
Cwmwl, a LINDA-based PaaS Fabric for the Cloud

Joerg Fritsch and Coral Walker
School of Computer Science and Informatics,

Email: {coral.walker, j.fritsch}@cs.cardiff.ac.uk

Abstract— In this paper we introduce a new Platform-as-a-

Service cloud environment that combines the LINDA

coordination language, an in-memory key-value store, with

functional programming to facilitate efficient execution of

tenant plugins and applications. In the implementation a tuple

space plays a central role in introducing deterministic services

for basic parallel programming, including message passing,

persistent infinite message pools and transactions. Redis, a key-

value store, serves as the in-memory tuple space that glues

together parallel constructs (i.e. skeletons) of formerly

monolithic business applications to form an elastic distributed

application. Although functional programming languages have

adopted new runtime technology to achieve parallel execu- tion,

which is mostly focused on threads, it rarely offers an obvious

way to match functions to threads. We find that the LINDA

tuple space and its coordination model offers a general purpose

paradigm to tackle synchronisation issues that ties into both

domains of computing clouds: computation through supporting

common skeletons and big data (analytics) through serving as

an in-memory data grid.

Index Terms—
nation languages, LINDA, threads, multi-tenancy

I. INTRODUCTION

Corporations service developers and end users are not

interested in information technology [1]. Their goals are,

for example, to run a business process that requires

certain resources (e.g. computation and storage), to use an

existing application or service, or providing them for

third parties. With the advent of virtualization technology

and Infrastructures-as-a-Service (IaaS) corporations

began to eliminate overcapacity in terms of available

computing power. Platform-as-a-Service (PaaS) is the

cloud computing layer that further reduces redundant

functionality such as the expense for maintaining and

administering operating system instances. In the PaaS

model, the maintenance of the cloud computing platform,

the underlying computing nodes and the operating system

instances is done by the service provider. However, re-

garding the units of scale, there is a mismatch between

the requirements of cloud computing platforms and

parallel computing languages.

Current parallel computing languages are dominated

by threads, a very small unit of scale that commonly has

no mobility beyond the physical platform where it is

Manuscript received April 24, 2013; revised April 21, 2014.
Corresponding author email: j.fritsch@cs.cardiff.ac.uk

doi:10.12720/jcm.9.4.286-298

started, and lacks crucial features that would enable true

elasticity. Lee [2] is also skeptical about threads as an

effective means to support parallelism and argues in

favour of coordination languages instead.

Cloud computing platforms on the other hand work

around this obstacle by focusing on very large units of

scale such as the virtual machine (VM) or the con- tainer

(normally consisting of JVM, Rails, or some other

runtime system) in which the guest code is deployed [3],

[4]. For example, cloud platforms scale guest code

through replicating the container and subsequently create

the illusion of seamless scaling by clustering the replicas

with a load balancer. Considering that at least one

instance of every guest application must be running and

that frequently additional components such as the host

operating system and the application execution engine

need to be replicated as well, it becomes clear that

modern PaaS clouds have a huge footprint and the size of

the infrastructure is still dictated by the number of clients

and their running instances rather than by the actual load

[5].

Cwmwl (the Welsh word for “cloud”, pronounced

“kumul”) is a LINDA-based coordination language that is

presented here as the basis for a novel PaaS framework

that provides a scalable platform for business applications

and supports most of the common skeletons and units of

scale. Kachele [6] has published eleven requirements of

typical business applications that should be supported by

cloud computing platforms but found that “none of the

current platforms support a majority of these requested

features”. Table I lists Kachele’s eleven requirements and

how they are met by a platform based on the LINDA

model.

Mirage [7], Erlang on Xen (Ling) [5] and the Haskell

Lightweight Virtual Machine (HaLVM) [8] show that it

is possible to convert high-level functional language

source code into an (exo)kernel that runs directly on the

XEN hypervisor that is used in most commercial public

clouds such as Amazon EC2. Hence, it is possible to not

only shift the responsibility for the PaaS host OS from the

customer to the provider (who then hides the presence of

the host OS by wrapping it into features of the PaaS

framework), but also to completely do away with

traditional host operating systems in PaaS frameworks.

Currently all three aforementioned cloud frameworks

are single threaded that makes them good candidates for

co- ordination models, and a stable coordination layer

based on a tuple space could be an ideal basis to glue

286

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

Cardiff University, 5 The Parade, Roath, Cardiff,
CF24 3AA, UK

Tuple space, PaaS, cloud computing, coordi-

both OS-less applications and OS-equipped legacy VMs to a hybrid elastic cloud platform.

TABLE I: ELEVEN REQUIREMENTS OF BUSINESS APPLICATIONS [6]

Application Requirement Explanation Tuple space

Application-centric approach Developers only need to focus on core

application development and functional

aspects.

Simple, high level communications

model.

Application-independent approach Applications executed on PaaS must not be

limited to web services.

Separation of concerns in coordination

languages is achieved independent of how

computation is performed. Associative

memory and generative communication

are interoperable.

Elasticity Platform should be elastic and ideally

preserve application state during scaling.

Application state is preserved in the

central tuple store, elasticity depending on

unit of scale. Tasks and Workers run

decoupled, in parallel and at virtually any

scale.

Virtual addressing Location is irrelevant, customers must be able

to reach their application from everywhere.

Associative addressing specifies what

data, what message or what worker is

requested rather than an address.

Cloud-independent

programming-model

Software should be able to run on both cloud

computing platforms and local systems.

Possibility to have a local tuple space.

Updating and bug fixing, Native support for

modularity, adaptable design

On the fly updating to achieve high SLAs,

preserve application state during updating.

Uncoupling of agents in space and time.

No direct communication that could be

broken, state is pre- served by tuple store.

Multi tenancy Isolation and confidentiality inherent in the

platform.

Multiple security architectures thinkable

e.g. plugins for tenant code execution in

Safe Haskell [9], ap- plication execution

in light weight VMs, Rusello et al. show

that confidentiality of tuples, data and

state therein is possible [10].

