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Abstract—In this paper, a precoding scheme for multiple 

antenna systems with space-time coding over correlated Ricean 

channels is proposed. Based on the channel mean and receive-

side spatial correlation, the proposed scheme obtains the 

solution of the power allocation and beamforming matrix of the 

precoder iteratively. Unlike most of existing precoder designs in 

literatures that have expensive computations and cannot 

guarantee the design algorithms to converge, the convergence of 

the proposed scheme is guaranteed. By exploiting the special 

structure of beamforming matrix, a steepest descent method on 

the Riemannian manifold is proposed for the optimization of 

beamforming matrix. Simulation results show that the proposed 

optimal scheme not only achieves superior bit error rate (BER) 

performance to those of the existing ones, but also provides a 

guaranteed-convergent solution under different channel 

conditions.  

 

Index Terms—correlated Ricean channel, transmit precoding, 

Riemannian manifold, steepest descent method 

 

 INTRODUCTION I.

Multiple input multiple output (MIMO) system, which 

deploys multiple antenna elements at each link-end, can 

significantly improve cell coverage [1] and system 

capacity [2] compared with conventional single antenna 

system. Earlier works on MIMO used space-time block 

codes (STBC) to exploit spatial diversity [3]. Recently, 

by exploiting perfect or partial channel state information 

at transmitter (CSIT), linear precoding with the statistical 

channel mean and covariance matrix as feedback can 

improve the channel capacity and bit error rate (BER) 

performance [4]–[9]. 

Different from the precoder design over Rayleigh 

fading channels [4], [5], the optimal beamforming 

directions cannot be easily determined only based on the 

knowledge of transmit-side correlation in a light-of-sight 

(LOS) environment. In [6], a simplified scheme is 

proposed to reduce the computational complexity with a 

cost of performance degradation. A precoder design with 

structured mean component is proposed using angular 

domain CSIT in [8]. However, only the asymptotical 

solution was derived. An optimal precoding scheme 

proposed in [9] can be applied for MIMO with a LOS 

component. Like most of design methods, it uses an 

iterative procedure to obtain the precoding matrix directly. 
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However, the iterative method is implemented with high 

computational complexity and its convergence is not 

guaranteed. 

The optimization with respect to (w.r.t.) the 

beamforming unitary matrix can be regarded as a 

problem under unitary matrix constraint. Most of 

optimization methods with the unitary matrix constraint 

are developed on the traditional Euclidean space by using 

iterative algorithms [10]. Since the unitary matrices are 

algebraically closed under the multiplication operation 

rather than under addition, the unitary property is lost 

after each iteration by using an iterative method based on 

an additive update. Even though the optimization moves 

along a straight line pointing in the right direction, 

departure from the constrained manifold occurs in each 

step. Actually, optimizing such an objective function on a 

manifold [11]–[13], is often considered as a problem of 

Riemannian geometry endowed with a Riemannian 

metric [14]. The steepest descent method [11] and the 

conjugate gradient method [12] have been developed to 

optimize the real-valued cost function on the Riemannian 

manifold of unitary matrices. 

In this paper, for a downlink cellular MIMO system 

over a Ricean fading channel, we consider to use both the 

channel mean and receive-side spatial correlation as CSIT 

for the beamforming design by minimizing a pairwise 

error probability (PEP). A steepest descent method on the 

Riemannian manifold is proposed under unitary matrix 

constraint. Based on the proposed steepest descent 

method, the unitary matrix of the design is optimized. 

Simulation results show that the BER performance of 

proposed precoder design outperforms the existing 

schemes under different channel conditions. Moreover, it 

is guaranteed to converge to the local optimal solution. 

 SYSTEM MODEL II.

We consider a downlink MIMO system with    

transmit antenna in the base station (BS), while mobile 

subscriber (MS) have Nr co-located antennas regarded as 

receiver. A space time encoder maps data symbols into 

STBC codewords, then a linear precoding matrix, 

        , is applied to the codeword before 

transmission. In a quasi-static and flat fading channel, the 

received signal can be expressed as 

  √  
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(1)                              



where   of size      is the block codeword with 

codeword length   in the orthogonal STBC (OSTBC) 

codebook, n is the      noise matrix with i.i.d. entries 

modelled as        ,   is the total transmit power to 

receive noise ratio, and   is the        MIMO channel 

matrix. 

