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Abstract—Most of the existing underdetermined blind source 

separation (BSS) approaches assume that the source signals are 

strictly or partially sparse. This paper, however, presents a new 

BSS method in underdetermined mixing situation for non-

sparse signals. The proposed method first introduces the local 

mean decomposition algorithm into the BSS problem to rebuild 

some extra mixing signals. Such signals are then combined with

the initial mixtures such that the underdetermined BSS problem

is transformed to a determined one and the difficulty of the 

deficiency of the mixtures is overcome. For the rebuilt mixtures 

and the newly formed determined BSS problem, the minimum 

mutual information principle is employed as the BSS cost 

function. A conjugate gradient learning algorithm is then 

derived for training the separating matrix. In each update step of 

the algorithm, the term of score function is estimated by a 

kernel function estimation algorithm. The simulation results 

have demonstrated the efficacy of the proposed 

underdetermined BSS method. 

Index Terms—Blind source separation, underdetermined model, 

local mean decomposition, conjugate gradient

I. INTRODUCTION

The objective of blind source separation (BSS) is to 

recover the latent source signals from their mixtures 

without knowing a prior knowledge of mixing system.

BSS has recently received wide attention in literatures,

because of its appealing applications in signal denoising,

audio and image processing, feature extraction,

electromagnetic and biomagnetic analysis problem and so 

on [1]-[3].

We consider the following linear noisy BSS model,

 X AS N                                 (1)

in which, the mixing matrix m nA is unknown,
m TN is a white Gaussian noise matrix, n TS

contains n unknown statistical mutual independent 

source signals and m TX is the observation matrix 

containing m mixtures of the sources, where T is the 

total number of time index. In this paper, we cope with 

the underdetermined BSS problem in which the number 

of sources is greater than the number of observations, i.e. 

m n . The observation matrix X in mixing model (1) 

can also be expressed as vectors  tx for a set of time

index: 1,2, ,t T , as well as the sources S and the 

noise N . Then (1) can be reformulated in a vector form 

as

     t t t x As n , 1,2, ,t T      (2)

where        1 2, , ,
T

nt s t s t s t   s is the vector of 

sources at index t ,        1 2, , ,
T

mt x t x t x t   x and 

       1 2, , ,
T

mt n t n t n t   n is the corresponding 

observation and noise vector.

Most of the existing underdetermined BSS approaches 

assume that the source signals are sparse, i.e., the source 

signals have one nonzero element at most in each time of 

the available samples. In this case, the blind separation 

task can be addressed in two stages: first, the mixing 

matrix A is estimated using higher-order statistics based 

methods [4], [5], time-frequency distributions [6], [7],

wavelet packet transform [8], overcomplete 

representation [9], and some clustering algorithms such 

as K-Means clustering [10], [11], Median-based 

clustering [12] and discriminative clustering [13] etc.;

then the source signals  s t is recovered in the light of 

the estimate of A in the second stage. Consequently, if 

the mixing matrix is not well estimated, it is impossible 

to restore the sources. Georgiev et al. [14] presented 

another sparse component analysis method and pointed 

out that the underdetermined BSS problem is solvable if 

the number of nonzero elements in each time of the

sources is smaller than the number of observation signals.

However, if the strictly or partially sparsity assumption of 

the source signals is not satisfied, the above approaches 

will fail in the end.

In this paper, we propose a novel underdetermined 

blind source separation method. The method uses the 

local mean decomposition (LMD) algorithm to 

reconstruct several new observation signals; thereby the 

underdetermined BSS problem is transformed to a 



determined BSS problem which is much easier to cope 

with. Then the minimum mutual information criterion is 

employed for the blind separation task, and conjugate 

gradient is used for deriving the training equations of the 

separating matrix. In each update of the learning 

algorithm, the score function is estimated by a kernel 

density estimation method directly. Theoretically, since 

the local mean decomposition algorithm can be applied to 

various types of signals, the proposed method does not 

resort to the sparsity constraint which is included in most 

existing underdetermined BSS methods. The simulation 

results have confirmed the efficacy of the proposed 

underdetermined BSS method. 