Dynamic placement Platform chooses where exactly to deploy a

worker, re-balancing in case of changes in

load.

Consumption based cost tracking

II. RELATED WORK

To start with, we take a look at the PaaS cloud

technology and the interactions of this technology with

coordination languages and tuple spaces before

summarising the research on the use of tuple spaces in

large- scale infrastructures, computing clouds and

functional programming languages. At the end of this

section we will look at possible units of scale and

advanced formalisms, including the algebra of

communicating processes (ACP) or constraint handling

rules (CHR), that may be used to achieve complex

coordination in peta-scale and exa-scale cloud computing

platforms.

According to Gartner’s technology forecast [11] the

number of commercial and open source PaaS offerings

has been growing steadily since the year 2011 and soon

“all major software vendors will have production offer-

ings in the PaaS market”. Although PaaS is the fastest

growing cloud computing market, the current scholarly

research in this area is relatively limited. The AppScale

project, presented in Chohan et al. [12], an open source

version of the Google App Engine (GAE) PaaS frame-

work [13], is one of the rare examples. Appscale is a

PaaS framework that aims to scale tier-based Web2.0

architec- tures that in general consist of a web-tier, an

application- tier and a data-tier (see Fig. 1). Vaquero [3]

also looks at tier-based architectures and investigates a

number of entrance points to dynamically scale

applications tier by tier.

Fig. 1. Software stack of a conventional PaaS framework.

The Cwmwl PaaS framework is a flat fabric that

unifies the traditional data-tier, messaging, and

computation. A single unified communication protocol is

used to store data, coordinate computation, and exchange

information about state. Static (partially hierarchic)

relationships be- tween web-frontend servers, application

servers, message buses and database servers are removed

(see Fig. 2). We share the views of Shalom [14] who

states that the emulation of tier-based computing in the

287

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

cloud or in PaaS platforms does not scale effectively

enough to the cloud scale. A unified PaaS fabric scales

more predictably than traditional web applications (e.g. a

LAMP stack) that need a mix of technologies and

protocols to scale each tier separately.

The key differences between a conventional PaaS

framework and the unified Cwmwl PaaS fabric can be

observed from Fig. 1 and Fig. 2. A conventional PaaS

framework scales horizontally through replication of the

runtime containers for applications, while the Cwmwl

PaaS fabric scales through distribution of the application

instances.

Fig. 2. Unified cwmwl PaaS fabric.

Fig. 3. Lewis Caroll Diagram showing how web services, clusters and
HPC intersect with cloud computing (purple). The upper right field

“Distributed Systems” is the intersection of clusters and HPC.

Fig. 3 illustrates the relation between cloud comput-

ing, web services, clusters and high performance

computing (HPC).

We believe that the next generation of cloud

computing platforms will embrace upcoming peta- and

exa-scale mainstream systems and shift in focus from a

technology that mainly delivers web services (Fig. 3

bottom left) to a more abstract service that leverages

distributed computing to support non-web-service

applications, or rather common business applications (Fig.

3 top right).

Cwmwl is thus developed to exploit distributed

systems in cloud data centers by leveraging the strengths

of coordination that we find in commodity cluster

management tools (e.g. Clustrx [15], parallel Gaussian

[16]) and commercial space-based PaaS frameworks (e.g.

Gigaspaces XAP [17]).

A. Coordination Languages, Tuple Spaces, and Key-

Value Stores

The term “coordination language” was coined in the

year 1992 by Gelertner [18] to describe the LINDA

programming language that he had proposed in the year

1985 [19]. Since then coordination languages have first

influenced distributed computing and HPC, and later

Jini/Apache River and web services. The LINDA coor-

dination model consists of a tuple space and a library that

implements four primitives, rd(), in(), out() and eval(), as

extensions to virtually any (non parallel) programming

language. The LINDA primitives manipulate and store

tuples, which are key-value pairs, in the tuple space

acting as distributed shared memory (DSM). The sender

publishes a tuple to the DSM and the receiver queries the

DSM without the need to maintain knowledge from

where to receive or what process to send to.

Although the performance and scalability of the tuple

space is crucial for the usefulness of LINDA-based

coordination languages, for a long time the real

performance of tuple spaces (and thus their suitability for

HPC) remained doubtful. In 2005, Fiedler et al [20]

presented SETTLE, an “approach for measuring the

throughput and response time of a tuple space when it

handles concurrent local space interactions”.

Key-value stores, noSQL and BIG Data, all of which

are strongly linked to cloud computing, have increasingly

gained pace in recent years. Cwmwl suggests a promising

cloud infrastructure through combining these new

paradigms with a high performance tuple space, living

outside the web services world, and obtaining its

applicability by simply using tuple spaces and LINDA-

based coordination languages. In the Cwmwl

infrastructure a key-value store is used to serve

application needs, to store BIG Data and as a tuple space,

which, if employed wisely, can greatly reduce the

software stack, complexity and footprint of applications

in the cloud. The reduction of the software stack,

complexity and footprint makes Cwmwl a flat PaaS

fabric that differs from the more common hierarchical or

tier-based PaaS paradigms.

Regarding the implementation of key-value stores, two

seemingly opposing trends have been observed: in-

memory data grids and distributed key-value stores. In-

memory data grids, where all data is kept in memory,

provide fast access to data with low latency and high

performance. They are frequently used for near real time

(BIG) Data analytics. In the Lewis Diagram shown in Fig.

3 in-memory data grids are part of the HPC sector of

computing clouds. The corresponding commer- cial

offerings for this market segment are “bare metal clouds”

that allocate dedicated servers and offerings based on

hardware-virtualization where one single instance can

288

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

have more than 200GB RAM. Distributed key-value

stores that may involve map reducing and additional

delays through vector clocks before a query is responded

to. Dabek and Peng [23] introduce the Google

development called Percolator, which is a combination of

both types of key-value stores.

Tuple spaces are a lightweight means of memory

virtualization and consequently very similar to persistent

storage memory with the added value that tuple spaces

can easily scale across the physical boundaries of nodes.