Without loss of generality, the flat fading channel   
can be regarded as a sum of two components, i.e., the 

deterministic LOS component and the stochastic multi-

path component, respectively. The channel matrix can be 

expressed as [15] 

  √
 

   
   √

 

   
  

 
     

 
  

where   is the Ricean K-factor,    is a complex 

Gaussian random matrix with i.i.d. entries of zero-mean 

and unit variance.    is the deterministic normalized 

channel mean with        
      . The columns of    

can be structured as in [15]. But this paper does not 

consider any structure as in [9] in order to generalize the 

channel mean.    and    denote the receive and transmit 

spatial correlation matrices, respectively. In this paper, 

we assume that transmit antennas are independent due to 

large antenna spacing in BS. Meanwhile, all the transmit 

antennas experience the same spatial correlation at MS. 

Thus       
as in [5]. Let  ̅  √    ⁄    and 

 ̃  √    ⁄   
   

  . The channel is said to be 

Rayleigh fading if  ̅        
  and Ricean fading if 

 ̅        
. Based on the channel model in (2),   

   ( ̃ )  is a circularly symmetric Gaussian random 

vector with mean  ̅       ̅   and covariance matrix 

   {   ( ̃ )    ( ̃ )}               

 
 

   
      

where [·]H denotes the Hermitian transpose and vec(·) 

denotes the columnwise vectorization operator. As a 

result, the probability density function (pdf) of   can be 

expressed as 

     
 

           
   ( (   ̅)

 
   (   ̅))   

 OPTIMAL PRECODER DESIGN PROBLEM III.

FORMULATION 

In this section, we use PEP as design criterion to 

formulate the optimization problem. Assuming the 

receiver knows the CSI perfectly, maximum likelihood 

(ML) detection can be used to perform OSTBC decoding. 

With ML detection and applying the Chernoff bound of 

the PEP, the probability that a transmitted codeword   is 

incorrectly decoded as  ̂ can be tightly upper-bounded by 

 (   ̂  )     ( 
         

 

 
 

where   is the factor for the minimum codeword distance 

matrix, whose value is depending on the modulation 

format. The PEP bound conditioned on  , denoted by 

f(   ), can be expressed in vectorized form as: 

          ( 
  

 
  {      })              

  (                   

where       ⁄  and 

        

By taking the expectation of        over the pdf of   
in (5), an upper bound of the average PEP is obtained as 

[8] 

     
   (  ̅              ̅)

   (     
    )

 

where det(·) denotes the matrix determinant. We take 

the average PEP bound as the performance criterion to 

design the precoder. Applying the eigenvalue 

decomposition (EVD), the matrix     and receive 

correlation matrix can be decomposed as 

          
                                    

 

   
         

                                 

where    [         
]  and    [         

] 

denote the matrices of eigenvectors, and    

    [         
] and        [         

] denote the 

diagonal matrices of eigenvalues. Without loss of 

generality, the eigenvalues  are sorted in a decreasing 

order. Using (4) and (9), we have 

  (      
)(      

)(  
     

)           

  (   
   )(   

   )(   
   

  

and 

(   
   

 ) (   
   )                               

(  
     

) (      
 

Substituting (13) - (16) into (10), the average PEP can be 

expressed as  

     
   (  ̅         

     
    

   ̅)

   (     
       )

 

where          
    

          
 . Taking 

logarithm of f( ) and deleting the terms independent of  , 

the objective function with power constraint can be 

formulated as 

              ∑∑   (         )

  

   

  

   

 

    ∑   

  

   

       

where 

      ̅         
     

    
   ̅             
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(2)

(3)

(4)

(5)

(6))     

(7)

)    (8)

(9)

(10)

(11)

(12)

(13)

)      

)                     

(15)

(16)

(14)

(17)

(18)                               

(19)



Applying the identity vec(   ) = (    )vec( ) into 

(19), we get 

             
  ̅   

            
  ̅   

        

          ∑  
    ̃   

   

  

   

                                            

  ∑   {  
       ̃ }

  
    

where     ̅    
 , and         

  is a rank one 

Hermitian matrix. 

 ̃      {(    
 

    

)
  

 (    
 

     

)

  

 

for j = 1; · · · ,   . It is easy to verify that     
    

for     and j, k = 1; · · ·,    Thus    · · ·    
 

are nonorthogonal columns. 

