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Abstract—Based on the block compressed sensing (BCS) 

framework, a new and non-orthogonal transform named all 

phase biorthogonal transform (APBT) is introduced to exploit 

the image sparsity, reduce the encoding complexity and be 

applicable to the blocked image easily. APBT exploits the 

signal sparsity better than DCT, and meanwhile it overcomes 

the defects of multiscale transform such as wavelet transform 

with high computational complexity and the feature of not being 

applicable to the blocked image. In order to improve the 

efficiency of BCS reconstruction, the accelerated smoothed 

projected Landweber (ASPL) iteration algorithm is put forward. 

Combined with the sparse constraints in APBT, the BCS-ASPL-

APBT reconstruction algorithm is advanced. Experimental 

results demonstrate that the proposed algorithm outperforms the 

method of using DCT sparsifying coupled with common SPL 

iteration not only in the aspect of PSNR, but in terms of the 

reconstruction time and the iteration number. 
 
Index Terms—

accelerated SPL 

 

I. INTRODUCTION 

Compressed sensing (CS) has gained increasing 

interests over the past few years. The CS theory 

demonstrates that signals with sparse representation 

under some transform domain can be precisely 

reconstructed only from a small set of measurements [1]-

[3]. As applied to 2D images, however, CS faces several 

challenges including a computationally expensive 

reconstruction process and huge memory required to store 

the random sampling operator. Recently, several fast 

algorithms [4], [5] have been developed for CS 

reconstruction, but with the reconstruction quality as the 

sacrifice. With the purpose of resolving huge memory for 

sensing matrix, the structurally random sensing matrixes 

were addressed in [6], [7], but these matrixes have poor  

universality. So the block compressed sensing (BCS) 

theory was advanced in [8], [9], in which the block-based 

sampling operation was used and the smoothed 

projection-based Landweber iterations (SPL) was 

proposed to accomplish CS reconstruction aiming at 

improving the reconstructed-image quality by eliminating 

blocking artifacts. In recent years SPL based methods 
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have been used extensively for CS reconstruction: Chen 

firstly used the spatial redundancy to make a prediction 

for the original image by the multi-hypothesis theory, and 

then applied SPL algorithm to reconstruct the residual 

between the original and the predicted image [10]; Based 

on the BCS-SPL framework, the sampling rate is set 

adaptively according to the texture feature of various 

blocks in [11] and the multi-scale CS theory was 

addressed in [12]; Additionally, the SPL algorithm using 

Principal Component Analysis (PCA) was presented for 

BCS in [13]. To our knowledge, the above methods 

improved the image reconstruction quality, but with 

increasing computational complexity and slow 

convergence, the weakness can be easily observed. 

In this paper, we adopt the same basic work of block-

based CS sampling of images coupled with SPL-based 

reconstruction. Our contribution lies in that we cast the 

reconstruction in the all phase biorthogonal transform 

(APBT) domain [14], [15] in which the signal has been 

shown to be sparser than in DCT domain. At the same 

time, in order to reduce high computational complexity of 

the SPL-based reconstruction, the semi-iteration [16] skill 

is enforced to accelerate the convergences of the SPL 

iteration, called accelerated SPL (ASPL) iteration. In 

experimental simulations, we find that the proposed BCS-

ASPL-APBT reconstruction algorithm outperforms the 

method using discrete cosine transform (DCT) coupled 

with the common SPL algorithm and runs faster. 

The rest of the paper is organized as follows. Section II 

provides a brief review of the CS and BCS theory. 

Section III describes the APBT theory and demonstrates 

that the signal could be sparser in APBT domain than in 

DCT domain. Section IV presents the SPL algorithm and 

Section V proposes the BCS-APBT-ASPL reconstruction 

algorithm. Section VI reports the simulation results for 

several typical images followed by conclusions in Section 

VII. 

II. BACKGROUND 

A. Sparse Representation 

Suppose that NRx is a discrete signal that could be 

represented as a linear combination of the basis  
1

N

i i



: 

1

N

i i
i




 x Ψθ                             (1) 
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where  1 2= , , , N  Ψ , and 
i  is a column vector 

with N elements; θ  is the weight coefficients vector of 

x : 1, =i i i   x x
- . So x  and θ  are equivalent 

representation of the same signal, in the time domain and 

frequency domain respectively. If the number of non-zero 

elements K  in θ  is far less than N , then x  is called K -

sparse. 

