
Uncertain Quadratic Minimum Spanning Tree Problem 
 

Jian Zhou, Xing He, and Ke Wang 
School of Management, Shanghai University, Shanghai 200444, China 

Email: {zhou_jian, hexing, ke}@shu.edu.cn 
 

 
Abstract—The quadratic minimum spanning tree problem is to 

find a spanning tree on a graph that minimizes a quadratic 

objective function of the edge weights. In this paper, the 

quadratic minimum spanning tree problem is concerned on the 

graph with edge weights being assumed as uncertain variables. 

The notion of the uncertain quadratic  -minimum spanning tree 

is introduced by using the uncertain chance constraints. It is 

shown that the problem of finding an uncertain quadratic  -

minimum spanning tree can be handled in the framework of the 

deterministic quadratic minimum spanning tree problem 

requiring no particular solving methods. 

 

Index Terms—Quadratic minimum spanning tree, uncertainty 

theory, network optimization, chance-constrained programming 

 

I. INTRODUCTION 

The minimum spanning tree problem is to find a 

spanning tree on a graph of which the total edge weight is 

smallest. As one of the most important network 

optimization problems, the minimum spanning tree 

problem has found many applications in 

telecommunication, power systems, transportation, etc. 

(see, for instance, [1], [2]). It is well known that the 

minimum spanning tree problem can be formulated as a 

linear integer programming problem with some special 

features, and some efficient solving algorithms are 

available (see, for instance, [3], [4]). 

Assad and Xu [5] proposed in 1992 the quadratic 

minimum spanning tree problem where a quadratic 

objective function was involved to characterize the 

minimum spanning tree. The quadratic minimum 

spanning tree problem is however NP-hard. Some 

heuristic or metaheuristic solving techniques have been 

developed for the quadratic minimum spanning tree 

problem. For example, to improve the branch-and-bound 

based exact method in [5], Zhou and Gen [6] adopted the 

Prüfer number to encode the tree and enforced the genetic 

algorithm approach to get the solution. Following that, 

Sundar and Singh [7] proposed an artificial bee colony 

algorithm based on the swarm intelligence technique, 

which may obtain the better quality solution than that in 

[6]. Öncan and Punnen [8] developed a Lagrangian 

relaxation procedure as well as an efficient local search 
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algorithm to solve this problem. Recently, Cordone and 

Passeri [9] described a tabu search implementation for the 

quadratic minimum spanning tree problem. Besides, Gao 

and Lu [10] presented the fuzzy quadratic minimum 

spanning tree problem where the edge weights were 

assumed to be fuzzy variables, and designed a fuzzy 

simulation based genetic algorithm. 

However, it is frequently encountered in practice that 

some information in a complicated system cannot be 

properly observed or statistically estimated. Uncertainty 

theory, founded by Liu [11] and refined by Liu [12], 

provides an appropriate framework to describe such 

nondeterministic phenomena, particularly those involving 

the linguistic ambiguity and subjective estimation. By 

now, it has been applied to many areas, and has brought 

many branches such as uncertain programming, uncertain 

graph, uncertain logic, uncertain inference, uncertain 

process, and uncertain finance (see, e.g., [13]-[20]).  

In this paper, the uncertain quadratic minimum 

spanning tree problem is concerned where the edge 

weights of the graph are assumed to be uncertain 

variables in the sense of Liu [11]. It is clear that a 

quadratic minimum spanning tree in such a situation 

cannot be defined in the usual sense. In this paper, the 

notion of uncertain quadratic-minimum spanning tree is 

introduced using the uncertain chance constraint. With 

this notion, an uncertain chance-constrained 

programming model is developed for the uncertain 

quadratic minimum spanning tree problem. It turns out 

that this problem can be transformed into a deterministic 

quadratic minimum spanning tree problem.  

The rest of this paper is organized as follows. Some 

notions and results in uncertainty theory are briefly 

introduced in Section II. The uncertain quadratic 

minimum spanning tree problem is investigated in details 

in Section III. A numerical example is presented in 

Sections IV for illustration. 

II. PRELIMINARIES 

In this section, some notions and results in uncertainty 

theory are briefly introduced which are indispensable to 

formulate the uncertain quadratic minimum spanning tree 

problem. The reader may refer to [11], [12], [21] for more 

details like the concepts of fuzzy variable, credibility 

measure, and some other related definitions. 