An in-memory key-value store was chosen as the basis

for the Cwmwl tuple space in order to make it suitable for

the implementation of in-memory data grids as well as for

the virtualization of (application) memory, data storage

and interprocess communication (IPC) across computer

or network architectures. The in-memory key-value store

Redis [24] was chosen for the following reasons:

 It is very fast and lightweight, which makes it ideal

for frequent random access with very low latency as

required by tuple space implementations. The

expected speed gain compared to a disk based key-

value store is approximately 1:100000 [25].

 It supports persistent tuple spaces (if data and tuples

are long lived) and preserves state across restarts if

required.

 It supports atomic operations. Most key-value stores

do not support transactions and use, for example,

vector clock schemes [26] to detect and resolve

conflicts.

 It supports a number of data structures (for example

sets, lists, ordered sets) that can be used to support

functions such as tuple matching and advanced co-

ordination (see Section III-A of this document).

 It supports key-value pair expiry times which are used

to release expired tuples.

 It supports persistence. Regarded as a less important

feature of an in-memory tuple store, in practice, it

cannot be underestimated as a source for debugging

information.

B. Message Passing Interface (MPI) and Barrier /

Eureka Networks

MPI [27] provides a message passing infrastructure

that is, according to HPCWire [28], the de facto standard

in parallel communications. Different to LINDA (and

thus to the LINDA-based Cwmwl script language) as a

higher-level coordination language, MPI is frequently

seen as a low level message passing paradigm. Although

there seems little in common between LINDA and MPI,

in practice, they could very well be put together to

provide communication paradigms for distributed parallel

processing. For example, the integration of the MPI-

based message passing style with coordination logic in

implementing barrier/eureka networks is a well-known

practice in HPC [29]. There are also a number of

hardware solutions to solve coordination issues in barrier

/ eureka networks [30].

A barrier network is a set of (parallel) processes, all of

which are required to signal a certain event in order

for the main computation to continue, while a eureka

network requires at least one of the participating

processes to signal the desired event before the main

process can move on. Barrier is supported in the MPI

3.0 standard (the MPI_barrier primitive) and is also

implemented in Cwmwl. A commutative example that

demonstrates a barrier is presented in Section III-B. The

major difference between the Cwmwl implementation

and the MPI imple- mentation is that Cwmwl is built on

a LINDA tuple space (acting similar to shared memory)

while MPI is not.

C. Threads: Operating System Level Threads and

OpenMP

As already mentioned, threads are not portable and are

not an efficient mechanism for distributed processing. A

single thread can be seen as a sequential program with

shared memory interactions used as an interface to the

symmetric multiprocessing (SMP) functionalities of

single computing nodes. Parallel programming languages

provide relevant and powerful synchronization mecha-

nisms, such as mutexes and semaphores in a single node

environment where memory can be easily shared.

The main reason for the current domination of the

threading model is that as hardware has advanced rapidly

over time, the differences in speed between local shared

memory (as used by the threading model) and shared

distributed memory has kept growing, thereby making

local shared memory much faster than any form of

interaction with remote nodes.

However, the landscape is changing. Recent patent

filings concerning (distributed) shared memory [31], [32]

have been successfully implemented and commercialized.

With the widespread use of cloud techniques, not only

inter-node communication but also the migration of

virtual nodes and workload within a cloud computing

platform are gaining importance. This leads back to the

idea of better granularity (smaller computational units,

single-threading), the realization of which may rely on

message passing, asynchronous interaction, and, most

importantly, serving as building blocks, the tuple space

and its high-level coordination services. It is worth noting

that, although the LINDA coordination language tackles

synchronization issues at a much higher level of abstrac-

tion [28], it is applicable for managing low-level threads

as well as for inter-node coordination, which makes it a

convenient candidate in building Cwmwl tuple space

based coordination services. The outcome is a lightweight

Cwmwl with finer granularity, and better portability.

III. DESIGN AND IMPLEMENTATION

Cwmwl is a PaaS fabric that consists of

 Messaging and serialization based on the UDP

protocol.

 Secure and elastic workers.

289

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

 A means to identify and communicate with workers

and processes.

Fig. 5 illustrates a high level overview of the Cwmwl

structure. Cwmwl consists of a central tuple space (TS)

and several application servers (AS). For a distributed

application that uses the master-worker skeletons devel-

opers will need to write a worker process, upload the

code package to an application server and start it. To

interact with the worker the developer uses the Cwmwl

primitives to query the TS for tuples that have been

published by a worker process. The TS serves as DSM,

IPC and in- memory data grid, thus collapsing traditional

multi-tier applications. To scale the distributed

application more workers must be deployed. This is

merely a replication and does not require the

implementation of an application load balancer that

would represent additional overhead, to make use of the

added computation power. The TS and the AS nodes are

instances of guest virtual machines in commercial clouds.

Cwmwl script is a means of coordi- nating and imposing

constraints on a large pool of workers that, at large scale

with hundreds or thousands of worker instances, will

otherwise quickly become unmanageable. Whilst, for

example, in commodity cluster management tools the

coordinating middleware and the executed ap- plication

are separate layers of software, Cwmwl script is part of

the distributed application itself (see also Section III-C of

this paper). Fig. 6 depicts a UML deployment diagram of

the Cwmwl fabric. The upper part of the UML diagram

illustrates a developer accessing the platform to upload

the application (code) to the application database

(AppDB). An application controller (AppController) is in

charge of deploying the users’ applications from the

AppDB to the available guest virtual machines. The

lower part of the UML diagram illustrates a client

accessing the deployed application through an

intermediary web server (here lighttpd) using HTTP GET

requests to the tuple store as a replacement for the

LINDA rd() primitive.

Cwmwl is written in Haskell, a functional

programming language where the LINDA primitives are

embedded into Haskell as Domain Specific programming

Language (EDSL). The fact that Haskell allows EDSLs to

use nearly arbitrary syntax via Quasi Quotes [34] and via

the Haskell parsing library Parsec [35] makes it a good

choice for embedding Cwmwl primitives. The reason that

Haskell is used is that as a functional programming

language it is inherently parallel, supporting

asynchronous operations, and its code base is easy to

maintain and test. Cwmwl is the first attempt to build a

tuple space based cloud infrastructure using Haskell.