B. Signal Measurement and Reconstruction 

Suppose that we are allowed to take M (M<<N) linear, 

non-adaptive measurements of x through the following 

linear transformation: 

y Φx                                         (2) 

where y represents a M×1 sampling vector and Φ is a 

M×N measurement matrix  
T

1 2= , , ,M N

M  
Φ . Since 

M<<N, the reconstruction of x from y is generally ill-

posed. However, the CS theory is based on the fact that 

the signal x  has a sparse representation in Ψ  domain. In 

other words, if the signal is K -sparse and the equivalent 

sensing matrix Φ Ψ satisfies the RIP [3], we can 

reconstruct K  maximum values in N-dimensional signal 

x  by log( / )K N K  measurements stably by solving l1 

norm optimization: 

1
ˆ argmin    . .  s t θ θ y ΦΨθ              (3) 

where θ̂  is the sparse representation vector, thus the 

signal x  can be reconstructed approximately with the 

transform base Ψ  by: 

ˆˆ x Ψθ                               (4) 

C. Block Compressed Sensing (BCS) 

In BCS [8], the N N  image x  is divided into small 

blocks with the size of B B  each and sampled with the 

same operator. Let jx ( 1,2, ,j n , 2( / )n N B ) 

represents the vectorized signal of the j-th block through 

raster scanning. The corresponding output CS vector yj 

can be written as 

Bj jy Φ x                                (5) 

where BΦ  is a 2

Bn B  measurement matrix, with 

2

Bn B    ,   is the sampling rate. In our work, BΦ  is 

an orthonormalized i.i.d Gaussian matrix [8]. For the 

whole image, thus the sampling operator Φ  is a block 

diagonal matrix taking the following form: 

 
 
 
 
 
 

B

B

B

Φ

Φ
Φ

Φ

                    (6) 

Note that BCS is memory efficient as we just need to 

store a 
2

Bn B  Gaussian ensemble BΦ . Small B requires 

less memory in storage and faster implementation, while 

large B offers better reconstruction performance, we 

choose empirically the block size B = 32 hereafter. 

III. ALL PHASE BIORTHOGONAL TRANSFORM (APBT) 

A. All Phase Biorthognal Transform (APBT) 

All phase biorthogonal transform (APBT) is derived 

from all phase sequency filtering (APSF) [14], and the 

APSF could be completed through the multiplication of a 

transformation matrix with a desired sequency response 

vector. The transformation matrix is called all phase 

biorthogonal transform (APBT) matrix with the 

properties of reversible, non-orthogonal and good 

sequency [15]. Different APBT could be posed from 

different orthogonal transform, such as all phase Walsh 

biorthogonal transform (APWBT), all phase DCT 

biorthogonal transform (APDCBT) and all phase IDCT 

biorthogonal transform (APIDCBT). This article focuses 

on the latter two, which are usually applicable to the 

image processing. 

Based on the discrete cosine transform sequency 

filtering, getting the APDCBT matrix 

2

APDCBT

1

,    0,1, , 1, 0

( , ) 0,1, , 1
( , ),   

1,2, , 1

N m
m N n

NT m n m N
P m n

n N


  

   


 

  (7) 

where 1 2

1 π π π
( , ) ( )cos csc sin

mn n mn
P m n N m

N N NN

 
   

 
 

Accordingly, the APIDCBT matrix is 

APIDCBT

2

1
,           0,  0 1

( , )

( , ),  1 1,  0 1

m n N
T m n N

P m n m N n N


   

 
      

(8) 

where 2 2

2 1 (2 1)π
( , ) cos

2

N m m n
P m n

NN

   
 . 

The APDCBT or APIDCBT matrix T is non-

orthogonal, but full rank, with the inverse matrix T
-1

. So 

the signal could be decomposed using the row vector of 

the APBT matrix T, and reconstructed using the column 

vector of T
-1

. Fig. 1 illustrates the decomposition basis 

images and reconstruction basis images of APIDCBT 

when N=8. Like DCT, the two-dimensional sequency of 

the decomposition basis images and the reconstruction 

basis images of APBT increase from the upper left to the 

lower right. So the column and row vectors of the APBT 

matrix have good sequency properties and could be used 

in sequency analysis and synthesis of the signal, and 

APBT could decorrelate the signal effectively. 