Definition 1: (Liu [11]) Let L be a  -algebra on a 

nonempty set . A set function M: L  [0, 1] is called 

an uncertain measure if it satisfies the following axioms:  
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Axiom 1. (Normality Axiom) M{} = 1 for the 

universal set ; 

Axiom 2. (Duality Axiom)  { }   {  }    for 

any event ; 

Axiom 3. (Subadditivity Axiom) For every countable 

sequence of events           we have 

 {⋃  

 

   

}  ∑ {  }

 

   

 

In uncertainty theory, the triplet (, L, M) is called an 

uncertainty space. Besides, let            be 

uncertainty spaces for        .  Denote 

                       

Then the product uncertain measure M on the product 

 -algebra L is defined by the following axiom (Liu [21]). 

Axiom 4. (Product Axiom) Let           be 

uncertainty spaces for k =       . The product uncertain 

measure M is an uncertain measure satisfying 

 {∏  

 

   

}  ⋀  

 

   

{  } 

where    are arbitrarily chosen events from    for k 

=      , respectively.  

An uncertain variable is defined as a measurable 

function from an uncertainty space to the set of real 

numbers. In order to describe uncertain variables, the 

uncertainty distribution of an uncertain variable   is 

defined as 

      {     }                                  

for any real number  . 

For example, an uncertain variable   is called linear if 

it has a linear uncertainty distribution 

     {  

                                
     

   
                       

                                

               

denoted by L(a, b), where   and   are real numbers with 

     The linear uncertainty distribution is illustrated in 

Fig. 1.  

 
Fig. 1. Linear uncertainty distribution 

An uncertain variable    is called zigzag if it has a 

zigzag uncertainty distribution 

     

{
 
 

 
 

                             

 
   

      
                      

      

      
         

                            

            

denoted by          where       are real numbers 

with        The zigzag uncertainty distribution is 

illustrated in Fig. 2. 

 
Fig. 2. Zigzag uncertainty distribution 

An uncertainty distribution   is said to be regular if its 

inverse function        exists and is unique for each 

       . If an uncertainty distribution      is regular, 

it is continuous and strictly increasing on the domain 

{           }  So does its inverse distribution 

       on the domain {       }  
It is clear that the linear and zigzag uncertainty 

distributions are both regular. If the uncertain variable   

has a linear uncertainty distribution, i.e.,           its 

inverse distribution is 

                                           

Similarly, if   has a zigzag uncertainty distribution, i.e., 

            its inverse distribution is 

       {
                                 
                         

        

Definition 2: (Liu [21]) The uncertain variables          
      are said to be independent if 

 {⋂{      }

 

   

}  ⋀ {      }

 

   

               

for any Borel sets            of real numbers. 

Theorem 1: (Liu [18]) Let              be 

independent uncertain variables with regular uncertainty 

distributions             respectively, and       
  a continuous and strictly increasing function. Then the 

uncertain variable                 has an inverse 

uncertainty distribution 

           
        

          
        

By Theorem 1, for independent uncertain variables 

with linear or zigzag uncertainty distributions, they 

possess some good properties under additive and scalar 

multiplication. That is, if                              
and       are independent, then for      and     , 
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Analogously, if                                    
and       are independent, then for       and      , 

                                            
(9) 

Moreover, it can be verified that for       and 

    , 

          
           

           
                  

whenever    and    are independent and have linear or 

zigzag uncertainty distributions. Note that the property 

(10) holds actually for independent uncertain variables 

with regular uncertainty distributions, which follows 

immediately from Theorem 1. 

Definition 3: (Liu [11]) Let   be an uncertain variable. 

Then the expected value of   is defined by 

 [ ]  ∫  {   }  
  

 

 ∫  {   }  
 

  

         

provided that at least one of the two integrals is finite.  

Theorem 2: (Liu [11]) Let    be an uncertain variable 

with uncertainty distribution   . If the expected value 

exists, then 

 [ ]  ∫           
  

 

 ∫        
 

  

            

III. UNCERTAIN QUADRATIC MINIMUM SPANNING 

TREE PROBLEM 

Let         be a connected undirected graph with 

vertex set   {          } and edge set   
{          }  A spanning tree         is a connected 

subgraph of G such that     and        , where 

    denotes the cardinality of S. 

To represent a spanning tree          we may 

introduce a binary vector                 such that 

   {
                

 
                  

                                

Conversely, a binary vector                 may 

characterize a spanning tree with the cardinality 

constraint 

∑      

 

   

                                     

and the connection constraints 

∑                   

       

               

where E(N) is the set of edges with both vertices in N. 