The rest of this paper is organized as follows: The 

local mean decomposition algorithm is introduced for 

generating product functions of mixture signals in section 

2. In section 2, the conjugate gradient optimization 

algorithm is used to solve the newly formed determined 

BSS problem. Section 3 presents some simulations to 

demonstrate the performance of the proposed algorithm. 

Some conclusions are drawn in Section 4. 

II.  L  

In practice, LMD is performed through separating a 

frequency modulated signal from an amplitude modulated 

envelope signal progressively. Briefly, this separation 

scheme is realized by firstly smoothing the original rough 

signal, secondly subtracting the smoothed signal from the 

original signal and finally demodulating the result using 

an envelope estimate in amplitude. With the observation 

signal ( )x t , the LMD algorithm can be described as 

follows: 

1) Detect all local extrema  in  of the observation 

signal, where 1,2, ,i I  is the index of the successive 

extrema and I  is the total number of the extrema. 

2) Compute the local mean function jkm , where j  

represents the index of the decomposed product function 

component, and k  is the iteration number in each 

decomposition process. 

 Calculate the local averages of the successive 

maximum and minimum points of x . So the i th 

mean value im  of every two adjacent extrema in  and 

1in   is given by  1 2i i im n n   . 

 The local averages are then smoothed using the 

moving averaging approach to form a smoothly 

varying continuous local mean function jkm . 

3) Compute the corresponding local envelope function 

jka . 

 Calculate the local envelopes of the successive 

maximum and minimum points of x . Then the i th 

local envelope magnitude ia  of each half-wave 

oscillation can be calculated as 1 2i i ia n n   . 

 The local envelope magnitudes are then smoothed in 

the same way as the local means to form a smoothly 

varying continuous local envelope function jka . 

4) Compute the corresponding frequency modulated 

signal jkv . 

 The local mean signal jkm  is subtracted from the 

original data x , and the resulting signal is denoted 

by jkh . 

 Divide jkh  by jka , to produce a frequency 

modulated signal jkv . 
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5) Compute the envelope function 1jka  of jkv as the

same as the step 3 to decide the direction of the procedure.

 If 
 1

1 0
j k

a

  , i.e. the signal jkv is a purely 

frequency modulated signal which has a flat envelope,

then go to step 6.

 If  1
1 0

j k
a


 , then replace x by jkv , let k plus 

1 and go to the first step. 

 The above procedures will be repeated for K times 

until  1
1 0

j K
a


  holds. Therefore, a set of 

equations can be obtained as

1 1 1 1 1

2 1 2 2 2 2

1

,

,

,

j j j j j

j j j j j j

jK jK jK jK jK jK

h x m v h a

h v m v h a

h v m v h a

  


  


   

    (3)

6) Calculate the final envelope signal ja of the 

corresponding product function component.

 The envelope signal ja can be derived by multiplying

together all the successive envelope estimate 

functions jka , 1,2, ,k K , which are acquired 

during the above iterative process, i.e.,

1 2
1

K

j j j jK jk
k

a a a a a


     (4)

7) Compute the j th product function component jP

by multiplying the frequency modulated signal jKv by 

the final envelop signal ja : j jK jP v a  .

8) The product function component is subtracted from 

the original observation signal: j ju x P  .

(9) Judge whether the decomposition procedure has 

been accomplished.

Local mean decomposition is a robust and 

conceptually simple iterative method which is developed 

for analyzing complicated signals in terms of time-

varying frequency, phase and energy [15]-[17]. LMD 

decomposes a rough signal into a set of product functions,

each of which is a product of an envelope signal and a 

frequency modulated signal. Therefore, LMD can be used 

to analyze a wide variety of natural signals, but is of 

particular relevance with regard to the analysis of

amplitude and frequency modulated signals, such as 

electrocardiograms, functional magnetic resonance 

imaging data, and earthquake data, etc.

OCAL EAN ECOMPOSITION LGORITHMM D A



 If the new obtained signal ju  is a constant or contains 

no more oscillations, then replace x  by ju  as a new 

observation signal, let j  plus 1 and go to the first step 

for deriving the next product function component. The 

procedure will be repeated for J  times until Ju  

becomes a monotonic function. Then we can obtain 

1 1

2 1 2

1J J J

u x P

u u P

u u P

 


 


  

                        (5) 

From Equ. (5), it can be seen that the original 

observation signal x  can be expressed as a linear 

combination of the product function components  jP , 

1,2, ,j J and the remaining difference Ju . The 

product functions will be used to solve a blind source 

separation problem in the next section. 