Haskell has also been used to develop [36] a UDP-based

message queue that is also part of the Cwmwl framework.

A. Tuples and Templates

The syntax of the LINDA primitives that are used in

Cwmwl has been kept similar to the original formulation

of tuple spaces. Although the host language Haskell is

strongly typed, Cwmwl does not use Haskell data types

and tuple matching is purely syntactic. As proposed by

Wells [37], data-type conversions are handled by Cwmwl

to create a truly heterogenous system that is not limited to

any (type of) programming language.

A limited number of types (that could easily be ex-

tended) are currently inferred by the Cwmwl parser. The

abstract syntax tree (AST) of the Cwmwl interpreter is

built for the types string, integer and some other types

(identifier, query, operation) that implement the domain

abstractions that are required to model the LINDA

functionalities. Strong typing can be achieved by

segmenting the tuple space where every segment is

created to store only a specific type [38]. A further option

to preserve types is encapsulation, for example using

JSON or ByteString.

Tuples stored in the key-value store (or in any tuple

space) are accessed using a method that is called asso-

ciative lookup, which matches tuples based on templates

(also called anti-tuple). A template is similar to a tuple,

except some of its fields may be replaced by a NULL

value for wildcard matching. A template is said to match

a tuple provided the following two conditions are met

[39]:

 The template is the same length as the tuple.

 Any values specified in the template match the tuple’s

values in the corresponding fields. There are two

kinds of matches between a template value and a tuple

value: exact match where the two values are exactly

the same, or wildcard match where a NULL template

value matches any tuple value.

For example, the template (isFib, NULL) will match

the tuples (isFib, 20365011074) and (isFib, 11021972),

but not the tuple (isFib, 20365011074, ‘‘true’’). The

example shows that a given template can match several

tuples so the matching between template and tuple is not

always unique. In Cwmwl, the interpreter uses the tuple

template as a key to the Redis set data type, which is an

unordered collection of strings. Since the interpreter

cannot forecast if the key to a new key-value pair will

always represent a unique mapping or if additional key-

value pairs that reduce to the same key will follow, all

new entries must start out as a Redis set with a single

member. Tuples can be added to a set or removed from a

set in O(1) constant time. Sorted sets are available and

could for example be used to queue tuples that represent

tasks or workers using a FIFO strategy. Identical work

tasks need to be saved only once, and can be executed

several times, either in parallel or sequentially.

B. Units of Scale

A tuple space matches the master-worker scheme quite

naturally. Campbell [40] argues that the LINDA model is

particularly natural for implementing some cases, such as

task queues and recursive partitions. As for other skeleton

he states that the segmentation of the tuple store (a

technique that is frequently used in commercial tuple

space implementations) and a degree of coordination

290

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

would be beneficial to harness the evolving complexity.

For example, a sequential (pipelined) execution of

processes with data flowing between them, featuring

systolic access patterns (see Fig. 4), if implemented using

a tuple space, would have each stage consuming the tuple

from the previous stage and produces the tuple for the

next stage. This is inefficient, considering that in order

for tuples to pass between stages, the developer would

have to index, track, and modify the tuples at each stage.

An example of such tuple could be out (myWorker,

prev_state, next_state, data). As a possible solution

Campbell proposes to segment the tuple space and let the

segments represent queues similar to pub/sub channels.

For example, a sequential process may consist of the

stages abcd where stage a produces a tuple in its result

tuple space (segment) for stage b. Stage b reads the next

tuple from there and writes its output to its own result

tuple space. The result tuple space segments are

comparable to pub/sub channels and reduce the amount

of state and control information that needs to be passed

around with every tuple, thus increasing the overall

efficiency.

Fig. 4. Tuple space used with an algorithmic skeleton that requires
sequential execution (pipelining) and results in a systolic access pattern

to the tuple space.

Fig. 5. High level architecture of the Cwmwl PaaS fabric. Workers can consist of any unit of scale: e.g. plugins, functions.

Fig. 6.UML diagram of the Cwmwl PaaS fabric.

291

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

In Cwmwl, three operators are available to express

sequences and parallelism (see Table II for a description

of the Cwmwl script operators) enabling the interpreter to

automatically maintain the computation states and thus

abstracting the need to manually maintain state and

control information away from the developer. Cwmwl

operators are aligned with the Algebra of Communication

Processes (ACP) [41], among which there is a strong

binding sequence operator ; that is used to express the

sequential execution of processes, a non-binding

sequence operator & that is used for barrier execution of

processes and an exclusive choice operator | that performs

eureka execution. Furthermore Cwmwl script adopts the

axioms and the process algebra as defined by the ACP.

Equation (1) reprints the ACP axioms using the Cwmwl

script operators in the notation. ACP is defined by more

axioms that are currently not relevant to Cwmwl and thus

not reprinted in this paper.

TABLE II: CWMWL SCRIPT OPERATORS

Operator Description

; strongly binding sequence

&
non-binding sequence (commutative),

and ‘‘parallelism’’, barrier network

|
exclusive choice, succeeds if any of

the operands does so, heureka network

 a&b = b&a

 (a&b)&c = a&(b&c)

 a&a = a (1)

 (a&b); c = a;

c&b; c

 (a; b); c = a;

(b; c)

multiple execution instances that must be executed within

the constraints that are specified by the Cwmwl operators

and the axioms of the ACP. The subset of the ACP that is

illustrated in Table

An application that is run in Cwmwl may involve

multiple execution instances that must be executed within

the constraints that are specified by the Cwmwl operators

and the axioms of the ACP. The subset of the ACP that is

illustrated in Table II and Equation 1 is implemented in

the Cwmwl interpreter through storing the running state

of each sequential instance in a tuple template rather than

in the tuple itself. A key is used for tracking a particular

state and has the form of (myWorker, NULL):$id where

$id is an integer that represents the current state of the

instance (myWorker). It can be incremented and queried

to make sure communication take place at the right state.

