D D .  

where  

1 1 3( 1) ( 1) 1 3( 1)[ ]T T

cfqk cj k cj k N k      D q 0 q 0  

2( )T

cj i i j i i cj i j i j ir r    q v v b c s  

1 1 3( 1) ( 1) 1 3( 1)[ ]T T

cfbk cj k cj k N k      D b 0 b 0 . 

APPENDIX B POSITION OPTIMIZATION 

According to the value of dcG , select an optimal point 

in Fig. 2 as the first calibration source position. Ensure 
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the possible positions of the second calibration source 

and repeat the computation of dcG  with two calibration 

sources. Fig. 10 shows the trends of the location accuracy 

over the second calibration source position. 
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Fig. 10. Location accuracy gain. 
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Fig. 11. Location accuracy gain. 

From Fig. 10, we can see that the first choice of 1c  is 

important because the optimal position makes it easy to 

select the second one. Repeat the above operation and 

compute dcG  with three calibration sources. Fig. 11 

shows the trends of the location accuracy over the third 

calibration source position. 

Fig. 11 shows that the location accuracy increases with 

less increment than the former. Select a possible position 

in Fig. 11 and we get three calibration sources used in the 

third simulation. 

REFERENCES 

[1] K. C. Ho and Wenwei Xu, “An accurate algebraic solution for 

moving source location using TDOA and FDOA measurements,” 

IEEE Trans. on Signal Processing, vol. 52, pp. 2453-2463, 

September 2004. 

[2] H. G. Yu, G. M. Huang, J. Gao, and B. Liu, “An efficient 

constrained weighted least squares algorithm for moving source 

location using TDOA and FDOA measurements,” IEEE Trans. on 

Wireless Communications, vol. 11, pp. 44-47, January 2012. 

[3] C. Li, C. F. Liu, G. S. Liao, and Y. B. Li, “Solution and analysis 

of constrained least square passive location algorithm,” Systems 

Engineering and Electronics, vol. 34, pp. 221-226, February 2012. 

[4] X. J. Jia, F. C. Guo, and Y. Y. Zhou, “Performance analysis of 

triple-observer passive localization using FDOA measurements,” 

Signal Processing, vol. 27, pp. 600-605, April 2011. 

[5] K. C. Ho, X. N. Lu, and L. Kovavisaruch, “Source localization 

using TDOA and FDOA measurements in the presence of receiver 

Location errors: analysis and solution,” IEEE Trans. on Signal 

Processing, vol. 55, pp. 684-696, February 2007. 

[6] W. Z. Qu, S. F. Ye, and Z. B. Sun, “Algorithm of position 

calibrator for satellite interference location,” Chinese Journal of 

Radio Science, vol. 20, pp. 342-346, June 2005. 

[7] H. Yan and S. F. Yao, “Calibration accuracy analysis of LEO 

dual-satellite geolocation system based on reference stations,” 

Telecommunication Engineering, vol. 51, pp. 27-33, December 

2011. 

[8] K. C. Ho and L. Yang, “On the use of a calibration emitter for 

source localization in the presence of sensor position uncertainty,” 

IEEE Trans. on Signal Processing, vol. 56, pp. 5758-5772, 

December 2008. 

[9] S. M. Kay, P. F. Luo, et al., Foundamentals of Statistical Signal 

Processing, Beijing, CHN: Publish House of Electronics Industry, 

2011, pp. 110-117. 

[10] X. D. Zhang, Matrix Analysis and Applications, Beijing, CHN: 

Tsinghua University Press, 2004, pp. 64-71. 

[11] J. B. Jin, N. Wu, and Q. Yang, “Sensor placement strategies for 

TDOA location system based on semidefinite relaxation,” 

Journal of Circuits and Systems, vol. 18, pp. 134-138, April 2013. 

 

Li Zhang was born in Jiangxi Province, 

China, in 1975. She received the B.E. and 

M.E. degrees in communication engineering 

from the Institute of Zhengzhou Information 

Science and Technology, Zhengzhou, China, 

in 1997 and 2000, respectively. She is 

currently working towards the Ph.D. degree 

at the same institute. Her research interests 

include passive location, signal detection and 

digital signal processing.  

 

Ding Wang was born in Anhui Province, China. He received the B.E., 

M.E. and D.E. degrees in communication engineering from the Institute 

of Zhengzhou Information Science and Technology, Zhengzhou, China, 

in 2004, 2007 and 2012, respectively. His research interests include 

array signal processing and passive location. 
 

Ying Wu was born in Henan Province, China. She received the B.E. 

degree in communication engineering from the Institute of Zhengzhou 

Information Science and Technology, Zhengzhou, China, in 1982. She 

then received the M.E. degree in communication engineering from 

Beijing Institute of Technology, Beijing, China, in 1985. Her research 

interests include array signal processing, passive location, signal 

detection and digital signal processing. 
 

 

489

Journal of Communications Vol. 9, No. 6, June 2014

©2014 Engineering and Technology Publishing