It can be demonstrated that the energy of the 

decomposition basis images of the APBT [14] decreases 

gradually with the increase of the sequency in the 

direction of the main diagonal, while that of the 

reconstruction basis images of the APBT increases. So 
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the APBT coefficients have good high-frequency 

attenuation, more applicable to the spectrum distribution 

of the natural signal than DCT. 

   
Fig. 1. The basis images of APIDCBT. Left: Decompsition basis images, 

right: Reconstruction basis images 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency

N
o

rm
a

li
z
e

d
 a

m
p

li
tu

d
e

 f
re

q
u

e
n

c
y
 r

e
s
p

o
n

s
e

 
(a) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency

N
o

rm
a

li
z
e

d
 a

m
p

li
tu

d
e

 f
re

q
u

e
n

c
y
 r

e
s
p

o
n

s
e

 
(b) 

Fig. 2. The frequency response of the filters in: (a) DCT, (b) APIDCBT 
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Fig. 3. The sorted transformed coefficients 

In addition, Fig. 2 illustrates the normalized amplitude-

frequency response of the filters in DCT and APBT. It 

can be seen that APBT reveals the sparsity better by 

giving more emphasis to the low-frequency band than 

that of DCT. For example, the DCT and APBT 

coefficients of the 64×64 typical image ‘Lena’ are sorted 

in descending order and the first 50 are plotted in Fig. 3. 

It can be shown that the distribution curves of APBT 

have a better attenuation than that of DCT, and that of 

APIDCBT is the steepest. 

B. Transform and Inverse Transform of APBT 

As mentioned above, the APBT matrix T  is non-

orthogonal, i.e. T 1T T . Similar to the biorthogonal 

wavelet transform, two different bases need to be used 

in operating the signal decomposition and reconstruction. 

Here let T  denoting the decomposition matrix and 1
Τ
-  

denoting the reconstruction matrix. For the 2-D image x, 

the decomposition of the image is as follows 

T=Y TXT                                      (9) 

So the reconstruction of X  based on the transformed 

coefficient matrix Y  is as follows 

1 1 T( ) X T Y T                         (10) 

IV. PROJECTED LANDWEBER (PL) ITERATION  

The standard Landweber iteration is:  
[ 1] [ ] [ ]= + ( - )k k T k

x x Φ y Φx                  (11) 

where 
2

(0 1/ )  Φ  is a relaxation parameter to 

control the iterative process. The projected Landweber 

(PL) is based on the prior information of the original 

image which can be expressed in some closed convex sets 

[17]. The PL algorithm could be written as: 
[ 1] [ ] [ ]=P + ( - )k k T k

C   
 x x Φ y Φx            (12) 

where CP  is a operator projecting a vector in    to the 

closed convex set C. The classical form of this kind 

algorithm usually includes: Landweber iteration, 

projection and thresholding; for example, the CS 

reconstruction based on PL iteration in [18] including the 

following steps, starts from some initial approximation 

x
[0]

: 

1) Landwever iteration: 

[ ] [ ] [ ]ˆ + ( - )k k T kx x Φ y Φx  

2) Projecting and thresholding:  

[ ] [ ]ˆ ˆk kθ Ψx , [ ]k θ
[ ]ˆThreshold( , )k θ  

3) Reconstruction through the inverse transform:  
[ 1] 1 [ ]k k x Ψ θ  

where Φ  is the measurement matrix, Ψ  is the transform 

matrix, i.e., the projecting matrix; Threshold( )  is a hard 

thresholding operator owning the larger elements than 

373

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing



 

2log m   and setting the others to zero in [ ]ˆ k
θ , 

here  is decided by   that is a constant controlling the 

convergence and   is estimated noise standard deviation, 

m is the number of the transform coefficients [19]. 

Like the greedy algorithms of the pursuits class, the 

projected Landweber based CS reconstruction also 

provides reduced computational complexity. Additionally, 

the PL formulation offers the possibility of easily 

enforcing additional optimization criteria. For example, 

the smoothing based on Wiener filtering was imposed to 

the PL framework namely smoothed PL (SPL) in [9]. 

However, the PL step still needs a large number of 

iteration especially being applied to the image CS 

reconstruction. So the accelerated Landweber formulation 

is proposed in the next section and the thresholding is 

operated in the APBT domain at the same time. 