Redis commands are used in manipulating, incrementing

and tracking state keys.

A commutative (non-binding) sequencing operator &

is implemented for all computations where there is a

choice as to what operand gets evaluated first. The

execution results of the instances involved are stored in

the Redis set datatype. For commutative sequencing

which task is to end when all instances have signaled a

certain state, the Redis scard query is used to return the

number of elements in the set that contains the results of

the computations. Each instance must succeed (i.e., store

a result in the set) to let the parallel commutative

composition succeed. The number of elements in the set

determines whether this is the case or not. This can be

used for a barrier operation by requiring (ready) signals

from all the involved processes before the next

processing stage. In addition to the two sequencing

operators Cwmwl supports a choice operator | that

succeeds if any of the operands succeeds.

C. How to use the Cwmwl EDSL

Cwmwl primitives are embedded into Haskell as a Do-

main Specific Programming Language (DSL) that

consists of a parser, an abstract syntax tree, algebraic

operators, and a small interpreter. Three LINDA

primitives are included in the Cwmwl primitives:

 Rd() retrieves a tuple that matches the given tem-

plate

 In() retrieves a tuple that matches the given tem-

plate and permanently removes the retrieved tuple

from the tuple space

 Out() stores a tuple into a tuple space

The LINDA eval() primitive, that spawns a new pro-

cess, is currently not implemented in Cwmwl. In contrast

to some LINDA implementations, such as C-Linda and

JavaSpaces that support both blocking and non-blocking

versions of rd() and in(), Cwmwl supports only non-

blocking primitives. A blocking op- eration requires a

worker to wait until its desired data is ready in the tuple

store before its next stage of execution, contrary to the

notion of uncoupling, and to a certain extent making

scaling in space and time difficult. In the case that a

blocking operation is unavoidable, it can be implemented

through the blocking read primitive LPOP supported by

the Redis list data type. Program 1 and 2 demonstrate

how a Cwmwl script is executed. runCWMWL [] is the

292

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

Cwmwl interpreter function which has a Cwmwl script as

its argument. It returns an instance of the Either monad

(Either String) containing either an error or a result. In

Cwmwl script, – is used for commenting, which is the

same as in Haskell.

Program 1 shows the representation of a pipelined

algorithm (illustrated in Fig. 4) using the strongly binding

Cwmwl sequencing operator; that abstracts the

underlying systolic access pattern away from the devel-

oper and leads to code with better expressivity. Program

2 shows the use of the non-binding Cwmwl sequencing

operator & where both operands need to succeed, similar

to a barrier network.

Cwmwl formalisms that are based on the ACP axioms

increase the expressivity in the sense that, compared to

plain vanilla LINDA, the code can better represent the

state constraints of sequential, concurrent or (even)

parallel skeletons, as often required in peta-scale clusters.

Furthermore, ACP-based Cwmwl formalisms could make

it possible to revive interest in structured programming

by partially harnessing the non-determinism that is

caused by the complete uncoupling between processes

and the tuple store and tuples that are widely spread in

time and space.

IV. MAP REDUCE: A DATA-ORIENTED EXAMPLE

Programs 3 and 4 give a data-oriented example of how

the Cwmwl TS can be used to support distributed

computations by providing DSM and a channel for

interprocess communication. The programs implement a

data intensive map-reduce algorithm for matrix

multiplication [42] that partitions Matrix A and Matrix B

into sub-matrices, and then performs the multiplications

in parallel. Deploying this small distributed application

involves the creation of the Redis Tuple Space and

corresponding computing nodes - a mapper node and

multiple reducer nodes.

 A mapper node loads two sparse matrices from a csv file

into the Cwmwl tuple space. The reducer nodes carry out

the multiplication. Currently AWS EC2 (and many other

large commercial clouds) does not support IP multicast,

thus the tuple space must be registered to the computing

nodes by means of a configuration file.

293

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

Depending on the available network bandwidth and

speed, the performance of the mapper may benefit from

the fact that loading data into key-value stores is much

faster than casting data into a relational database [43].

Since the Cwmwl TS is based on a key-value store, the

tuple (template) must contain all information required to

address the matrices and their cells. In this example, we

work with tuples of the format (a:i:k, value), in which a, i,

k denote the matrix, the row, and the column,

respectively.

The reducer function multiplies, depending on the

configuration of the indices, one or more sub-matrices

and sums the results. It would be possible to introduce

an intermediary mapper by, for example, splitting the

multiplication from the addition and have the reducer sum

up the results only.

There are two problems involved in extending Haskell

with the Cwmwl tuple space. Firstly, access to a tuple

space involves network communication, and any

communication over a network is placed in Haskell in the

IO Monad, which makes all its subsequent computation

(such as the multiplications in our example) impure. This

is a problem unique to Haskell, while in some other

functional languages, such as Erlang, communications

are untyped. Secondly, Haskell uses a static type system

which requires the two processes that use a tuple space

as DSM to use the same data type. Cwmwl can work

around this problem using JSON Frames (see also section

III-A of this paper) or Scoped Type Variables [44].

The map reduce example shows that Cwmwl can easily

connect multiple processes that reside on different physi-

cal nodes and provides a means for distributed programs

to access data in a way similar to accessing data locally.

Using the Cwmwl TS, interprocess communication and

DSM is abstracted away from the developer. Accessing

data, memory or inter-process communication are three

distinct tasks in most state-of-the-art distributed

applications that each require distinct efforts to implement,

but in Cwmwl they are merged into one simple task -

accessing tuples in Cwmwl TS.

V. PERFORMANCE EVALUATION

The SETTLE [20] framework is used to assess the

performance of the Cwmwl tuple space. SETTLE

assesses tuple space performance as execution time and

throughput as a function of:

 Number of (concurrent) clients.

 LINDA operation: out() or in().

 Payload size of tuple (through changing the embed-

ded data type).