In the quadratic minimum spanning tree problem, there 

are two types of edge weights involved to evaluate the 

spanning tree. The first type is associated with each 

single edge, while the second type characterizes the 

interactive effect of the edges. Denote by    the weight of 

edge     and by     the interactive weight of edge     and 

edge                 Note that         and 

                     The weight of a spanning tree 

T is defined as 

         
 

 
∑∑       

 

   

 

   

 ∑    

 

   

              

where                and    (   )
   

  

Definition 4: (Assad and Xu [5]) A quadratic minimum 

spanning tree   
 is a spanning tree that has the smallest 

weight, i.e., 

                                               

holds for any spanning tree T. 

Since a spanning tree can be represented by a binary 

vector with the cardinality and connection conditions, 

finding a quadratic minimum spanning tree is essentially 

a binary quadratic integer programming problem, and 

hence NP-hard in general. However, with the aid of some 

well-developed optimization software packages, such as 

LINGO and CPLEX, the quadratic minimum spanning 

tree problem may be solved to optimality for scenarios of 

moderate size or even large size. Besides, some heuristic 

or metaheuristic solving techniques have been developed 

for the quadratic minimum spanning tree problem (see, 

for instance, [6]-[9]). 

On the other hand, when the edge weights are not 

deterministic, the problem becomes more complicated. 

Here we assume that all the edge weights involved are 

independent uncertain variables with regular uncertainty 

distributions. Denote by    the weights of edges    with 

uncertainty distributions   , and by  
  

 the interactive 

weights of edges    and    with regular uncertainty 

distributions                   

Consequently, the weight of a spanning tree T becomes 

                      
 

 
∑∑ 

  
    

 

   

 

   

 ∑    

 

   

             

which is also an uncertain variable, where              
    and     

  
      

Theorem 3: Suppose that        
are independent 

uncertain variables with regular distributions     and 

                  respectively. Then the weight 

         of a spanning tree T has an inverse uncertainty 

distribution 

 

 
∑∑   

         

 

   

 

   

 ∑  
       

 

   

                

where   
  and    

                  are the inverse 

uncertainty distributions of uncertain weights      and  
  

, 

             respectively. 

Proof: Since      or 1 for               we 

have         or 1,               Then the result may 

be derived immediately from Theore 
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Definition 5: A spanning tree T
*
 is called an uncertain 

quadratic  -minimum spanning tree if 

   {  |  {           }    }  

   {  |  {           }    }      
                   

holds for any spanning tree T, where         is a given 

confidence level. 

By Definition 5, finding an uncertain quadratic  -

minimum spanning tree is equivalent to solving the 

uncertain chance-constrained programming problem 

{
 
 

 
                                           

                                        

             {          }   

                       

                     

with a predetermined confidence level        . 
Moreover, since all uncertain variables involved are 

independent uncertain variables with regular distributions, 

we can obtain the following theorem. 

Theorem 4: Given a predetermined confidence level 

       , the chance constraint 

 {          }                            (22) 

holds if and only if 

 
 

 
∑∑   

          ∑  
       

 

   

 

   

 

   

            

Proof: Suppose that          has an inverse 

uncertainty distribution      Then it follows from 

Theorem 3 that 

          
 

 
∑∑   

          ∑  
       

 

   

 

   

 

   

        

Thus (22) holds if and only if            .
 
                

 

For example, assume that     are linear uncertain 

variables                     respectively,  
  

are 

zigzag uncertain variables  (           )            
 
  

   respectively, and     and  
  

 are all independent. Then 

it follows from Theorem 4 and Eqs.         that the 

chance constraint  {          }    holds if and 

only if  

{
 
 
 
 
 
 

 
 
 
 
 
  

 
∑∑(               )                     

 

   

 

   

  ∑               

 

   

                         

       

 

 
∑∑(                   )         

 

   

 

   

   ∑               

 

   

                          

 

     
 

As a result, the uncertain chance-constrained 

programming model (21) can be transformed to the 

following deterministic equivalent formulation 

{
 
 
 
 
 

 
 
 
 
    

 

 

 
∑∑   

          ∑  
       

 

   

 

   

 

   

                                                                    

∑  

 

   

                                      

∑   

       

                

   {   }                        

          

It should be noted that model (26) is nothing but a 

deterministic quadratic minimum spanning tree problem. 