V. ASPL-APBT BASED IMAGE BCS RECONSTRUCTION 

A.  Accelerated Landweber Iteration 

The main drawback of Landweber iteration in (7) is its 

slow rate of convergence, it constructs a new 

approximation vector [ ]k
x  with the previous iteration 

[ 1]k
x  only, and the relaxation parameter   is difficult to 

choose. To overcome these drawbacks, the so-called 

semi-iterative method was proposed in [16]. The semi-

iterative based methods have been known as the 

polynomial acceleration technique, and the basic idea of 

semi-iterative method consists of one step of iteration, 

followed by an averaging process over all or some of the 

previously obtained approximations. The iterative step 

has the form： 

[ ] [ 1] [ 2]

1, 2,
[0] T [ 1]

,         ( )

k k k

k k
k

k k k

 

 

 



   

 

x x x

x Φ y Φx
            (13)  

where, 

,
1

1
k

i k
i




 , 0, 1k k                           (14) 

Obviously, the Landweber iteration is a special case of 

(13), when k  , 1, 2, , 0k k k k       in (11). 

With the purpose of avoiding the overburden memory, 

here we just use the information of a few steps in (13). 

Additionally, in order to reach the optimal rate of 

convergence, we use the γ-method when determining the 

parameters in (13) [16]. Specifically,  

[ ] [ 1] [ 1] [ 2] T [ 1]( ) ( )k k k k k

k k        x x x x Φ y Φx   (15) 

where,  

1 0  , 1

4 2

4 1










                            (16) 

( 1)(2 3)(2 2 1)

( 2 1)(2 4 1)(2 2 3)
k

k k k

k k k




  

   


     
      (17) 

4(2 2 1)( 1)

( 2 1)(2 4 1)
k

k k

k k

 


 

   


   
                    (18) 

The  -method takes the linear combination of the 

current negative gradient T [ 1]( )kΦ y Φx  and the 

searches the direction of the previous step 
[ 1] [ 2]( )k k x x  as the new search direction, which is 

non-orthogonal to the gradient direction so as to avoid the 

zigzagging toward solution. 

B.  ASPL-APBT based BCS Image Reconstruction 

As mentioned above, the PL iteration has been applied 

in BCS reconstruction [8], [9], and several prominent 

directional transforms are incorporated into the PL 

formulation to improve the sparsity of the image [9]. 

However, these directional transforms couldn’t be 

applicable to the blocked image and commonly have not 

fast algorithms. Therefore, we select the APBT which are 

suitable to the blocked image with better sparsifying than 

common used DCT and it can be shown that better 

reconstructed results could be obtained than using the 

wavelet transform in several experiments. 

Additionally, in order to speed up the convergence in 

BCS reconstruction of the image, the accelerated 

Landweber iteration is adopted. At the same time the 

smoothing step using Wiener-filtering is interleaved with 

the accelerated PL iteration, we called the accelerated 

smoothed PL (ASPL). So the ASPL-APBT based BCS 

image reconstruction algorithm is proposed. The 

following are the specific steps, and Ψ , 1
Ψ  represent 

the APBT and its inverse transform operator respectively. 

Input: the measurement vector y , orthonormalized 

i.i.d Gaussian matrix BΦ , thresholding parameter  ; 

Initialization: letting
[0] T

Bx Φ y  and getting [0]
x̂  

after Wiener filtering; error tolerance 0  ; maximum 

number of iteration maxk , and letting 0k  ; 

Solving
[1]

x : using (15) and (16) to get [1]
x , and 

[1] [1]θ Ψx , [1] [1]Threshold( , )θ θ , [1] 1 [1]x Ψ θ . 

Iteration steps ： 1k k  , if [ 1] [ ]| - |>k k 
D D  or 

maxk k , do the following steps: 

 Smoothing operating [ ]ˆ k
x =Wiener ( [ ]k

x ); 

 Computing parameters k , k  using (17) and (18); 

 For each image block, computing accelerated 

Landweber iteration: 

[ 1] [ ] [ ] [ 1] T [ ]

1 1
ˆ̂ ˆ ˆ ˆ ˆ= + ( ) ( - )k k k k k

j j k j j k B j B j  

  x x x x Φ y Φ x ; 

 Projecting and thresholding:  

[ 1] [ 1]ˆ̂k k θ Ψx ; [ 1] [ 1]Threshold( , )k k  θ θ ; 

 Reconstruction through inverse transform: 

 
[ 1] 1 [ 1]k k x ψ θ

-
; 
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 Letting [ ] [ 1]k kx x  , [ 1] [ ]ˆk kx x  , again accelerated 

Landweber iteration for each block j： 
[ 1] [ ] [ ] [ 1] T [ ]

1 1= + ( ) ( - )k k k k k

j j k j j k B j B j  

  x x x x Φ y Φ x ; 

Output: Reconstructed image x . 

Here, Wiener (·) is pixel wise adaptive Wiener filtering 

using a neighborhood of 3×3, Threshold( )  is the hard 

thresholding operator with the same definition discussed 

in section 4. The termination rule is [ 1] [ ]| - |<k k 
D D , 

where   is the error tolerance, and 

[ ] [ 1] [ ]ˆ̂ /k k k N D x x . 

TABLE I.  PSNR RESULTS 

Algorithm 

(PSNR/dB) 

Measurement Rate (M/N) 

0.1 0.2 0.3 0.4 0.5 

Lena 

BCS-SPL-DCT 27.70 30.45 32.46 34.19 35.77 

BCS-SPL-APDCBT 28.10 31.11 33.20 34.96 36.54 

BCS-SPL-APIDCBT 28.12 31.15 33.27 35.03 36.61 

BCS-ASPL-DCT 27.72 30.51 32.55 34.26 35.92 

BCS-ASPL-APDCBT 28.12 31.17 33.30 35.10 36.68 

BCS-ASPL-APIDCBT 28.13 31.23 33.37 35.15 36.76 

Barbara 

BCS-SPL-DCT 22.76 24.38 25.91 27.42 29.05 

BCS-SPL-APDCBT 22.63 23.98 25.44 27.22 28.99 

BCS-SPL-APIDCBT 22.65 24.00 25.48 27.25 29.09 

BCS-ASPL-DCT 22.88 24.49 25.80 27.53 29.09 

BCS-ASPL-APDCBT 22.68 24.18 25.74 27.55 29.39 

BCS-ASPL-APIDCBT 22.69 24.19 25.77 27.58 29.41 

Goldhill 

BCS-SPL-DCT 26.10 28.32 29.63 30.98 32.57 

BCS-SPL-APDCBT 26.95 29.07 30.69 32.15 33.49 

BCS-SPL-APIDCBT 26.96 29.08 30.72 32.18 33.59 

BCS-ASPL-DCT 26.54 28.70 30.32 31.67 33.15 

BCS-ASPL-APDCBT 26.97 29.22 30.84 32.30 33.69 

BCS-ASPL-APIDCBT 26.99 29.24 30.87 32.34 33.72 

Peppers 

BCS-SPL-DCT 27.49 30.60 32.37 33.76 35.01 

BCS-SPL-APDCBT 28.24 31.40 33.22 34.61 35.83 

BCS-SPL-APIDCBT 28.34 31.45 33.32 34.67 35.93 

BCS-ASPL-DCT 27.94 31.21 33.08 34.48 35.78 

BCS-ASPL-APDCBT 28.37 31.60 33.37 34.72 35.92 

BCS-ASPL-APIDCBT 28.43 31.65 33.45 34.78 35.99 

Mandrill 

BCS-SPL-DCT 20.24 21.31 22.31 23.40 24.51 

BCS-SPL-APDCBT 20.54 21.76 22.87 23.98 25.14 

BCS-SPL-APIDCBT 20.54 21.78 22.90 24.04 25.19 

BCS-ASPL-DCT 20.32 21.54 22.59 23.69 24.86 

BCS-ASPL-APDCBT 20.55 21.77 22.91 24.04 25.22 

BCS-ASPL-APIDCBT 20.56 21.79 22.93 24.08 25.27 

VI. EXPERIMENTAL RESULTS 

To evaluate the proposed ASPL-APBT based BCS 

image reconstruction algorithm, comprehensive 

experiments were carried out using Matlab R2012b on a 

2.80GHz processors and 2GB memory computer. 

A. The Quality of Reconstructed Image 

Firstly, to evaluate the effectiveness of the increased 

sparsity of the APBT in representing the image and the 

performance of the ASPL in BCS reconstruction, we 

employ the DCT, APDCBT and APIDCBT within the 

SPL and ASPL framework respectively. We refer to the 

resulting implementations as BCS-SPL-DCT, BCS-SPL-

APDCBT and BCS-SPL-APIDCBT, BCS-ASPL-DCT, 

BCS-ASPL-APDCBT and BCS-ASPL-APIDCBT. 

According to the experimental results, in the SPL 

framework, we use hard thresholding with  =6, 10, and 

10, correspondingly, for BCS-SPL-DCT, BCS-SPL-

APDCBT and BCS-SPL-APIDCBT; In ASPL framework, 

we use hard thresholding with  =2, 4, and 4, 

correspondingly, for BCS-ASPL-DCT, BCS-ASPL-

APDCBT and BCS-ASPL-APIDCBT. 

Table I compares PSNR for five 512×512 images Lena, 

Barbara, Goldhill, Peppers and Mandrill at several 

measurement ratios. Noting that the quality of 

reconstruction can vary due to the randomness of the 

measurement matrix BΦ , all PSNRs are averaged over 5 

independent trials. 

As shown in Table I, the PSNR results of BCS-SPL 

and BCS-ASPL based on APBT yield about 0.4-1.2dB 

improvement, respectively, compared to BCS-SPL and 

BCS-ASPL based on DCT except Barbara; The ASPL 

based results outperform SPL based whether in APBT 

domain or DCT domain. For APDCBT and APDCBT, 

the PSNR results are roughly the same. The PSNR of 

ASPL based algorithms have more improvements than 

SPL based on DCT, especially for Goldhill, Peppers and 

Mandrill, and maximum up to 0.86dB improvement. 

     
(a)                                                    (b) 

      
(c)                                                  (d) 

     
(e)                                                  (f) 

Fig. 4. Lena for M/N = 20%. (a) BCS-SPL-DCT, (b) BCS-SPL-

APDCBT, (c) BCS-SPL-APIDCBT, (d) BCS-ASPL-DCT, (e) BCS-

ASPL-APDCBT, (f) BCS-ASPL-APIDCBT 
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Fig. 4 illustrates example visual results. It could be 

shown that the APBT based reconstruction provides 

better quality than the DCT based techniques both within 

BCS-SPL and BCS-ASPL framework. Especially the 

BCS-ASPL based algorithms are more desirable. 

TABLE II. RUNNING TIME 

Algorithm 

(Running time/s) 

Measurement Rate (M/N) 