 “Age” of the tuple space defined as the number of

entries in the tuple space at the start of the test.

A. Experimental Design

The main goal of the experimental design was to

approximate the environment as seen by real applications

and to assess the impact of bandwidth and latency on the

measured mean performance.

All of the experiments were conducted in the Amazon

EC2 cloud. The central tuple store used a Cluster

Compute instance so that throughput would not be

limited by the available network bandwidth, application

memory or computing capacity. Since Redis is single

threaded and is best deployed on bare metal hardware

without hypervisor [24], an AWS EC2 Cluster Compute

instance is the best available match for these

requirements. AWS EC2 Cluster Compute instances are

based on Hardware Virtual Machines (HVM) where the

guest VM runs as if it were on a native hardware platform

[45].

AWS EC2 Cluster Compute instances have 60.5GB

RAM, 8 physical cores and 10-Gigabit Ethernet con-

nectivity. The clients C1 ...C20 were on separate

instances of the type M1 Large. M1 Large instances have

7.5GB RAM, 2 virtual cores (4 EC2 compute units) and

high I/O performance with unspecified network speed.

Before the benchmarks were executed, the systems

were modified to reuse and recycle TCP connections.

Additionally the default range for TCP source ports was

changed to the maximum port range: 1024 - 65535 (see

Program 5).

Two scenarios have been tested in our benchmarks:

one with a simple tuple structure with changing payload,

and the other with a large set of different tuple structures.

The first scenario involves a simple data tuple

(“someData”, PAYLOAD) with payload sizes ranging

from three bytes to 12KB. Regardless of the payload size,

all tuples map to the same template (“someData”, NULL)

which is used as the key in the Redis key- value store and

consequently are stored in the same Redis set. Such a

usage pattern eventually reduces to the Redis SADD

command that works in O(N) time where N is the number

of tuples to be added to the set [24]. However, in our test

only one tuple is added at a time, and thus the time

complexity for each addition is O(1).

In the second scenario, a series of tuples with different

structures of the format (“somedata00001”, PAYLOAD)

are involved. “somedata00001” ranges from

“somedata00001” to ‘‘somedata10000”, for the reason

that the tuple space must easily fit into the memory of an

EC2 Cluster Compute instance, even with the largest

tuple payload. This usage pattern eventually reduces to

the creation of a new Redis set with a single member.

294

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

To further simulate the environment as seen by real

applications, prior to testing in each of the scenarios, the

Cwmwl tuple space was aged with one million tuples

with an automatically generated payload of the same

payload size.

B. Tuple Space Performance

The initial state of the tuple space, which was

simulated by tuple space ageing, had no impact on the

performance results. The results confirm that both

operations, inserting a new key-value pair and adding an

additional value to an existing set, work in O (1) time. Fig.

7 shows a nearly logarithmic relation of the tuple work

load size (measured in bytes) on the tuple space

throughput (measured in operations per second) for 5, 10

and 15 concurrent clients. The tuple space throughput

drops logarithmically with the workload size.

Fig. 7. Impact of workload size on throughput for 5, 10 and 15 clients.

Fig. 8. Benchmark execution time for up to 15 clients.

The standard deviation of the measurements for the

benchmark with 20 concurrent clients were very high (see

also Fig. 10) and this benchmark is thus not included in

this diagram.

Fig. 8 shows that the gross benchmark execution time

for up to 15 clients is (within the standard deviation)

constant and proportional to the work load size of the

tuple. Fig. 9 shows that within the boundaries of our

experimental design the tuple space throughput keeps

increasing with the number of concurrent clients exe-

cuting the same benchmark. Obviously the performance

limits of our tuple space implementation could not be

reached within our experimental design. On the other

hand the large standard deviations (Fig. 10) of the

benchmarks with 20 concurrent clients and the “knee” at

15 concurrent clients in Fig. 9 may imply that there is a

performance boundary between 15 and 20 concurrent

clients. Interestingly this is inline with Fiedler [20] who

also finds a “knee” around 15 concurrent clients

executing the same benchmark on JavaSpaces.

Fig. 9. Impact of the number of clients on throughput for 3B to 12KB.

Fig. 10. Impact of the number of clients on throughput for 3B to 12KB.

The Cwmwl rd() primitive produced a constant

benchmark execution time of around 6.5s that was not

influenced by the size of the payload or by the number of

concurrent clients. However, we had the impression that

the rd() was altogether less scalable and locked the

system network queues significantly longer than the out ()

primitive that in turn leads to undesirable exhaustions of

the connection pools.

The overall results were very consistent and

predictable giving a good basis to understand the impact

of the Cwmwl tuple space on application performance

and scalability. The repeatability of the benchmarks for

up to 15 concurrent clients confirms the validity of our

findings within the expressed range. Spot checks show

295

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

that the ab- solute values (operations / second) are

approximately half the performance of the redis-

benchmark tool that is included in a Redis installation.

The difference could be caused by differences in

serialization, sources and exploitation of randomness to

generate the tuple payloads or the Redis bindings for

Haskell.

The gross throughput with 15 clients was around 1.8

Gbps, slightly higher than the nominal throughput of

SATA 1.0 (1.5Gbps).

It is natural to question the performance advantages of

the Cwmwl Paas fabric over the current PaaS frame-

works. However, most of the current PaaS frameworks

are based on a complex software stack and their

performance cannot be measured by computation speed

or IO alone. According to Zhang et al. [46], the

performance of current PaaS frameworks may be

assessed tier by tier. In practice, PaaS performance is

often discussed qualitatively in terms of the time and

effort required to deploy a new (web) application or to do

a major application upgrade. Also, it is often discussed to

what extent, and with what effort, it is possible to

elastically right-size (scale up and down) a deployed

application. Frequently this is supported by additional

middleware that must be subscribed (e.g. Rightscale [47])

and not by the cloud computing platform itself. Map

Reduce is frequently sold outside PaaS frameworks as a

separate capability that must be configured using work

flows and storage, showing again the lack of

harmonization of computation, data, applications and web

applications in computing clouds.