III. UNDERDETERMINED BLIND SOURCE SEPARATION 

WITH CONJUGATE GRADIENT ALGORITHM 

As is well known, blind source separation is an ill-

conditioned problem under the underdetermined 

condition. Since there are fewer observation signals than 

sources, the inverse or pseudo-inverse matrix of the 

underdetermined mixing matrix can not be computed. In 

this case, to recover the source signals is a difficult and 

intractable task. 

In this section, an underdetermined blind source 

separation approach is proposed, which aims at solving 

the disadvantage of lack of observations of the 

underdetermined model. Some product functions are 

generated by performing the local mean decomposition 

algorithm on the observation signals. Then a new group 

of observations is formed by lumping the generated 

signals and the original observations together. So the 

underdetermined BSS problem can be transformed to a 

much easier determined one. After the observation 

reconstruction, the minimum mutual information 

principle is used as the criterion for the BSS, and a 

conjugate gradient based BSS algorithm with score 

function estimation is derived for recovering the 

independent source signals. The schematic diagram of the 

proposed algorithm is shown in Fig. 1. 

 

Fig. 1. The schematic diagram of the proposed underdetermined BSS algorithm 

A. Generate New Mixture Signals 

Before presenting the underdetermined BSS algorithm, 

we explain how to construct additional mixed observation 

signals. The following proposition demonstrates why the 

product functions from LMD can be used as the extra 

observations. 

Proposition 1. Suppose a vector x  is a linear 

combination of a set of vectors  iy , 1,2, ,i n , with 

the coefficient vector  1 2, , , ,na a aa , and is also a 

linear combination of an another group of vectors  jz , 

1,2, ,j m , with the coefficient 

vector  1 2, , , ,mb b bb . Then each component of 

 iy ( jz ) can be represented as a linear combination of 

 jz (  iy ), if the matrix of the Kronecker product 

between the coefficient vector a ( b ) and its transpose is 

non-singular. 

Proof. Without loss of generality, suppose that 

1 1 2 2 1 2[ , , , ]T

n n na a a    x y y y a y y y (6) 

and also 

1 1 2 2 1 2[ , , , ]T

m m mb b b    x z z z b z z z (7) 

So we have 

1 2 1 2[ , , , ] [ , , , ]T T

n ma y y y b z z z     (8) 

Denote T A a a  and T B a b , where   is the 

Kronecker product operator. 

To proceed, left multiply the column vector T
a  to the 

both sides of Equ. (8), we obtain that 

1 2 1 2[ , , , ] [ , , , ]T T

n mA y y y B z z z        (9) 

Therefore, if A  is non-singular,it then holds that 

1

1 2 1 2[ , , , ] [ , , , ]T T

n m

y y y A B z z z     (10) 
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Obviously, 1
A B  is a n m  linear transform matrix. 

In other words, each component within the set  iy  can 

be represented as a linear combination of the set  jz , 

vice verse. 

From section 2, It is known that each observation 

signal ix , 1,2, ,i m  can expressed as a linear 

combination of the source signals  ks , 1,2, ,k n . In 

the meanwhile, ix  can also be represented as a linear 

combination of a serial product functions  jP , 

1,2, ,j J  regardless of the remaining difference, 

exploiting the LMD method introduced in the previous 

section. Therefore, according to Proposition 1, each 

product function component jP  can be represented as a 

linear combination of the source signals. Then a new set 

of observation signals can be constructed by the original 

observations together with the obtained product functions. 

An underdetermined BSS problem is transformed to a 

much easier (over-)determined one, which will be solved 

by the method proposed in the next subsection. 

B. The Conjugate Gradient Based BSS Algorithm 

The proposed underdetermined BSS algorithm mainly 

contains two stages: the pre-processing of the original 

underdetermined mixtures and the blind separation of the 

newly built determined model. 

Pre-processing of the underdetermined mixtures: In 

the pre-processing stage, we need to extend the 

dimension number of the observation signals and to 

transform the underdetermined mixing model to a 

determined one. 

First, the local mean decomposition algorithm is 

performed on each component of the original 

underdetermined mixtures x . Thus we can obtain a 

number of product functions pqP , where p  denotes the 

index of the original observation signal and q  is the 

numerical order of the product function component. 

Secondly, we should choose several proper product 

functions, which inherit vast majority information of the 

original observations, as the complementary observations. 

To achieve this goal, the cross-correlation coefficient pqr  

between the product function pqP  and the corresponding 

observation signal px  is calculated as 

1 1 1

2 2

2 2

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

pq p pq p
t t t

pq
T T T T

pq pq p p
t t t t

T P t x t P t x t

r

T P t P t T x t x t

  

   





   
       

  

   

(11) 

where T is the total number of sample points. After pqr  

are calculated out, we reserve the product function 

components with large numerical value of pqr . These 

components, denoted by pqP , are considered to have 

more information related to px , while the rest 

components with small numerical value of pqr  are 

removed. 

Thirdly, we lump the product functions pqP  together 

with the original observation x  to construct a new set of 

observations 
newx . It should be noted that the number of 

the selected product functions should be adequate to 

ensure that the new set of observations 
newx  have not 

fewer components than the source signals s . Thus the 

underdetermined BSS problem is transformed to an 

(over-)determined one. 

Finally, since the number of the new observations is 

often greater than that of the sources, a pre-whitening and 

dimension reduction process is needed. As soon as the 

samples of newx  are obtained, the sample correlation 

matrix is computed as  ˆ T

new newER x x . An eigenvalue 

decomposition is then performed on R̂ :  

ˆ T T T  s s s n n nR VΛV VΛ V V Λ V    (12) 

where the subscript s  and n  indicate the source and the 

noise separately, V  and Λ  present the corresponding 

eigenvector matrix and the eigenvalue matrix respectively. 

The dimension of 
sΛ  is selected in accordance with the 

number of the sources. Thus the whitened observations 

are obtained by 

1
2 T

new new


 s sx Λ V x                         (13) 

Blind separation with conjugate gradient algorithm: 

When the pre-processing process is finished, the 

underdetermined BSS model is transformed to a 

determined one. For such model, a minimum mutual 

information based conjugate gradient BSS algorithm is 

developed to accomplish the blind separation task. 

The basic idea of minimum mutual information is to 

minimize the statistical dependence among the 

components of the output signals  ty  of the separating 

system [18,19]. Mutual information is usually 

approximated by the Kullback-Leibler divergence 

between the joint probability density function (PDF) and 

the product of the marginal PDF of a random vector. In 

view of the relation between Kullback-Leibler divergence 

and differential entropy, the minimum mutual 

information cost function  ,I y W  can be formulated as 

     

   

1

1

,

            ln det

n

i
i
n

i
i

I H y H

H y





 

 





y W y

W

     (14) 

where  H  denotes differential entropy and  det  is 

the determinant of a non-singular matrix. The nature 

gradient of  ,I y W  with respect to the separating matrix 

W  is given by 

    , ( ) TI E  W y W Φ y y I W         (15) 
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where      1 1 2 2( ) , , ,
T

n ny y y     Φ y , whose 

components      i i i iy p y p y   , 1,2, ,i n  are 

defined as the score functions of the output signals.  

The following definition is helpful to develop the 

conjugate gradient BSS algorithm. 

Definition 1. Suppose that there exists a space of n n  

dimensional matrices. When two arbitrary points of the 

space, i.e., two matrices A  and B , are not very far from 

each other, the shortest trajectory from A  to B  is 

defined as ‘geodesic’ denoted by  G , which can be 

formulated by 

   1exp   AG T A A                   (16) 

where the parameter   is bounded in the interval  0,1  

such that  0 G A  and  1 G B , and  0AT G  is a 

tangent vector at the point A , which indicates the 
direction of the geodesic.  

Denote by kW  the k th searching result, by 
kWT  the 

current searching direction at the point kW . Since the 

separating matrix space is a Riemannian space, the 

tangent vector 
kWT  can be calculated by  

1

1

1k k k k



W WT T W W          (17) 

In order to find the new searching direction that is 

conjugate to the former direction, the nature gradient 

 , kI y W  at the point kW  is computed as in Equ. (15). 

The conjugate gradient direction is thus given by the 

tangent vector 

 
1 1,

k kk kI 
  W WT y W T              (18) 

where the parameter 1k   is selected to ensure 
1kWT  is 

the conjugate direction. In practice, 1k   can be 

calculated by the finite difference approximation as 

       
    

1

1

1 1

, , ,

, ,

T

k k k

k T

k k

tr I I I

tr I I






 

  


 

y W y W y W

y W y W

After the new searching direction 
1kWT  is determined, 

the next iterative point 1kW  can be obtained by solving 

the following one-dimensional linear optimization 

problem along the geodesic  

  1 arg  min ,
kk I


  WW y G               (20) 

where the geodesic is given by 

   1exp
k k k k  W WG T W W , as defined before. 

 

 

    ,
1

1
ˆ

T

i h i h i i
t

p y K y y t
T 

               (21) 

where  
1

h

u
K u K

h h

 
  

 
,  K  is a kernel function, and 

h  is the bandwidth. In this paper, The kernel function is 

chosen to be Gaussian kernel function 

 
21

exp
22

G

v
K v



 
  

 
. 

To fix the bandwidth h , the asymptotic mean 

integrated squared error  M h , given by  

 
     4 4

4

K i i ih R p y R K y
M h

Th

 
   (22) 

is employed to measure the gap between the true density 

 i ip y  and the estimator  ,
ˆ

i h ip y , in which, 

    2

i i iR K y K y dy   and  2 2

K i i iy K y dy   . The 

optimal bandwidth opth  is obtained as 

 

   
1
5

1

5

4

ˆ
ˆˆ

opt

K i i opt

R K
h T

R p g h



 
 

  
 

 

       (23) 

by minimizing the measure  M h , where 

       
5
7

i opt i i i optg h C K y D p y h  for some appropriate 

  iC K y  and   i iD p y .   iC K y  can be just 

simply replaced by an proper constant. Usually, 

  iC K y  is selected as  
1
7

6 2 .   i iD p y  is a 

function of        3

i i i iR p y R p y  and can be 

estimated by the plug-in method [23]. Substituting the 

bandwidth h  in (21) with the solution value of ˆ
opth , the 

kernel density estimator  ,
ˆ

opti h ip y  is obtained. Therefore, 

the score function can be estimated as 

     , ,
ˆ ˆ ˆ

opt opti i i h i i h iy p y p y   , where  ,
ˆ

opti h ip y  is the 

first-order derivative of  ,
ˆ

opti h ip y . 

IV. SIMULATIONS 
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(19) 

The score functions ( )Φ y in each update of the 

proposed algorithm are estimated by a kernel density 

estimation method. It is assumed that there are T

realizations      1 , 2 , , Ty y y of the separation signals.

Therefore, the kernel density estimator [22], [23]

 ,
ˆ

i h ip y , exploited to estimate the true marginal PDF

 i ip y , is given by

The conjugate gradient algorithm contains two key 

procedures in each update [20], [21]: 1) Calculate the 

tangent vector of the current solution point, which is

conjugate to the former searching direction, thus the next 

searching direction is determined; 2) Solve a one-

dimensional optimization problem to find the new 

iterative solution along the newly formed trajectory of 

geodesic.



In order to demonstrate the validity of the proposed 

underdetermined blind source separation method, several 

simulations are performed in this section. The simulations 

considered the underdetermined BSS problem in the case 

of four speech sources and three mixtures. The 3×4 

dimensional mixing matrix A  is selected randomly, 

whose elements subject to uniform distribution in the 

interval [0,1]. The observation signals are obtained 

according to (2) with 1% Gaussian noise. The sources 

and the noisy mixtures are shown in Fig. 2 and Fig. 3, 

respectively. 
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Fig. 2  Four speech signals as the sources 
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Fig. 3  The generated underdetermined mixtures 

The local mean decomposition algorithm is performed 

on the mixtures to generate the product function 

components  pqP , which can been seen in Fig.4. For 

simplicity, only several main components are displayed. 

The correlation coefficients pqr  between each product 

function pqP  and the corresponding observation signal 

px  are then calculated out and listed in Table 1. 

It can be seen, from Table 1, that the correlation 

coefficients decrease as the second subscript q  of the 

product functions increases. Thus several product 

functions with large correlation coefficient are reserved 

for constructing the new observation signals ( )new tx . The 

proposed conjugate gradient based BSS algorithm is 

finally implemented on ( )new tx . The estimated source 

proposed method can recover the waveform of the 

sources very clear in the underdetermined cases up to 

permutation and scalar indeterminacy. 
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Fig. 4  Product functions of the mixtures by LMD (a. product functions 

of 1x ; b. product functions of 2x ; c. product functions of 3x ) 
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Comparing Fig. 5 with Fig. 2, it can be seen that the 

signals are computed out, as is shown in Fig. 5. 



TABLE I: THE CORRELATION COEFFICIENTS BETWEEN EACH PRODUCT 

FUNCTION AND THE CORRESPONDING OBSERVATION SIGNAL 

1qr  
11P  12P  13P  14P  15P  

1x  0.7062 0.3484 0.1932 0.1224 0.0895 

2qr  
21P  22P  23P  24P  25P  

2x  0.7515 0.4208 0.2057 0.1533 0.1107 

3qr  
31P  32P  33P  34P  35P  

3x  0.7446 0.3637 0.1678 0.1004 0.0838 
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Fig. 5  The separated signals from the proposed underdetermined BSS 

algorithm 

For the sake of quantitatively evaluating the 

performance of the proposed algorithm, the output results 

from the proposed LMD based algorithm (LMDBSS) 

together with an underdetermined BSS algorithm for non-

sparse sources based on spatial time-frequency 

distribution (STFDBSS) [24] and an algorithm resorting 

to sparsity assumption [11] are presented for comparison. 

The separation performance of the three algorithms, 

measured by the mean squared error (MSE) criterion 

averaged over T  independent runs, is defined as: 

2

,

10 2
1 1

ˆ1 1
10log

n T
i j i

i j
i

s s
MSE

n T s 

  
  
   

  

  (24) 

where n  is the number of source signals and ,î js  is the 

estimation of the normalized source signal is  in the j th 

independent run. The mixtures are generated with the 

same scheme as the previous simulation. The additive 

noise are generated to be white and Gaussian with 

uncorrelated samples whose variance was assumed to be 

uniform. The algorithms are performed under different 

signal-to-noise ratio (SNR) varied from 0 to 30 dB by a 

step of 2.5 dB. The variation of MSEs with respect to 

SNR is shown in Fig. 6. 

From Fig. 6, it can be seen that the sparsity-based 

underdetermined BSS algorithm is not able to extract the 

non-sparse source signals, and the proposed LMD based 

underdetermined BSS algorithm has a superior separation 

performance, which always maintains a lower value of 

MSE than the other two algorithms.  
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Fig. 6  The performance comparison by average MSE of the proposed 

LMDBSS algorithm with two previous underdetermined BSS 
algorithms 

V. CONCLUSIONS 

In this paper, a novel underdetermined blind source 

separation method is presented based on local mean 

decomposition and conjugate gradient algorithm. To 

make the underdetermined BSS problem become more 

tractable, some additional observation signals are firstly 

constructed through performing the local mean 

decomposition algorithm on the rough observations. 

Hence, the underdetermined mixing model is transformed 

to a determined model. Subsequently, the minimum 

mutual information principle is used for solving the 

regenerated determined BSS problem. The separating 

matrix is trained by the conjugate gradient learning 

algorithm in Riemannian space, and the kernel 

probability density estimation is employed to estimate the 

score function of the separated signals instead of 

selecting some nonlinear functions. The numerical 

simulations have shown the effectiveness of the proposed 

underdetermined BSS method. From the simulation 

results, it can be seen that local mean decomposition 

makes the underdetermined BSS problem become much 

easier, and the great advantages of the proposed 

underdetermined BSS method is that it does not resort to 

the sparsity constraint of the source signals, and it does 

not need to employ complicated approaches to estimate 

the unknown underdetermined mixing matrix, which are 

included in many former researches. 
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