0.1 0.2 0.3 0.4 0.5 

Lena 

BCS-SPL-DCT 43.1 35.2 30.1 28.6 24.4 
BCS-SPL-APDCBT 80.2 56.8 49.3 46.4 36.5 

BCS-SPL-APIDCBT 83.8 57.9 49.5 46.4 38.5 

BCS-ASPL-DCT 15.6 12.4 11.5 10.7 10.3 
BCS-ASPL-APDCBT 27.8 18.9 17.8 15.9 16.9 

BCS-ASPL-APIDCBT 30.1 23.3 19.7 17.7 17.8 

Barbara 

BCS-SPL-DCT 43.7 34.9 31.8 29.0 27.9 

BCS-SPL-APDCBT 76.8 62.1 48.5 47.6 43.1 

BCS-SPL-APIDCBT 81.2 62.6 52.6 50.9 48.4 
BCS-ASPL-DCT 14.2 12.3 11.4 10.9 10.3 

BCS-ASPL-APDCBT 29.4 23.6 19.6 18.1 17.5 
BCS-ASPL-APIDCBT 32.9 19.5 18.3 17.9 17.2 

Goldhill 

BCS-SPL-DCT 43.6 30.8 28.3 25.1 23.1 

BCS-SPL-APDCBT 78.4 56.6 48.9 42.5 39.3 
BCS-SPL-APIDCBT 86.8 56.9 49.5 42.6 39.3 

BCS-ASPL-DCT 14.7 12.5 11.4 9.8 9.9 
BCS-ASPL-APDCBT 38.9 19.7 20.2 18.6 16.7 

BCS-ASPL-APIDCBT 29.0 19.3 21.1 18.1 16.7 

Peppers 

BCS-SPL-DCT 20.8 19.4 17.2 16.1 13.8 

BCS-SPL-APDCBT 32.5 24.1 22.8 20.2 19.5 

BCS-SPL-APIDCBT 35.8 25.4 23.6 20.9 19.5 
BCS-ASPL-DCT 14.0 12.8 11.6 10.9 10.4 

BCS-ASPL-APDCBT 26.8 21.7 16.8 15.9 15.2 
BCS-ASPL-APIDCBT 28.4 21.8 18.5 17.3 15.3 

Mandrill 

BCS-SPL-DCT 20.8 19.4 17.2 16.1 13.8 

BCS-SPL-APDCBT 32.5 24.1 22.8 20.2 19.5 
BCS-SPL-APIDCBT 35.8 25.4 23.6 20.9 19.5 

BCS-ASPL-DCT 14.0 12.8 11.6 10.9 10.4 
BCS-ASPL-APDCBT 26.8 21.7 16.8 15.9 15.2 

BCS-ASPL-APIDCBT 28.4 21.8 18.5 17.3 15.3 

B. Running Time 

Table II compares the reconstruction time for the 

reconstructed image at several measurement ratios. The 

results are averaged over independent trials. Fig. 5 

illustrates the distribution curves of running time for Lena 

and Goldhill. It can be shown from Table II and Fig. 5 

that the running time in ASPL based framework is shorter 

than that of the SPL based. The APBT based run more 

time than DCT based, in that APBT based algorithms 

need calculating inverse matrix but not the transpose 

matrix like in DCT. But the difference tends to be less 

with the increase of measurement rate. 

C. Number of  Iterations 

Table III illustrates the number of iterations at several 

measurement ratios; Fig. 6 illustrates the corresponding 

curves of Lena and Goldhill. It can be shown that the 

iteration number of ASPL based algorithms reduce a lot 

than SPL based. The iteration numbers of APBT based 

algorithms are much less than DCT based and the 

iteration number of ASPL based algorithms are roughly 

the same.  
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Fig. 5. Running time of (a) Lena, (b) Goldhill 
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Fig. 6. Number of iterations of (a) Lena, (b) Goldhill 
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TABLE III.  NUMBER OF ITERATION 

Algorithm 

(Number of iteration) 

Measurement Rate (M/N) 

0.1 0.2 0.3 0.4 0.5 

Lena 

BCS-SPL-DCT 162 131 88 74 65 

BCS-SPL-APDCBT 133 91 76 64 56 

BCS-SPL-APIDCBT 138 93 77 65 58 

BCS-ASPL-DCT 46 30 25 23 20 

BCS-ASPL-APDCBT 41 27 22 21 19 

BCS-ASPL-APIDCBT 43 28 23 21 19 

Barbara 

BCS-SPL-DCT 164 121 89 74 66 

BCS-SPL-APDCBT 143 102 78 64 58 

BCS-SPL-APIDCBT 145 104 79 65 62 

BCS-ASPL-DCT 46 32 27 23 16 

BCS-ASPL-APDCBT 44 29 23 21 15 

BCS-ASPL-APIDCBT 45 27 24 22 15 

Goldhill 

BCS-SPL-DCT 177 108 83 72 56 

BCS-SPL-APDCBT 149 93 73 65 53 

BCS-SPL-APIDCBT 153 93 76 66 55 

BCS-ASPL-DCT 46 33 27 22 19 

BCS-ASPL-APDCBT 41 33 27 22 19 

BCS-ASPL-APIDCBT 44 33 28 22 19 

Peppers 

BCS-SPL-DCT 73 60 47 39 33 

BCS-SPL-APDCBT 56 37 30 27 24 

BCS-SPL-APIDCBT 58 40 32 28 25 

BCS-ASPL-DCT 46 35 28 22 20 

BCS-ASPL-APDCBT 41 29 23 20 17 

BCS-ASPL-APIDCBT 45 30 23 21 18 

Mandrill 

BCS-SPL-DCT 73 60 47 39 33 

BCS-SPL-APDCBT 56 37 30 27 24 

BCS-SPL-APIDCBT 58 40 32 28 25 

BCS-ASPL-DCT 46 35 28 22 20 

BCS-ASPL-APDCBT 41 29 23 20 17 

BCS-ASPL-APIDCBT 45 30 23 21 18 

 

VII. CONCLUSIONS 

In this paper, we examined the use of APBT in the CS 

reconstruction of images. We adopted the general 

paradigm of block-based random image sampling 

coupled with a projection-based accelerated Landweber 

reconstruction not only promoting the sparsity and 

smoothness of the reconstruction, but also speeding up 

the convergence. The proposed BCS-ASPL-APBT 

algorithms outperform not only in reconstruction quality 

but also in running time and number of iterations. 
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