Cwmwl is intended to rethink PaaS design and to

merge brute replication and re-clustering (which is the

current methodology to implement PaaS) with distributed

computing to improve efficiency and cost. Our foremost

design goal is simplicity by achieving a novel unified

platform rather than virtualizing and replicating the im-

plementation of a load balanced web application that has

existed since the end of the 1990s. The performance

figures of the Cwmwl TS that is accessed with the

Cwmwl primitives support our claim that this can be done.

After all, achieving a performance close to SATA 1.0 is a

good start.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated domain abstractions to

achieve a functional tuple space implementation based on

an in-memory key-value store. We have introduced the

EDSL Cwmwl script that virtualizes (application)

memory, data storage and IPC, and detaches them from

physical servers and operating systems. We have

increased the expressive power of coordination languages

by the use of ACP and demonstrated that undesirable

tuple space access patterns, resulting for example from

sequential algorithms, can be abstracted away from the

resulting coordination language.

We will further develop Cwmwl to include the eval()

primitive and the implementation will be based on Lua

[48], a fast and lightweight functional script language,

which is already built into Redis. Lua is very popular as a

scripting language in massive multiplayer online games

(MMOGs), which share many requirements similar to

that of a computing cloud. Although Lua is dynamically

typed, mechanisms are available that allow data exchange

between Lua and Haskell, thereby supporting invocations

between them.

In our current implementation, Cwmwl uses a cen-

tralized tuple space that on the one hand creates the

problem of a single point of failure, but on the other hand

makes the Cwmwl tuple space more capable in terms of

migration than a distributed implementation. The

elasticity of the Cwmwl tuple space itself is left up to the

capabilities of the Redis key-value store. Unlike, for

example RIAK, [21] or the Amazon Dynamo keyvalue

store [49], the distributable version of Redis (named

“Redis cluster”) is currently under development, and

distribution over multiple instances (e.g. via sharding) is

left up to the developer. In an industrial-grade PaaS fabric,

the question of in what use cases the benefits of a portable

tuple store outweigh the benefits of a distributed tuple

store will need to be investigated.

We also intend to investigate the idea of using Cwmwl

as the basis of dynamic memory virtualization where an

instance of the distributed tuple space is installed on

distributed host nodes, which dynamically claims surplus

local memory and makes it globally available.

ACKNOWLEDGMENT

The authors are grateful to Viktor Sovietov and to the

anonymous referees for their valuable comments and

suggestions to improve the presentation of this paper.

Program 4 has been kindly contributed by Aaron Stevens.

REFERENCES

[1] N. G. Carr, “The end of corporate computing,” MIT Sloan

Management Review, vol. 46, no. 3, pp. 67–73, 2005.

[3] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynam- ically

scaling applications in the cloud,” ACM SIGCOMM Computer

Communication Review, vol. 41, no. 1, pp. 45–52, 2011.

[4] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S.

Soman, and R. Wolski, “Appscale: Scalable and open appengine

application development and deployment,” Cloud Computing, pp.

57–70, 2010.

[5] V. Sovietov and M. Kharchenko. Erlang on XEN. [Online].

Available: http://www.erlangonxen.org

[6] S. Kächele, J. Domaschka, and F. J. Hauck, “COSCA: An

easy-to-use component-based PaaS cloud system for common

applications,” in Proc. First International Workshop on Cloud

Computing Platforms, April 2011, pp. 4.

296

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

,

[2] E. Lee, “Are new languages necessary for multicore?” in Proc.

International Symposium on Code Generation and Optimization,

2007.

[7] A. Madhavapeddy, et al., "Turning down the LAMP: software

specialisation for the cloud," in Proc. 2nd USENIX Conference on

Hot Topics in Cloud Computing, HotCloud, vol. 10, 2010.

http://www.erlangonxen.org/
http://www.erlangonxen.org/

[8] The Haskell Lightweight Virtual Machine (halvm): Ghc Running

on xen. [Online]. Available: http://halvm.org

[9] D. Terei, S. Marlow, S. Peyton Jones, and D. Mazières, “Safe

haskell,” in Proc. Symposium on Haskell Symposium. ACM, 2012,

pp. 137–148.

[10] G. Russello, C. Dong, N. Dulay, M. Chaudron, and M. Van Steen,

“Encrypted shared data spaces,” in Coordi-nation Models and

Languages, Springer, 2008, pp. 264–279.

[11] Y. V. Natis, “Paas 2012: Tactical risks and strategic re-wards,”

Gartner Research Document, 3 January 2012.

[12] N. Chohan, C. Bunch, S. Pang, C. Krintz, et al., “Appscale:

Scalable and open appengine application development and

deployment,” Cloud Computing, pp. 57–70, 2010.

[13] Google app engine - google developers. [Online]. Available:

http://www.google.com

[14] N. Shalom. (February 14, 2013). Space-based Architecture and

the End of Tier-based Computing. [Online]. Available:

http://www.gigaspaces.com/WhitePapers

[15] Clustrx. [Online]. Available: http://massivesolutions.co.uk/

clustrx.html

[16] M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc.,

Wallingford, CT, 2004.

[17] Gigaspaces XAP. [Online]. Available: http://www. gigaspaces.com

[18] D. Gelernter and N. Carriero, “Coordination languages and their

significance,” Commun. ACM, vol. 35, no. 2, pp. 96, Feb 1992.

[19] D. Gelernter, “Generative communication in linda,” ACM

Transactions on Programming Languages and Systems, vol. 7, no.

1, pp. 80–112, 1985.

[20] D. Fiedler, K. Walcott, T. Richardson, G. M. Kapfhammer, A.

Amer, and P. K. Chrysanthis, “Towards the measure-ment of tuple

space performance,” ACM SIGMETRICS Performance Evaluation

Review, vol. 33, no. 3, pp. 51–62, 2005.

[21] Riak Homepage. [Online]. Available: http://docs.basho. com/

[22] DeCandia, Giuseppe, et al., "Dynamo: Amazon's highly available

key-value store," ACM SIGOPS Operating Systems Review, vol.

