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Abstract— In this paper we introduce a new Platform-as-a-

Service cloud environment that combines the LINDA 

coordination language, an in-memory key-value store, with 

functional programming to facilitate efficient execution of 

tenant plugins and applications. In the implementation a tuple 

space plays a central role in introducing deterministic services 

for basic parallel programming, including message passing, 

persistent infinite message pools and transactions. Redis, a key-

value store, serves as the in-memory tuple space that glues 

together parallel constructs (i.e. skeletons) of formerly 

monolithic business applications to form an elastic distributed 

application. Although functional programming languages have 

adopted new runtime technology to achieve parallel execu- tion, 

which is mostly focused on threads, it rarely offers an obvious 

way to match functions to threads. We find that the LINDA 

tuple space and its coordination model offers a general purpose 

paradigm to tackle synchronisation issues that ties into both 

domains of computing clouds: computation through supporting 

common skeletons and big data (analytics) through serving as 

an in-memory data grid. 
 
Index Terms— 
nation languages, LINDA, threads, multi-tenancy 

 

I. INTRODUCTION 

Corporations service developers and end users are not 

interested in information technology [1]. Their goals are, 

for example, to run a business process that requires 

certain resources (e.g. computation and storage), to use an 

existing application or service, or providing them for 

third parties. With the advent of virtualization technology 

and Infrastructures-as-a-Service (IaaS) corporations 

began to eliminate overcapacity in terms of available 

computing power. Platform-as-a-Service (PaaS) is the 

cloud computing layer that further reduces redundant 

functionality such as the expense for maintaining and 

administering operating system instances. In the PaaS 

model, the maintenance of the cloud computing platform, 

the underlying computing nodes and the operating system 

instances is done by the service provider. However, re- 

garding the units of scale, there is a mismatch between 

the requirements of cloud computing platforms and 

parallel computing languages. 

Current parallel computing languages are dominated 

by threads, a very small unit of scale that commonly has 

no mobility beyond the physical platform where it is 
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started, and lacks crucial features that would enable true 

elasticity. Lee [2] is also skeptical about threads as an 

effective means to support parallelism and argues in 

favour of coordination languages instead. 

Cloud computing platforms on the other hand work 

around this obstacle by focusing on very large units of 

scale such as the virtual machine (VM) or the con- tainer 

(normally consisting of JVM, Rails, or some other 

runtime system) in which the guest code is deployed [3], 

[4]. For example, cloud platforms scale guest code 

through replicating the container and subsequently create 

the illusion of seamless scaling by clustering the replicas 

with a load balancer. Considering that at least one 

instance of every guest application must be running and 

that frequently additional components such as the host 

operating system and the application execution engine 

need to be replicated as well, it becomes clear that 

modern PaaS clouds have a huge footprint and the size of 

the infrastructure is still dictated by the number of clients 

and their running instances rather than by the actual load 

[5]. 

Cwmwl (the Welsh word for “cloud”, pronounced 

“kumul”) is a LINDA-based coordination language that is 

presented here as the basis for a novel PaaS framework 

that provides a scalable platform for business applications 

and supports most of the common skeletons and units of 

scale. Kachele [6] has published eleven requirements of 

typical business applications that should be supported by 

cloud computing platforms but found that “none of the 

current platforms support a majority of these requested 

features”. Table I lists Kachele’s eleven requirements and 

how they are met by a platform based on the LINDA 

model. 

Mirage [7], Erlang on Xen (Ling) [5] and the Haskell 

Lightweight Virtual Machine (HaLVM) [8] show that it 

is possible to convert high-level functional language 

source code into an (exo)kernel that runs directly on the 

XEN hypervisor that is used in most commercial public 

clouds such as Amazon EC2. Hence, it is possible to not 

only shift the responsibility for the PaaS host OS from the 

customer to the provider (who then hides the presence of 

the host OS by wrapping it into features of the PaaS 

framework), but also to completely do away with 

traditional host operating systems in PaaS frameworks.  

Currently all three aforementioned cloud frameworks 

are single threaded that makes them good candidates for 

co- ordination models, and a stable coordination layer 

based on a tuple space could be an ideal basis to glue 
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both OS-less applications and OS-equipped legacy VMs to a hybrid elastic cloud platform. 

TABLE I: ELEVEN REQUIREMENTS OF BUSINESS APPLICATIONS [6] 

Application Requirement Explanation Tuple space 

Application-centric approach Developers only need to focus on core 

application development and functional 

aspects. 

Simple, high level communications 

model. 

Application-independent approach Applications executed on PaaS must not be 

limited to web services. 

Separation of concerns in coordination 

languages is achieved independent of how 

computation is performed. Associative 

memory and generative communication 

are interoperable. 

Elasticity Platform should be elastic and ideally 

preserve application state during scaling. 

Application state is preserved in the 

central tuple store, elasticity depending on 

unit of scale. Tasks and Workers run 

decoupled, in parallel and at virtually any 

scale. 

Virtual addressing Location is irrelevant, customers must be able 

to reach their application from everywhere. 

 

Associative addressing specifies what 

data, what message or what worker is 

requested rather than an address. 

Cloud-independent  

programming-model 

Software should be able to run on both cloud 

computing platforms and local systems. 

Possibility to have a local tuple space. 

Updating and bug fixing, Native support for 

modularity, adaptable design 

On the fly updating to achieve high SLAs, 

preserve application state during updating. 

Uncoupling of agents in space and time. 

No direct communication that could be 

broken, state is pre- served by tuple store. 

Multi tenancy Isolation and confidentiality inherent in the 

platform. 

Multiple security architectures thinkable 

e.g. plugins for tenant code execution in 

Safe Haskell [9], ap- plication execution 

in light weight VMs, Rusello et al. show 

that confidentiality of tuples, data and 

state therein is possible [10]. 

Dynamic placement Platform chooses where exactly to deploy a 

worker, re-balancing in case of changes in 

load. 

 

Consumption based cost tracking   

 

II. RELATED WORK 

To start with, we take a look at the PaaS cloud 

technology and the interactions of this technology with 

coordination languages and tuple spaces before 

summarising the research on the use of tuple spaces in 

large- scale infrastructures, computing clouds and 

functional programming languages. At the end of this 

section we will look at possible units of scale and 

advanced formalisms, including the algebra of 

communicating processes (ACP) or constraint handling 

rules (CHR), that may be used to achieve complex 

coordination in peta-scale and exa-scale cloud computing 

platforms. 

According to Gartner’s technology forecast [11] the 

number of commercial and open source PaaS offerings 

has been growing steadily since the year 2011 and soon 

“all major software vendors will have production offer- 

ings in the PaaS market”. Although PaaS is the fastest 

growing cloud computing market, the current scholarly 

research in this area is relatively limited. The AppScale 

project, presented in Chohan et al. [12], an open source 

version of the Google App Engine (GAE) PaaS frame- 

work [13], is one of the rare examples. Appscale is a 

PaaS framework that aims to scale tier-based Web2.0 

architec- tures that in general consist of a web-tier, an 

application- tier and a data-tier (see Fig. 1). Vaquero [3] 

also looks at tier-based architectures and investigates a 

number of entrance points to dynamically scale 

applications tier by tier. 

  
Fig. 1. Software stack of a conventional PaaS framework. 

The Cwmwl PaaS framework is a flat fabric that 

unifies the traditional data-tier, messaging, and 

computation. A single unified communication protocol is 

used to store data, coordinate computation, and exchange 

information about state. Static (partially hierarchic) 

relationships be- tween web-frontend servers, application 

servers, message buses and database servers are removed 

(see Fig. 2). We share the views of Shalom [14] who 

states that the emulation of tier-based computing in the 
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cloud or in PaaS platforms does not scale effectively 

enough to the cloud scale. A unified PaaS fabric scales 

more predictably than traditional web applications (e.g. a 

LAMP stack) that need a mix of technologies and 

protocols to scale each tier separately. 

The key differences between a conventional PaaS 

framework and the unified Cwmwl PaaS fabric can be 

observed from Fig. 1 and Fig. 2. A conventional PaaS 

framework scales horizontally through replication of the 

runtime containers for applications, while the Cwmwl 

PaaS fabric scales through distribution of the application 

instances. 

  
Fig. 2. Unified cwmwl PaaS fabric. 

  
Fig. 3. Lewis Caroll Diagram showing how web services, clusters and 
HPC intersect with cloud computing (purple). The upper right field 

“Distributed Systems” is the intersection of clusters and HPC. 

Fig. 3 illustrates the relation between cloud comput- 

ing, web services, clusters and high performance 

computing (HPC).  

We believe that the next generation of cloud 

computing platforms will embrace upcoming peta- and 

exa-scale mainstream systems and shift in focus from a 

technology that mainly delivers web services (Fig. 3 

bottom left) to a more abstract service that leverages 

distributed computing to support non-web-service 

applications, or rather common business applications (Fig. 

3 top right). 

Cwmwl is thus developed to exploit distributed 

systems in cloud data centers by leveraging the strengths 

of coordination that we find in commodity cluster 

management tools (e.g. Clustrx [15], parallel Gaussian 

[16]) and commercial space-based PaaS frameworks (e.g. 

Gigaspaces XAP [17]). 

A. Coordination Languages, Tuple Spaces, and Key-

Value Stores 

The term “coordination language” was coined in the 

year 1992 by Gelertner [18] to describe the LINDA 

programming language that he had proposed in the year 

1985 [19]. Since then coordination languages have first 

influenced distributed computing and HPC, and later 

Jini/Apache River and web services. The LINDA coor- 

dination model consists of a tuple space and a library that 

implements four primitives, rd(), in(), out() and eval(), as 

extensions to virtually any (non parallel) programming 

language. The LINDA primitives manipulate and store 

tuples, which are key-value pairs, in the tuple space 

acting as distributed shared memory (DSM). The sender 

publishes a tuple to the DSM and the receiver queries the 

DSM without the need to maintain knowledge from 

where to receive or what process to send to. 

Although the performance and scalability of the tuple 

space is crucial for the usefulness of LINDA-based 

coordination languages, for a long time the real 

performance of tuple spaces (and thus their suitability for 

HPC) remained doubtful. In 2005, Fiedler et al [20] 

presented SETTLE, an “approach for measuring the 

throughput and response time of a tuple space when it 

handles concurrent local space interactions”. 

Key-value stores, noSQL and BIG Data, all of which 

are strongly linked to cloud computing, have increasingly 

gained pace in recent years. Cwmwl suggests a promising 

cloud infrastructure through combining these new 

paradigms with a high performance tuple space, living 

outside the web services world, and obtaining its 

applicability by simply using tuple spaces and LINDA-

based coordination languages. In the Cwmwl 

infrastructure a key-value store is used to serve 

application needs, to store BIG Data and as a tuple space, 

which, if employed wisely, can greatly reduce the 

software stack, complexity and footprint of applications 

in the cloud. The reduction of the software stack, 

complexity and footprint makes Cwmwl a flat PaaS 

fabric that differs from the more common hierarchical or 

tier-based PaaS paradigms. 

Regarding the implementation of key-value stores, two 

seemingly opposing trends have been observed: in- 

memory data grids and distributed key-value stores. In- 

memory data grids, where all data is kept in memory, 

provide fast access to data with low latency and high 

performance. They are frequently used for near real time 

(BIG) Data analytics. In the Lewis Diagram shown in Fig. 

3 in-memory data grids are part of the HPC sector of 

computing clouds. The corresponding commer- cial 

offerings for this market segment are “bare metal clouds” 

that allocate dedicated servers and offerings based on 

hardware-virtualization where one single instance can 
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have more than 200GB RAM. Distributed key-value 

stores that may involve map reducing and additional 

delays through vector clocks before a query is responded 

to. Dabek and Peng [23] introduce the Google 

development called Percolator, which is a combination of 

both types of key-value stores. 

Tuple spaces are a lightweight means of memory 

virtualization and consequently very similar to persistent 

storage memory with the added value that tuple spaces 

can easily scale across the physical boundaries of nodes. 

An in-memory key-value store was chosen as the basis 

for the Cwmwl tuple space in order to make it suitable for 

the implementation of in-memory data grids as well as for 

the virtualization of (application) memory, data storage 

and interprocess communication (IPC) across computer 

or network architectures. The in-memory key-value store 

Redis [24] was chosen for the following reasons: 

 It is very fast and lightweight, which makes it ideal 

for frequent random access with very low latency as 

required by tuple space implementations. The 

expected speed gain compared to a disk based key- 

value store is approximately 1:100000 [25]. 

 It supports persistent tuple spaces (if data and tuples 

are long lived) and preserves state across restarts if 

required. 

 It supports atomic operations. Most key-value stores 

do not support transactions and use, for example, 

vector clock schemes [26] to detect and resolve 

conflicts. 

 It supports a number of data structures (for example 

sets, lists, ordered sets) that can be used to support 

functions such as tuple matching and advanced co- 

ordination (see Section III-A of this document). 

 It supports key-value pair expiry times which are used 

to release expired tuples. 

 It supports persistence. Regarded as a less important 

feature of an in-memory tuple store, in practice, it 

cannot be underestimated as a source for debugging 

information.  

B. Message Passing Interface (MPI) and Barrier / 

Eureka Networks 

MPI [27] provides a message passing infrastructure 

that is, according to HPCWire [28], the de facto standard 

in parallel communications. Different to LINDA (and 

thus to the LINDA-based Cwmwl script language) as a 

higher-level coordination language, MPI is frequently 

seen as a low level message passing paradigm. Although 

there seems little in common between LINDA and MPI, 

in practice, they could very well be put together to 

provide communication paradigms for distributed parallel 

processing. For example, the integration of the MPI- 

based message passing style with coordination logic in 

implementing barrier/eureka networks is a well-known 

practice in HPC [29]. There are also a number of 

hardware solutions to solve coordination issues in barrier 

/ eureka networks [30]. 

A barrier network is a set of (parallel) processes, all of 

which are required to signal a certain event in order 

for the main computation to continue, while a eureka 

network requires at least one of the participating 

processes to signal the desired event before the main 

process can move on. Barrier is supported in the MPI 

3.0 standard (the MPI_barrier primitive) and is also 

implemented in Cwmwl. A commutative example that 

demonstrates a barrier is presented in Section III-B. The 

major difference between the Cwmwl implementation 

and the MPI imple- mentation is that Cwmwl is built on 

a LINDA tuple space (acting similar to shared memory) 

while MPI is not. 

C. Threads: Operating System Level Threads and 

OpenMP 

As already mentioned, threads are not portable and are 

not an efficient mechanism for distributed processing. A 

single thread can be seen as a sequential program with 

shared memory interactions used as an interface to the 

symmetric multiprocessing (SMP) functionalities of 

single computing nodes. Parallel programming languages 

provide relevant and powerful synchronization mecha- 

nisms, such as mutexes and semaphores in a single node 

environment where memory can be easily shared. 

The main reason for the current domination of the 

threading model is that as hardware has advanced rapidly 

over time, the differences in speed between local shared 

memory (as used by the threading model) and shared 

distributed memory has kept growing, thereby making 

local shared memory much faster than any form of 

interaction with remote nodes. 

However, the landscape is changing. Recent patent 

filings concerning (distributed) shared memory [31], [32] 

have been successfully implemented and commercialized. 

With the widespread use of cloud techniques, not only 

inter-node communication but also the migration of 

virtual nodes and workload within a cloud computing 

platform are gaining importance. This leads back to the 

idea of better granularity (smaller computational units, 

single-threading), the realization of which may rely on 

message passing, asynchronous interaction, and, most 

importantly, serving as building blocks, the tuple space 

and its high-level coordination services. It is worth noting 

that, although the LINDA coordination language tackles 

synchronization issues at a much higher level of abstrac- 

tion [28], it is applicable for managing low-level threads 

as well as for inter-node coordination, which makes it a 

convenient candidate in building Cwmwl tuple space 

based coordination services. The outcome is a lightweight 

Cwmwl with finer granularity, and better portability. 

III.  DESIGN AND IMPLEMENTATION 

Cwmwl is a PaaS fabric that consists of 

 Messaging and serialization based on the UDP 

protocol. 

 Secure and elastic workers.  
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 A means to identify and communicate with workers 

and processes. 

Fig. 5 illustrates a high level overview of the Cwmwl 

structure. Cwmwl consists of a central tuple space (TS) 

and several application servers (AS). For a distributed 

application that uses the master-worker skeletons devel- 

opers will need to write a worker process, upload the 

code package to an application server and start it. To 

interact with the worker the developer uses the Cwmwl 

primitives to query the TS for tuples that have been 

published by a worker process. The TS serves as DSM, 

IPC and in- memory data grid, thus collapsing traditional 

multi-tier applications. To scale the distributed 

application more workers must be deployed. This is 

merely a replication and does not require the 

implementation of an application load balancer that 

would represent additional overhead, to make use of the 

added computation power. The TS and the AS nodes are 

instances of guest virtual machines in commercial clouds. 

Cwmwl script is a means of coordi- nating and imposing 

constraints on a large pool of workers that, at large scale 

with hundreds or thousands of worker instances, will 

otherwise quickly become unmanageable. Whilst, for 

example, in commodity cluster management tools the 

coordinating middleware and the executed ap- plication 

are separate layers of software, Cwmwl script is part of 

the distributed application itself (see also Section III-C of 

this paper). Fig. 6 depicts a UML deployment diagram of 

the Cwmwl fabric. The upper part of the UML diagram 

illustrates a developer accessing the platform to upload 

the application (code) to the application database 

(AppDB). An application controller (AppController) is in 

charge of deploying the users’ applications from the 

AppDB to the available guest virtual machines. The 

lower part of the UML diagram illustrates a client 

accessing the deployed application through an 

intermediary web server (here lighttpd) using HTTP GET 

requests to the tuple store as a replacement for the 

LINDA rd() primitive. 

Cwmwl is written in Haskell, a functional 

programming language where the LINDA primitives are 

embedded into Haskell as Domain Specific programming 

Language (EDSL). The fact that Haskell allows EDSLs to 

use nearly arbitrary syntax via Quasi Quotes [34] and via 

the Haskell parsing library Parsec [35] makes it a good 

choice for embedding Cwmwl primitives. The reason that 

Haskell is used is that as a functional programming 

language it is inherently parallel, supporting 

asynchronous operations, and its code base is easy to 

maintain and test. Cwmwl is the first attempt to build a 

tuple space based cloud infrastructure using Haskell. 

Haskell has also been used to develop [36] a UDP-based 

message queue that is also part of the Cwmwl framework. 

A. Tuples and Templates 

The syntax of the LINDA primitives that are used in 

Cwmwl has been kept similar to the original formulation 

of tuple spaces. Although the host language Haskell is 

strongly typed, Cwmwl does not use Haskell data types 

and tuple matching is purely syntactic. As proposed by 

Wells [37], data-type conversions are handled by Cwmwl 

to create a truly heterogenous system that is not limited to 

any (type of) programming language. 

A limited number of types (that could easily be ex- 

tended) are currently inferred by the Cwmwl parser. The 

abstract syntax tree (AST) of the Cwmwl interpreter is 

built for the types string, integer and some other types 

(identifier, query, operation) that implement the domain 

abstractions that are required to model the LINDA 

functionalities. Strong typing can be achieved by 

segmenting the tuple space where every segment is 

created to store only a specific type [38]. A further option 

to preserve types is encapsulation, for example using 

JSON or ByteString. 

Tuples stored in the key-value store (or in any tuple 

space) are accessed using a method that is called asso- 

ciative lookup, which matches tuples based on templates 

(also called anti-tuple). A template is similar to a tuple, 

except some of its fields may be replaced by a NULL 

value for wildcard matching. A template is said to match 

a tuple provided the following two conditions are met 

[39]: 

 The template is the same length as the tuple. 

 Any values specified in the template match the tuple’s 

values in the corresponding fields. There are two 

kinds of matches between a template value and a tuple 

value: exact match where the two values are exactly 

the same, or wildcard match where a NULL template 

value matches any tuple value. 

For example, the template (isFib, NULL) will match 

the tuples (isFib, 20365011074) and (isFib, 11021972), 

but not the tuple (isFib, 20365011074, ‘‘true’’). The 

example shows that a given template can match several 

tuples so the matching between template and tuple is not 

always unique. In Cwmwl, the interpreter uses the tuple 

template as a key to the Redis set data type, which is an 

unordered collection of strings. Since the interpreter 

cannot forecast if the key to a new key-value pair will 

always represent a unique mapping or if additional key-

value pairs that reduce to the same key will follow, all 

new entries must start out as a Redis set with a single 

member. Tuples can be added to a set or removed from a 

set in O(1) constant time. Sorted sets are available and 

could for example be used to queue tuples that represent 

tasks or workers using a FIFO strategy. Identical work 

tasks need to be saved only once, and can be executed 

several times, either in parallel or sequentially. 

B. Units of Scale 

A tuple space matches the master-worker scheme quite 

naturally. Campbell [40] argues that the LINDA model is 

particularly natural for implementing some cases, such as 

task queues and recursive partitions. As for other skeleton 

he states that the segmentation of the tuple store (a 

technique that is frequently used in commercial tuple 

space implementations) and a degree of coordination 
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would be beneficial to harness the evolving complexity. 

For example, a sequential (pipelined) execution of 

processes with data flowing between them, featuring 

systolic access patterns (see Fig. 4), if implemented using 

a tuple space, would have each stage consuming the tuple 

from the previous stage and produces the tuple for the 

next stage. This is inefficient, considering that in order 

for tuples to pass between stages, the developer would 

have to index, track, and modify the tuples at each stage. 

An example of such tuple could be out (myWorker, 

prev_state, next_state, data). As a possible solution 

Campbell proposes to segment the tuple space and let the 

segments represent queues similar to pub/sub channels. 

For example, a sequential process may consist of the 

stages abcd where stage a produces a tuple in its result 

tuple space (segment) for stage b. Stage b reads the next 

tuple from there and writes its output to its own result 

tuple space. The result tuple space segments are 

comparable to pub/sub channels and reduce the amount 

of state and control information that needs to be passed 

around with every tuple, thus increasing the overall 

efficiency. 

 
Fig. 4. Tuple space used with an algorithmic skeleton that requires 
sequential execution (pipelining) and results in a systolic access pattern 

to the tuple space. 

 

Fig. 5. High level architecture of the Cwmwl PaaS fabric. Workers can consist of any unit of scale: e.g. plugins, functions. 

 

Fig. 6.UML diagram of the Cwmwl PaaS fabric. 

291

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing



In Cwmwl, three operators are available to express 

sequences and parallelism (see Table II for a description 

of the Cwmwl script operators) enabling the interpreter to 

automatically maintain the computation states and thus 

abstracting the need to manually maintain state and 

control information away from the developer. Cwmwl 

operators are aligned with the Algebra of Communication 

Processes (ACP) [41], among which there is a strong 

binding sequence operator ; that is used to express the 

sequential execution of processes, a non-binding 

sequence operator & that is used for barrier execution of 

processes and an exclusive choice operator | that performs 

eureka execution. Furthermore Cwmwl script adopts the 

axioms and the process algebra as defined by the ACP. 

Equation (1) reprints the ACP axioms using the Cwmwl 

script operators in the notation. ACP is defined by more 

axioms that are currently not relevant to Cwmwl and thus 

not reprinted in this paper. 

TABLE II:   CWMWL SCRIPT OPERATORS 

Operator Description 

; strongly binding sequence   

& 
non-binding sequence (commutative), 

and ‘‘parallelism’’, barrier network 
  

| 
exclusive choice, succeeds if any of 

the operands does so, heureka network 
  

    

     

   a&b = b&a 

 (a&b)&c = a&(b&c)
 

  
     a&a = a    (1)

 
   (a&b); c = a;

 
c&b; c 

    (a; b); c = a;
 
(b; c)

 

multiple execution instances that must be executed within 

the constraints that are specified by the Cwmwl operators 

and the axioms of the ACP. The subset of the ACP that is 

illustrated in Table  

An application that is run in Cwmwl may involve 

multiple execution instances that must be executed within 

the constraints that are specified by the Cwmwl operators 

and the axioms of the ACP. The subset of the ACP that is 

illustrated in Table II and Equation 1 is implemented in 

the Cwmwl interpreter through storing the running state 

of each sequential instance in a tuple template rather than 

in the tuple itself. A key is used for tracking a particular 

state and has the form of (myWorker, NULL):$id where 

$id is an integer that represents the current state of the 

instance (myWorker). It can be incremented and queried 

to make sure communication take place at the right state. 

Redis commands are used in manipulating, incrementing 

and tracking state keys. 

A commutative (non-binding) sequencing operator & 

is implemented for all computations where there is a 

choice as to what operand gets evaluated first. The 

execution results of the instances involved are stored in 

the Redis set datatype. For commutative sequencing 

which task is to end when all instances have signaled a 

certain state, the Redis scard query is used to return the 

number of elements in the set that contains the results of 

the computations. Each instance must succeed (i.e., store 

a result in the set) to let the parallel commutative 

composition succeed. The number of elements in the set 

determines whether this is the case or not. This can be 

used for a barrier operation by requiring (ready) signals 

from all the involved processes before the next 

processing stage. In addition to the two sequencing 

operators Cwmwl supports a choice operator | that 

succeeds if any of the operands succeeds. 

C. How to use the Cwmwl EDSL 

Cwmwl primitives are embedded into Haskell as a Do- 

main Specific Programming Language (DSL) that 

consists of a parser, an abstract syntax tree, algebraic 

operators, and a small interpreter. Three LINDA 

primitives are included in the Cwmwl primitives: 

 Rd() retrieves a tuple that matches the given tem- 

plate 

 In() retrieves a tuple that matches the given tem- 

plate and permanently removes the retrieved tuple 

from the tuple space 

 Out() stores a tuple into a tuple space 

 

The LINDA eval() primitive, that spawns a new pro- 

cess, is currently not implemented in Cwmwl. In contrast 

to some LINDA implementations, such as C-Linda and 

JavaSpaces that support both blocking and non-blocking 

versions of rd() and in(), Cwmwl supports only non-

blocking primitives. A blocking op- eration requires a 

worker to wait until its desired data is ready in the tuple 

store before its next stage of execution, contrary to the 

notion of uncoupling, and to a certain extent making 

scaling in space and time difficult. In the case that a 

blocking operation is unavoidable, it can be implemented 

through the blocking read primitive LPOP supported by 

the Redis list data type. Program 1 and 2 demonstrate 

how a Cwmwl script is executed. runCWMWL [] is the 
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Cwmwl interpreter function which has a Cwmwl script as 

its argument. It returns an instance of the Either monad 

(Either String) containing either an error or a result. In 

Cwmwl script, – is used for commenting, which is the 

same as in Haskell. 

Program 1 shows the representation of a pipelined 

algorithm (illustrated in Fig. 4) using the strongly binding 

Cwmwl sequencing operator; that abstracts the 

underlying systolic access pattern away from the devel- 

oper and leads to code with better expressivity. Program 

2 shows the use of the non-binding Cwmwl sequencing 

operator & where both operands need to succeed, similar 

to a barrier network. 

 

Cwmwl formalisms that are based on the ACP axioms 

increase the expressivity in the sense that, compared to 

plain vanilla LINDA, the code can better represent the 

state constraints of sequential, concurrent or (even) 

parallel skeletons, as often required in peta-scale clusters. 

Furthermore, ACP-based Cwmwl formalisms could make 

it possible to revive interest in structured programming 

by partially harnessing the non-determinism that is 

caused by the complete uncoupling between processes 

and the tuple store and tuples that are widely spread in 

time and space. 

IV.  MAP REDUCE: A DATA-ORIENTED EXAMPLE 

Programs 3 and 4 give a data-oriented example of how 

the Cwmwl TS can be used to support distributed 

computations by providing DSM and a channel for 

interprocess communication. The programs implement a 

data intensive map-reduce algorithm for matrix 

multiplication [42] that partitions Matrix A and Matrix B 

into sub-matrices, and then performs the multiplications 

in parallel. Deploying this small distributed application 

involves the creation of the Redis Tuple Space and 

corresponding computing nodes - a mapper node and 

multiple reducer nodes. 

 A mapper node loads two sparse matrices from a csv file 

into the Cwmwl tuple space. The reducer nodes carry out 

the multiplication. Currently AWS EC2 (and many other 

large commercial clouds) does not support IP multicast, 

thus the tuple space must be registered to the computing 

nodes by means of a configuration file. 
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Depending on the available network bandwidth and 

speed, the performance of the mapper may benefit from 

the fact that loading data into key-value stores is much 

faster than casting data into a relational database [43]. 

Since the Cwmwl TS is based on a key-value store, the 

tuple (template) must contain all information required to 

address the matrices and their cells. In this example, we 

work with tuples of the format (a:i:k, value), in which a, i, 

k denote the matrix, the row, and the column, 

respectively. 

The reducer function multiplies, depending on the 

configuration of the indices, one or more sub-matrices 

and sums the results. It would be possible to introduce 

an intermediary mapper by, for example, splitting the 

multiplication from the addition and have the reducer sum 

up the results only. 

There are two problems involved in extending Haskell 

with the Cwmwl tuple space. Firstly, access to a tuple 

space involves network communication, and any 

communication over a network is placed in Haskell in the 

IO Monad, which makes all its subsequent computation 

(such as the multiplications in our example) impure. This 

is a problem unique to Haskell, while in some other 

functional languages, such as Erlang, communications 

are untyped. Secondly, Haskell uses a static type system 

which requires the two processes that use a tuple space 

as DSM to use the same data type. Cwmwl can work 

around this problem using JSON Frames (see also section 

III-A of this paper) or Scoped Type Variables [44]. 

The map reduce example shows that Cwmwl can easily 

connect multiple processes that reside on different physi- 

cal nodes and provides a means for distributed programs 

to access data in a way similar to accessing data locally. 

Using the Cwmwl TS, interprocess communication and 

DSM is abstracted away from the developer. Accessing 

data, memory or inter-process communication are three 

distinct tasks in most state-of-the-art distributed 

applications that each require distinct efforts to implement, 

but in Cwmwl they are merged into one simple task - 

accessing tuples in Cwmwl TS. 

V.  PERFORMANCE EVALUATION 

The SETTLE [20] framework is used to assess the 

performance of the Cwmwl tuple space. SETTLE 

assesses tuple space performance as execution time and 

throughput as a function of: 

 Number of (concurrent) clients. 

 LINDA operation: out() or in(). 

 Payload size of tuple (through changing the embed-

ded data type). 

 “Age” of the tuple space defined as the number of 

entries in the tuple space at the start of the test. 

A. Experimental Design 

The main goal of the experimental design was to 

approximate the environment as seen by real applications 

and to assess the impact of bandwidth and latency on the 

measured mean performance. 

All of the experiments were conducted in the Amazon 

EC2 cloud. The central tuple store used a Cluster 

Compute instance so that throughput would not be 

limited by the available network bandwidth, application 

memory or computing capacity. Since Redis is single 

threaded and is best deployed on bare metal hardware 

without hypervisor [24], an AWS EC2 Cluster Compute 

instance is the best available match for these 

requirements. AWS EC2 Cluster Compute instances are 

based on Hardware Virtual Machines (HVM) where the 

guest VM runs as if it were on a native hardware platform 

[45]. 

AWS EC2 Cluster Compute instances have 60.5GB 

RAM, 8 physical cores and 10-Gigabit Ethernet con- 

nectivity. The clients C1 ...C20 were on separate 

instances of the type M1 Large. M1 Large instances have 

7.5GB RAM, 2 virtual cores (4 EC2 compute units) and 

high I/O performance with unspecified network speed. 

Before the benchmarks were executed, the systems 

were modified to reuse and recycle TCP connections. 

Additionally the default range for TCP source ports was 

changed to the maximum port range: 1024 - 65535 (see 

Program 5). 

 

Two scenarios have been tested in our benchmarks: 

one with a simple tuple structure with changing payload, 

and the other with a large set of different tuple structures. 

The first scenario involves a simple data tuple 

(“someData”, PAYLOAD) with payload sizes ranging 

from three bytes to 12KB. Regardless of the payload size, 

all tuples map to the same template (“someData”, NULL) 

which is used as the key in the Redis key- value store and 

consequently are stored in the same Redis set. Such a 

usage pattern eventually reduces to the Redis SADD 

command that works in O(N) time where N is the number 

of tuples to be added to the set [24]. However, in our test 

only one tuple is added at a time, and thus the time 

complexity for each addition is O(1). 

In the second scenario, a series of tuples with different 

structures of the format (“somedata00001”, PAYLOAD) 

are involved. “somedata00001” ranges from 

“somedata00001” to ‘‘somedata10000”, for the reason 

that the tuple space must easily fit into the memory of an 

EC2 Cluster Compute instance, even with the largest 

tuple payload. This usage pattern eventually reduces to 

the creation of a new Redis set with a single member. 
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To further simulate the environment as seen by real 

applications, prior to testing in each of the scenarios, the 

Cwmwl tuple space was aged with one million tuples 

with an automatically generated payload of the same 

payload size. 

B. Tuple Space Performance 

The initial state of the tuple space, which was 

simulated by tuple space ageing, had no impact on the 

performance results. The results confirm that both 

operations, inserting a new key-value pair and adding an 

additional value to an existing set, work in O (1) time. Fig. 

7 shows a nearly logarithmic relation of the tuple work 

load size (measured in bytes) on the tuple space 

throughput (measured in operations per second) for 5, 10 

and 15 concurrent clients. The tuple space throughput 

drops logarithmically with the workload size.  

 
Fig. 7. Impact of workload size on throughput for 5, 10 and 15 clients. 

 

Fig. 8. Benchmark execution time for up to 15 clients. 

The standard deviation of the measurements for the 

benchmark with 20 concurrent clients were very high (see 

also Fig. 10) and this benchmark is thus not included in 

this diagram. 

Fig. 8 shows that the gross benchmark execution time 

for up to 15 clients is (within the standard deviation) 

constant and proportional to the work load size of the 

tuple. Fig. 9 shows that within the boundaries of our 

experimental design the tuple space throughput keeps 

increasing with the number of concurrent clients exe-

cuting the same benchmark. Obviously the performance 

limits of our tuple space implementation could not be 

reached within our experimental design. On the other 

hand the large standard deviations (Fig. 10) of the 

benchmarks with 20 concurrent clients and the “knee” at 

15 concurrent clients in Fig. 9 may imply that there is a 

performance boundary between 15 and 20 concurrent 

clients. Interestingly this is inline with Fiedler [20] who 

also finds a “knee” around 15 concurrent clients 

executing the same benchmark on JavaSpaces. 

 

Fig. 9. Impact of the number of clients on throughput for 3B to 12KB. 

 

Fig. 10. Impact of the number of clients on throughput for 3B to 12KB. 

The Cwmwl rd() primitive produced a constant 

benchmark execution time of around 6.5s that was not 

influenced by the size of the payload or by the number of 

concurrent clients. However, we had the impression that 

the rd() was altogether less scalable and locked the 

system network queues significantly longer than the out () 

primitive that in turn leads to undesirable exhaustions of 

the connection pools. 

The overall results were very consistent and 

predictable giving a good basis to understand the impact 

of the Cwmwl tuple space on application performance 

and scalability. The repeatability of the benchmarks for 

up to 15 concurrent clients confirms the validity of our 

findings within the expressed range. Spot checks show 
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that the ab- solute values (operations / second) are 

approximately half the performance of the redis-

benchmark tool that is included in a Redis installation. 

The difference could be caused by differences in 

serialization, sources and exploitation of randomness to 

generate the tuple payloads or the Redis bindings for 

Haskell. 

The gross throughput with 15 clients was around 1.8 

Gbps, slightly higher than the nominal throughput of 

SATA 1.0 (1.5Gbps). 

It is natural to question the performance advantages of 

the Cwmwl Paas fabric over the current PaaS frame-

works. However, most of the current PaaS frameworks 

are based on a complex software stack and their 

performance cannot be measured by computation speed 

or IO alone. According to Zhang et al. [46], the 

performance of current PaaS frameworks may be 

assessed tier by tier. In practice, PaaS performance is 

often discussed qualitatively in terms of the time and 

effort required to deploy a new (web) application or to do 

a major application upgrade. Also, it is often discussed to 

what extent, and with what effort, it is possible to 

elastically right-size (scale up and down) a deployed 

application. Frequently this is supported by additional 

middleware that must be subscribed (e.g. Rightscale [47]) 

and not by the cloud computing platform itself. Map 

Reduce is frequently sold outside PaaS frameworks as a 

separate capability that must be configured using work 

flows and storage, showing again the lack of 

harmonization of computation, data, applications and web 

applications in computing clouds. 

Cwmwl is intended to rethink PaaS design and to 

merge brute replication and re-clustering (which is the 

current methodology to implement PaaS) with distributed 

computing to improve efficiency and cost. Our foremost 

design goal is simplicity by achieving a novel unified 

platform rather than virtualizing and replicating the im-

plementation of a load balanced web application that has 

existed since the end of the 1990s. The performance 

figures of the Cwmwl TS that is accessed with the 

Cwmwl primitives support our claim that this can be done. 

After all, achieving a performance close to SATA 1.0 is a 

good start. 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper has demonstrated domain abstractions to 

achieve a functional tuple space implementation based on 

an in-memory key-value store. We have introduced the 

EDSL Cwmwl script that virtualizes (application) 

memory, data storage and IPC, and detaches them from 

physical servers and operating systems. We have 

increased the expressive power of coordination languages 

by the use of ACP and demonstrated that undesirable 

tuple space access patterns, resulting for example from 

sequential algorithms, can be abstracted away from the 

resulting coordination language. 

We will further develop Cwmwl to include the eval() 

primitive and the implementation will be based on Lua 

[48], a fast and lightweight functional script language, 

which is already built into Redis. Lua is very popular as a 

scripting language in massive multiplayer online games 

(MMOGs), which share many requirements similar to 

that of a computing cloud. Although Lua is dynamically 

typed, mechanisms are available that allow data exchange 

between Lua and Haskell, thereby supporting invocations 

between them. 

In our current implementation, Cwmwl uses a cen-

tralized tuple space that on the one hand creates the 

problem of a single point of failure, but on the other hand 

makes the Cwmwl tuple space more capable in terms of 

migration than a distributed implementation. The 

elasticity of the Cwmwl tuple space itself is left up to the 

capabilities of the Redis key-value store. Unlike, for 

example RIAK, [21] or the Amazon Dynamo keyvalue 

store [49], the distributable version of Redis (named 

“Redis cluster”) is currently under development, and 

distribution over multiple instances (e.g. via sharding) is 

left up to the developer. In an industrial-grade PaaS fabric, 

the question of in what use cases the benefits of a portable 

tuple store outweigh the benefits of a distributed tuple 

store will need to be investigated. 

We also intend to investigate the idea of using Cwmwl 

as the basis of dynamic memory virtualization where an 

instance of the distributed tuple space is installed on 

distributed host nodes, which dynamically claims surplus 

local memory and makes it globally available. 
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