So far we have demonstrated that the problem of finding 

the uncertain quadratic  -minimum spanning tree can be 

handled eventually within the framework of the 

deterministic quadratic minimum spanning tree problem 

and requires no particular solving methods in such an 

uncertain environment. 

IV. A NUMERICAL EXAMPLE 

 

 

 

 

Fig. 3. An uncertain graph for the numerical example 

TABLE I. THE DISTRIBUTIONS OF WEIGHTS    IN FIGURE 3 

        
        

            11.6 

           10.2 

           11.4 

           10.8 

           12.2 

           10.8 

           11 

           11.8 

           11 

 

In order to illustrate the effectiveness of the model 

proposed above, in this section, the quadratic minimum 

spanning tree problem is considered on a graph with 6 

vertices and 9 edges as shown in Fig. 3. For each edge 

            ), its weight     is assumed to be a linear 

uncertain variable with distribution    while the 
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interactive weight   
  

 (             of edges    and 

   is assumed to be with zigzag uncertainty distribution 

   , and          holds. The distributions of     and   
  

 

are listed in Tables I and II, respectively. Note that Table 

II only shows the distributions of partial interactive 

weights in Fig. 3, the rests of which do not appear in 

Table II are set to zero for simplicity.   

TABLE II. THE DISTRIBUTIONS OF INTERACTIVE WEIGHTS  
  

 IN FIGURE 3 

          
        

                17.6 

                19 

                14.8 

                19.2 

                18.4 

               14.8 

                18.4 

                16.8 

                18 

                17.4 

                18.4 

                20 

                17.2 

                19.4 

 

According to model (26), if we want to find the 

uncertain quadratic minimum spanning tree with a given 

confidence level    0.8, we have the following model: 

{
 
 
 
 
 

 
 
 
 
    

 
 
 

 
∑∑   

            ∑  
         

 

   

 

   

 

   

                                                                           

∑  

 

   

                                           

∑   

       

                

   {   }                         

     

In model (27), the values of    
        and    

        

can be calculated according to Eqs.        , which have 

been given in Tables I and II. Consequently, model (27) 

is equivalent to a deterministic quadratic minimum 

spanning tree problem. The optimal solution of this 

model can be obtained as  

                        

by using LINGO, and the minimum spanning tree is 

shown in Fig. 5 (denoted by solid lines). 

The predetermined confidence level   is an important 

parameter in the formulation. The numerical example is 

further considered for different confidence levels in order 

to investigate the influence of this parameter. It is 

observed that   has an effect on the optimal minimum 

spanning tree found, and the total weight of the minimum 

spanning tree increases while the confidence level is 

increasing. Table III demonstrates the changes of the 

optimal solutions and the total weights of the 

corresponding uncertain quadratic minimum spanning 

tree for different confidence level  . Fig. 4, Fig. 5 and 

Fig. 6 show the different minimum spanning trees. 

TABLE III. RESULTS FOR NUMERICAL EXAMPLES USING DIFFERENT 

CONFIDENCE LEVELS 

  Total weight Optimal solution    

       (1, 1, 0, 0, 1, 0, 1, 1, 0)T 

         (1, 0, 0, 1, 0, 1, 0, 1, 1)T 

          (1, 0, 0, 1, 0, 1, 1, 1, 0)T 

 

 

Fig. 4. Uncertain quadratic 0.5-minimum spanning tree 

 

 

Fig. 5. Uncertain quadratic 0.8-minimum spanning tree 

 

Fig. 6. Uncertain quadratic 0.95-minimum spanning tree 

V.  CONCLUSIONS 

As one of the most important network optimization 

problems, the minimum spanning tree problem has found 

many applications, and also has been extensively 

discussed in the literature. However, the applications of 

the minimum spanning tree problem encountered in 

practice usually involve some uncertain issues so that the 

edge weights cannot be explicitly determined.  

Thus, an uncertain model based on uncertainty theory 

founded by Liu [11] is proposed in this paper to deal with 

such situations. Moreover, the quadratic objective 

function is involved to characterize the minimum 
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spanning tree. It is shown that finding an uncertain 

quadratic α-minimum spanning tree is equivalent to 

solving an uncertain chance-constrained programming 

problem which can be further transformed into a 

deterministic quadratic integer programming model and 

then be solved with the aid of some well-developed 

optimization software packages. That is, an uncertain 

quadratic minimum spanning tree problem can be 

handled within the framework of the deterministic 

quadratic minimum spanning tree problem and requires 

no particular solving methods. 
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