The optimization in (18) is a highly nonlinear problem. 

The design solution could be obtained by nonlinear 

programming but with poor convergence and high 

computational complexity [9]. In the following, an 

efficient precoding scheme is proposed to obtain the 

power allocation and beamforming unitary matrix, 

iteratively. 

 RIEMANNIAN OPTIMIZATION METHOD IV.

In this section, we will develop a steepest descent 

method on the Riemannian manifold to optimize the 

beamforming directions of the problem (18) under the 

unitary matrix constraint. Most of optimization methods 

with unitary matrix constraint operate on the Euclidean 

space by using the Gram-Schmidt process to restore the 

unitary property of the matrix [10]. Actually, all the n-th 

order non-singular unitary matrices,       , form the 

manifold of unitary matrices     , which is a real 

differentiable manifold [14]. Thus, it motivates us to 

develop a steepest descent method based on the 

Riemannian geometry. Firstly, an overview of the 

Riemannian optimization method under the unitary 

matrix constraint is presented. 

 Overview of the Riemannian Optimization Method on A.

U(n) 

The Riemannian optimization methods are proposed to 

solve optimization problem posed on a differentiable 

manifold [14]. Assume a real-valued objective function   

of   defined on     , i.e.,         . The goal is to 

maximize (minimize) the function        under the 

constraint that           . 

The tangent space        of      is an   -

dimensional real vector space attached to every point 

      . At the group identity   , the tangent space is 

the real Lie algebra of skew-Hermitian matrix 

            {             }  

Since the differential of the right translation is an 

isomorphism, the tangent space at         may be 

identified with the matrix space        {  

              }.  
Let   and   be two tangent vectors. Different from 

the Euclidean metric, the inner product given by [11], [12] 

〈   〉  
 

 
  {  {   }}            

induces the bi-invariant Riemannian metric (structure) on 

    , where   { } is the real part of a complex number. 

Once      is equipped with the Riemannian metric 

(25), the steepest descent direction of   at a given  
     ), denoted by         , can be determined. 

To satisfy the unitary matrix constraint during the 

optimization, the search should be proceeded along the 

manifold surface      rather than along a straight line. 

The curve emanating from the identity    with the tangent 

vector   is characterized by 

                     

where t is a step size and controls the algorithm 

convergence speed. Low computational complexity is 

required to implement the matrix exponential function 

whose argument,  , is a skew-Hermitian matrix and 

translated from  . 

We choose to follow a surface motion for the steepest 

descent method due to the desirable property of      that 

Riemannian metric (25). Thus, a curve emanating from   
can be expressed as 

                    

where       can be regarded as the updated unitary 

matrix. The general procedure of Riemannian 

optimization can be applied to the steepest descent 

method [11], conjugate gradient method [12]. 

 Unitary matrix design on the Riemannian Manifold B.

In this subsection, we will derive a local optimal solution 

for the unitary matrix    in (18). The optimized    can 

be obtained by maximizing      in (22) which is 

equivalent to maximizing      of (18) because    is only 

related to     . With the assumption of fixed power 

allocation,      in (22) can be regarded as a function of 

   . Meanwhile, a unitary matrix constraint is implicitly 

included in (22), i.e.,      
    

       
. Based on 

(22), the optimization problem w.r.t.    under unitary 

matrix constraint is given by 

     
        {  

       ̃ }                        

          
    

       
 

Since (28) is a unitary matrix constrained problem, we 

can derive optimal    employing the steepest descent 

method on the manifold of unitary matrices       

described in Section IV-A. The corresponding 

Riemannian optimization procedure to derive optimal    

is presented as follows 
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(23)} 

(22)

(21)

(20)

(24)

(25)

(26)

(27)

the right multiplication is an isometry with respect to the 

                    

(28)



1) Initialization:    , and   
   

    
 

2) Compute the gradient of       w.r.t.    on the 

Euclidean space at   
   

 : 

   
     

   
 

   
  ∑     

   
 ̃ 

  

   

 

3) Compute the gradient direction on       with the 

Riemannian metric (25): 

       
    

   
   

  
  

4) Determine    emanating from identity    
on the 

Riemannian manifold:             with t > 0. Since 

   is a skew-Hermitian matrix,    will be unitary matrix. 

5) Update the curve emanating from   
   

   
     

 

    
   

 , k = k + 1. Iterate the step 2-5 until convergence. 

Actually,    can be regarded as a rotation matrix 

without changing the unitary property. 

 Procedure of Precoding Design C.

Once    is determined based on the proposed steepest 

descent method on the Riemannian manifold, by 

substituting the obtained    into (19),      becomes a 

problem only related to the power allocation    

[         
]
 

. For easy derivation,      in (19) is 

rewritten as 

      ∑∑(    
 

    

)
  

   
     

    

  

   

  

   

 

Substituting (31) into (18), the optimization problem is 

reduced to
 

          ∑∑{
       

         

  

   

  

   

    (         )}

 

    ∑   

  

   

       

where        
     

      . The second order 

derivative 

of       w.r.t.     is 

       

   
   ∑{

     
    

(         )
  

     
 

(         )
 

  

   

 

The second order derivative is always negative 

implying that       is a concave function of    . Since 

the equality constraint is linear, (32) is a convex problem 

w.r.t.     . Thus, we can always find a valid solution  

{   } using well-established interior-point methods [16]. 

Actually, we can employ the low-complexity iterative 

method described in [4, Appendix C] to solve the 

optimization problem in (32). Once {   } are obtained, we 

can take them into the problem (28) again to refine    

until convergence. 

Therefore, the optimization problem of (18) can be 

solved by a two-step iterative procedure which is 

summarized in Algorithm 1. 

Input:   
   

    
   

   
   = unit vector 

Output:           

For l=1:Niter  

With fixed   
     

 , derive the optimal   
   

 by solving 

the problem in (32) using the iterative method 

proposed in [4]; 

With fixed   
   

, obtain the unitary matrix   
   

  by 

solving the problem in (28) using the Riemannian 

steepest descent method; 

If       
      

     
   

       then  

break 

End 

End  

Return       
   

           
   

 

Algorithm 1: Procedure of the Precoding Scheme 

 SIMULATION RESULTS V.

In this section, we compare the symbol error rates 

(SER) with different antenna configurations for different 

precoder design methods. The signal constellation is 4-

QAM. The antenna configurations of MIMO system and 

the Ricean factor are shown in the captions. Monte-Carlo 

simulation is employed for performance evaluation. 

Equal power scheme, one-dimensional (1D) 

beamforming [7], precoder proposed in [6] and precoder 

proposed in [9] are used for performance comparison 

with the proposed schemes. 

Scenario 1: In Fig. 1, a rank-one channel mean, i.e., 

          is used for the evaluation under different 

channel conditions with K = 3 and        . The 

spatial correlation of the pth and qth receive antennas is 

given by [  ]                      . The 

experimental results show that the proposed scheme and 

the schemes in [6] and [9] outperform the equal power 

scheme and 1-D scheme. For different antenna 

configurations and Ricean factors, the proposed scheme 

achieves almost the same SER performance as the 

scheme in [9] and the simplified scheme in [6]. 

 
Fig. 1. Scenario 1: SER versus SNR, K = 3, Nt = Nr = 2 
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(30)

(31)

(32)                                  

}  (33)



Scenario 2: A none-rank-one channel mean is used for 

the evaluation with K = 3 and        . The channel 

mean is 

   [
                   

                           
                         

] 

where    √  .The receive-side correlation matrix    is 

assumed a complex Toeplitz matrix with the first column 

being 

[  ]    [                         ]  

As shown in Fig. 2, the performance of proposed 

method is superior to that of the other schemes. 

Performance degradation of the simplified solution in [6] 

can be observed at moderate SNR region. However, the 

performance of the scheme in [9] is quite sensitive to the 

spatial correlation matrix    and the channel mean   . 

For this case, the scheme in [9] cannot always converge 

to an optimal solution, thus significant performance 

degradation can be observed for both moderate and high 

SNR. 

 
Fig. 2. Scenario 2: SER versus SNR, K = 3, Nt = Nr = 3 

 CONCLUSION VI.

In this paper, an efficient precoding design for MIMO 

system over Ricean fading channels is proposed. By 

exploiting the unitary property, a steepest descent method 

operated on the Riemannian manifold of unitary matrices 

is developed to obtain the desired beamforming directions. 

Simulation results show that the BER performance of the 

proposed scheme is superior to those of the existing 

solutions, and the convergence of the iterative design is 

guaranteed under different channel conditions. 
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