41, no. 6, 2007.

[23] D. Peng and F. Dabek, “Large-scale incremental processing using

distributed transactions and notifications,” in Proc. 9th USENIX

Symposium on Operating Systems Design and Implementation,

2010.

[24] S. Sanfilippo and P. Noordhuis. Redis. [Online]. Available:

http://redis.io

[25] T. Lossen, “Redis – memory as the new disk,” in Proc. NOSQL

Europe Conference, April 20-22 2010.

[26] R. Baldoni and M. Raynal, “Fundamentals of distributed

computing: A practical tour of vector clock systems,” IEEE

Distributed Systems Online, vol. 3, no. 2, pp. 12, 2002.

[27] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,

MPI: The Complete Reference (Vol. 1): Vol- ume 1-The MPI

Core, MIT press, 1998, vol. 1.

[28] Programming clusters just got easier. [Online]. Available:

http://archive.hpcwire.com/hpc/663546.html

[29] S. L. Scott, “Synchronization and communication in the t3e

multiprocessor,” ACM SIGOPS Operating Systems Review, vol. 30,

no. 5, pp. 26–36, 1996.

[30] T. Hoefler, J. M. Squyres, T. Mehlan, F. Mietke, and W. Rehm,

“Implementing a hardware-based barrier in open mpi,”

Proceedings of KiCC, vol. 5, 2006.

[31] K. Gopalan, M. Hines, and J. Wang, “Centralized adap- tive

network memory engine,” U.S. Patent 8,291,034, Oct. 16 2012.

[32] K Gopalan, M Hines, and J Wang, “Distributed adaptive network

memory engine,” U.S. Patent 8,280,976, Oct 2, 2012.

[33] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois,

and D. Petcu, “Depas: A decentralized probabilistic algorithm for

auto-scaling,” Computing, vol. 94, no. 8-10, pp. 701–730, 2012.

[34] G. Mainland, “Why it’s nice to be quoted: Quasiquoting for

haskell,” in Proc. ACM SIGPLAN Workshop on Haskell

Workshop, ser. Haskell ’07. New York, NY, USA: ACM, 2007, pp.

73–82.

[35] D. Leijen and E. Meijer, “Parsec: Direct style monadic parser

combinators for the real world,” 2001.

[36] J. Fritsch and C. Walker, "CMQ-A lightweight, asynchronous

high-performance messaging queue for the cloud," Journal of

Cloud Computing, pp. 1-13, 2012.

[37] G. Wells, “Coordination languages: Back to the future with

linda,” in Proc. Second International Workshop on

Coordination and Adaption Techniques for Software Entities,

2005, pp. 87–98.

[38] R. van der Goot, J. Schaeffer, and G. V. Wilson, “Safer tuple

spaces,” in Coordination Languages and Models, Springer, 1997,

pp. 289–301.

[39] A. Atkinson, “Tupleware: A distributed tuple space for cluster

computing,” in Ninth International Conference on Parallel and

Distributed Computing, Applications and Technologies, 2008, pp.

121–126.

[40] D. Capmbell, “Implementing algorithmic skeletons for generative

communication with linda,” Report- University of York Department

of Computer Science Ycs, 1997.

[41] J. Bergstra and J. W. Klop, “Algebra of communicating

processes,” CWI Monograph Series, vol. 3, pp. 89–138, 1986.

[42] Norstad. A Mapreduce Algorithm for Matrix Multiplication.

[Online]. Available: http://www.norstad. org/matrix-multiply/

[43] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. De- Witt, S.

Madden, and M. Stonebraker, “A comparison of approaches to

large-scale data analysis,” in Proc. ACM SIGMOD

International Conference on Management of Data, ACM, 2009,

pp. 165–178.

[44] S. P. Jones and M. Shields, “Lexically scoped type vari- ables,”

Submitted to ICFP, 2004.

[45] I. Amazon Web Services. High Performance Computing on aws.

[Online]. Available: http://aws.amazon.com/ hpc-applications/

[46] W. Zhang, X. Huang, N. Chen, W. Wang, and H. Zhong, “Paas-

oriented performance modeling for cloud comput-ing,” in Proc.

36th Annual Computer Software and Applications Conference,

2012, pp. 395–404.

[47] T. Clark, “Quantifying the benefits of the rightscale cloud

management platform,” Rightscale, 2010.

[48] R. Ierusalimschy, L. H. De Figueiredo, and W. C. Filho, “Lua-an

extensible extension language,” Software Practice and Experience,

vol. 26, no. 6, pp. 635–652, 1996.

[49] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, et al.,

“Dynamo: Amazon’s highly available key- value store,” in Proc.

Twenty-First ACM SIGOPS Symposium on Operating Systems

Principles, vol. 41, no. 6, 2007, pp. 205–220.

Joerg Fritsch is a Research Director in the

Gartner for Technical Professionals Security

and Risk Management Strategies Team. His

specialties include information security, data

center & cloud security, BIG data (analytics),

cloud computing, PaaS, distributed systems,

messaging and event-driven systems and very

fast networks & servers. He is currently

working towards his Ph.D. degree in computer

science at Cardiff University, UK. His current research interest includes

cloud computing, utility computing and network science.

297

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

http://halvm.org/
http://halvm.org/
http://www.gigaspaces/
http://www.gigaspaces/
http://archive.hpcwire.com/hpc/663546.html
http://archive.hpcwire.com/hpc/663546.html
http://www.norstad/
http://www.norstad/
http://aws.amazon.com/
http://aws.amazon.com/

Coral Walker is a lecturer in the School of

Computer Science and Informatics, Cardiff

University. She holds a Ph.D. and B.Sc. in

computer science, and an M.Sc. in

Computational Mathematics. She has been

involved in a number of research projects

involving program solving environments, Grid

virtualization, and Web services based

workflow engines, and her research interests

include web services, web service based workflow, workflow

virtualization, message passing and cloud computing.

298

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing

