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Abstract—Normally, secure communication between 

client-server applications is established using secure 

channel technologies such as Transport Layer Security 

(TLS).  TLS is cryptographic protocol which ensures 

secure transmission of data and authenticity of 

communication at each endpoint platform.  However, the 

protocol does not provide any trustworthiness assurance 

of the involved endpoint. This paper incorporates remote 

attestation in the TLS key exchange protocol to solve this 

issue.The proposed embedded attestation extensionin 

TLS protocolwill provide assurance of sender's platforms 

integrity to receiver, and vice versa.The CA responsibility 

in TLSis replaced using own Trusted Certificate 

Authority (TCA) in our protocol.   The credibility of the 

proposed protocol is studied to secure against replay 

attack and collusion attack.  The proof is performed using 

AVISPA with High Level Protocol Specification (HLPSL) 

through Dolev-Yao intruder model implementation of the 

proposed protocol.
1
 

 

Index Terms—SSL/TLS extension, integrity, TPM, 

remote attestation, certificate Authority (CA). 
 

I. INTRODUCTION 

TLS and its predecessor SSL are cryptographic 

protocols that are used by web services to transmit 

sensitive information between client and server 

applications. The protocols provides authenticated key 

exchange using asymmetric cryptography, data 

confidentiality using symmetric encryption and message 

integrity using message authentication codes scheme. 

However, these protocols’ foundation does not provide 

any trustworthiness assurance of the involved endpoint. 

The drawback in this technology can be used by 

malicious software to create sophisticated spoofs such as 

SSL certificate spoofing and SSL padlock, and may lead 

to the replay attack.In the absence of remote attestation 

protocol, the secure connection protocol is vulnerable to 

more attacks. 
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In order to protect against such protocol attacks, the 

Trusted Computing Group (TCG)has proposedan 

initiative to sustain the integrity of the computing 

platform. The technology proposed aims to enhance the 

security of hardware and software building block called 

trusted platform through Trusted Platform Module (TPM) 

[1].  TPM isa built-in hardware security chip embedded 

in the motherboard and separate from the CPU(s).  It 

contains cryptographic mechanisms to certify the 

integrity of the software running on a host and to protect 

sensitive information inside the host [2].  The TPM 

feature used by the attestation mechanism is the system 

measurements stored on TPM and the cryptographic 

functions. 

Attestation is a process of assuring the correctness of 

the information. It provides remote assurance of the state 

of the hardware component running on a computing 

device. The trust in the system depends on measurement 

validation which indicates that the platform is not trusted 

if it fails the attestation. 

Remote attestation mechanism requiresa protocol that 

can convince a communication partner that a trusted 

hardware is indeed a trusted hardware. Due to that, the 

TCG has come out with two protocols, i.e. Privacy CA 

and Direct Anonymous Attestation (DAA). 

This paper proposes a new approach that embed 

remote attestation component in TLS protocol. The 

approach also proposes a Trusted Certificate Authority 

(TCA) component that acts as a Privacy CA to provide 

the remote identification protocols to users of the 

platform. The embedded attestation consists of the TCA 

is able to solve the privacy issue and efficiently defending 

against malicious code. It also provides confidence to the 

user about the computing platform’s trustworthiness. 

This paper starts with part II that discusses the related 

work. Part III briefly describes the TLS handshake and 

attestation protocol. The new protocol is demonstrated in 

part IV and followed by the detailed description on the 

extended TLS. Part V of the paper discusses about the 

security analysis of the approach. The paper ends with a 

conclusion. 

II. RELATED WORK 

Many discussions on remote attestation focus on 

methods to enable a remote peer to be securely and 
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reliably informed if the local platform has loaded new 

software and whether the new local configuration adheres 

to the remote platform acceptable configurations.[3, “in 

press” 4, 5]. Dietrich [5] proposed a reliable method to 

provide a proof for a configuration change.  He claimed 

the method can be implemented with only minor 

modifications of the TPM specification and the TLS 

protocol.  The simple concept allows a reliable and secure 

reporting of PCR changes and was designed to easily 

integrate with TLS implementation. His method requires 

some modification of TLC MAC computation within 

TPM.  However, no further explanations about the 

linkage with the TLS protocol were provided.  

Goldman et al. “in press” [6] were the first to propose 

the inclusion of attestation in the setting up of secure 

tunnel between two hosts. Specifically they look into 

putting together SSL and remote attestation protocols. 

The proposed protocol aims to establish an authenticated 

shared key between two hosts and obtain assurance of the 

server’s platform integrity. Their protocol uses three 

certificates, namely, SSL endpoint certificate, AIK 

certificate and Platform Property certificate. The first two 

certificates are required for SSL and remote attestation 

protocols, respectively. The Platform Property certificate 

is introduced to bind the endpoint SSL certificate to the 

AIK certificate.  Unlike our protocol, the SSL certificate 

is signed by the TPM using the AIK private key, instead 

of a Certification Authority. 

In 2007, Gasmi et al. “in press” [7] proposes some 

changes in TLS handshake in order to insert attestation 

protocol. Then in 2008, Armknecth et al.“in press” [8] 

propose similar protocol but adhere to TLS protocol 

standard toallow backward compatibility. Specifically, 

the attestation protocol messages are sent over in the TLS 

handshake extension. The protocol is defined for mutual 

authentication and mutual attestation and is designed to 

resist replay attack.  Here each entity’s signing key pair is 

generated and sealed in its TPM. In this way the protocol 

provides assurance that the signature is produced by the 

entity’s platform, and not another. These keys are very 

similar to AIK. The difference is that Armknecth et al. 

propose the signature verification keys to be included in 

the TLS certificates. 

Stumpf etal. [9] performed masquerading attack on 

Sadeghi et al.“in press” [10] remote attestation protocol. 

It happened when the server request for the attacker to 

attest its platform, the attacker relay messages between 

the server and a good client. So, the attacker succeeds in 

attestation protocol although his platform is compromised. 

This attack is successful because the server does not 

know that the replies were not originally produced by the 

attacker’s platform. To overcome this vulnerability, 

Stumpf et al. added the Diffie-Hellman (DH) key 

exchange to the remote attestation protocol.Our approach 

differs in that we do not use Diffie-Hellman algorithm to 

perform attestation in TLS handshake protocol. 

Zhou and Zhang [11] performed collusion attack on 

protocols in [8,9]. The attacker sends its DH public key to 

the good client to be included in the hash and signed by 

the good client’s AIK private key. This is the only way 

the attacker can obtain a shared key with the server after 

attestation using the good client’s platform. This attack is 

applicable if there is a method to get the TPM to sign any 

given data through valid software.  Their approach differs 

from ours because the SSL libraries do not need to be 

modified when integrating with the attestation protocol.  

Moreover, we also focus on preventing collusion attack. 

III. PRELIMINARIES 

A. TLS 

SSL was developed in 1994 by Netscape 

Communications Corporation to secure Internet 

transaction.  Then, SSL 3.0 became the basis of the 

standard protocol, the TLS.   The TLS authentication 

protocol suite is based on public key cryptography. This 

protocol allows client and server to authenticate 

themselves to each other and allows both hosts to 

establish an encrypted connection. 

There are four components/parts of the TLS protocol, 

separated into two layers. The first layer is TLS 

Handshake protocol consisting of Handshake, Change 

Cipher Spec and Alert protocol. The second layer is the 

TLS record protocol where the data are transmitted 

securely.The Handshake protocol uses the Record layer 

protocol to establish a TLS connection by allowing 

authentication and negotiation of a cryptographic 

algorithm between a TLS-enabled server and a TLS-

enabled client. 

TLS does not aim to provide the endpoint integrity 

issue so it cannot assure the trustworthiness of involved 

endpoints. Lack of the trustworthiness of client-server 

system may lead to the Reply Illusion attack on TLS 

Protocol. This can expose the private key to the attacker. 

Hence, it is necessary to enhance the security of TLS 

communication by enabling platform integrity between 

client and server to ensure no malware or spyware is 

present. The new TLS extensions protocol proposed is 

embedded with Remote Attestation protocol process in 

TLS to ensure the endpoint integrity of host platform.  

The protocol approach will be explained in the next 

section. 

B. Attestation 

Trusted platform module (TPM) is a hardware based 

security chip which is developed in accord to the 

specifications published by TCG. Currently, they are 

manufactured by Infineon, Atmel and Broadcom.  The 

TPM provides root of trust and establishes chain of trust 

of the platform. The chain of trust is the approach where 

every link in the chain has been measured by the prior 

one.  

The TPM operations based on TCG architecture is 

divided into three main categories; trusted measurement, 

trusted reporting, and trusted storage [12]. Trusted or 

integrity measurement consists of a service that measures 
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platform characteristics beforea measured software 

component gets executed or run by producing a metric or 

fingerprint using SHA-1 computed by the TPM. The 

metrics will be stored in Storage Message Log (SML) and 

Platform Configuration Registers (PCR).  Integrity 

measurement incorporates the same chain of trust process 

into it, but instead of verifying, it makes the measurement. 

Establishing trust of a computer system begins with 

enhancing the computer BIOS with a Core Root of Trust 

for Measurement (CRTM).  CRTM is a piece of written 

code stored in the boot block of the BIOS. This piece of 

code is considered trustworthy.  It reliably measures 

integrity value of other entities, and stays unchanged 

during the lifetime of the platform “in press” [13]. CRTM 

will be the first to run to measure other parts of the BIOS 

block before passing control. The BIOS then measures 

hardware and the boot-loader and passes control to the 

boot-loader. The boot-loader measures OS kernel and 

pass control to the OS.  After the OS is loaded or during 

the boot process,the administrator can check for the PCR 

values to see if it is running in the expected 

configuration.Up to this point, the system configuration 

has been measured and it is possible to verify the current 

system configuration by examining the content of the 

PCR.   

The security of the attestation report is the value of 

PCR digitally signed with the TPM public AIK.  The 

Endorsement Key (EK) public key is used to uniquely 

identify a TPM and certified by an appropriate CA.  The 

EK private key can be used to sign assertions of the 

trusted computer’s state.  A remote computer can verify 

that those assertions have been signed by a trusted TPM 

[14]. 

Trusted storage is where cryptographic keys and data 

are stored in the TPM.  It consists of volatile and non-

volatile memory. The volatile memory is for the usage of 

cryptographic protocols and storage of sensitive 

information like passwords. The non-volatile memory 

contains the AIK. 

Remote attestation was adopted as the method for 

remote assurance of the state of the hardware and 

software running on the computing device. Attestation is 

a process of assuring accurateinformationand closely 

related to authentication. It is obviously a critical concept 

for the trusted platform because the trust in the system is 

based on taking measurements and checking the 

measurements. If a system is not able to attest the 

accuracy of the information, then the trust on the platform 

cannot be established.   

The TCG proposed two protocols for a client to 

convince its remote communication partner that a piece 

of hardware is trustworthy. In return, this enables two 

communication partners to establish the secure 

computing platform and therefore it is safe to exchange 

data. These specified protocols are Privacy CA  

“unpublished” [14] and Direct Anonymous Attestation 

(DAA)“in press” [13, 15], [16].  

The Privacy CA similar to Public Key Infrastructure 

(PKI) which involves TTP in each transaction and the 

party must be fully trusted by all other parties.  The 

Privacy CA is assumed to know the public parts of the 

Endorsement Keys of all valid TPM. This valid TPM 

refers to an uncompromised TPM. In contrasts, a rogue 

TPM is a TPM that has been compromised and had its 

secrets extracted. Now, whenever a TPM needs to 

authenticate itself to a verifier, it generates a second RSA 

key pair, called an Attestation Identity Key (AIK). Then, 

it sends the AIK public key to the Privacy CA, and 

authenticates this public key relating to the EK. The 

Privacy CA will issue a certificate on the TPM’s AIK if it 

finds the EK in its list.  

DAA implements the Camenisch-Lysyanskaya 

signature scheme [16] and zero-knowledge proof [17] to 

exclude the usage of a Privacy CA, but various 

exponential operations in its protocol leads to the lack of 

efficiency. In this paper, we focus on built-in Privacy CA 

implementationnamed as Trusted CA (TCA). 

IV. NEW EXTENSION APPROACH 

Our approach protocol does not require modification of 

the TLS library and hence no changes to plug-ins in 

user’s browser or application. Through this protocol, we 

achieve the mutual authentication and mutual attestation 

between two parties with the following advantages: 

 Easy deployment because there are no changes 

required in the TLS library. Theattestation protocol is 

not yet standardized, so attestation only need to be 

appliedasadditional plugin while using existing TLS 

plugin. 

 Backward compatible - if a host does not have TPM, 

it can still connect toa server without attestation. 

 Achieve anonymity and unlinkability via TPM and 

TCA. 

TABLE I: NOTATIONS OF PROTOCOLS 

nhost non-predictable nonce of host getting from TLS 

certRSA public key certificate signed by CA i.eVerisign 

idhost unique Identifier of host for certRSA 

idAIK identity label for the new AIK (AIK identifier) 

SPCR 
selection of PCR values verifier (client or server) is 

interested in 

PKAIK public verification key of AIK 

SKAIK private verification key of AIK 

pkTCA public verification key of the Trusted CA 

PKEK public verification key of EK 

SKEK private verification key of EK 

Nv Nonce (anti-replay value) chosen by the verifier  

IV 
Indicator whether verifier is interested in TPM 
version information 

TPMinfo TPM version and revision information 

certAIK Attestation Credential (from Trusted CA) 

Mlog TPM Platform measurement log 
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The extended protocol consists of three defined 

protocols: registration (P1), AIK certificate creation (P2) 

and TPM-based attestation (P3) protocol. Table I defines 

the notations of the protocols. 

A. Registration Protocol (P1) 

This protocol must take place first before any 

transaction between client and server.  It requires the host 

to request EK certificate from the TCA by providing the 

necessary TPM EK public key. The TCA signs the 

certificate request using its private key if the TPM EK 

public key is valid and thenthe identity of host is added to 

the list of acknowledged clients.  The EK certificate also 

indicates that the EK has been properly created and 

embedded into a TPM.  In this paper, the TCA acts as the 

TPM manufacturer and is fully trusted not to reveal any 

information to any other party. This is important to 

protect any correlation of AIKs with corresponding 

platform identity (EK).  

In this phase, the host needs to register to other 

communicating entity to acknowledge each other’s 

policies such as integrity measurement reference point.  

Based on the policies, the host computes the core 

integrity measurement values and sends the valuesto the 

endpoint entity for future reference.  The entity can use 

TPM sealing mechanism to secure the core values. As we 

know, the TPM can generate authentic reports of current 

PCR contents that contain current integrity measurement 

values. These current values will be compared with the 

core values in the attestation channel.   

B. AIK Certificate Creation Protocol (P2) 

TABLE II: AIK CERTIFICATE CREATION PROTOCOL (P2) 

Protocol : AIK Certificate Creation Phase (P2) 

 

SUMMARY: Host(H) creates AIK and signing the AIK with 
TCA (T) 

RESULT: Unilateral AIK certificate creation with TCA 

H : Retrieve nhost 

H : Generate idAIK = hash(idhostǁnhost) 

H : TPM loadKey(skAIK) 

H : 
σTPM = TPM MakeIdentity= 

sign(hash(idAIKǁ pkTCA)) 

H→T : encTCA(pkAIK,certRSA, nhost, σTPM,pkEK) 

T :  Verify EK credential, σTPM 

T : Verify certRSA, generate idAIK= hash(idhostǁnhost) 

T : Issue certAIK = signTCA(pkAIK, idAIK) 

T : Create symmetric encryption key, K 

H←T : C1 = encEK(K,  hash(pkAIK)), C2 = encK(certAIK) 

H : 
K, hash(pkAIK) =TPM 

ActivateIdentity=decEK(C1) 

H :  Verify pkAIK, hash(pkAIK) 

H : Retrieve certAIK = decK(C2) 

Table II illustrates the AIK generation process adopted 

from [12]. In order to prevent replay and collusion attack, 

we have proposed the creation of identity label for new 

AIK as: 

idAIK= hash (idcertRSA ǁ nhost) 

This AIK unique identity is linkable with TLS 

connection which the nhost is generated during TLS 

handshake and idcertRSA is unique identifier of the host 

signed by other CA.  Hence, idcertRSA is represented by 

idhostas in Table II. 

C. TPM-based Attestation Protocol (P3) 

The integrity reporting protocol represent as P3 which 

was extracted from [19], [20]. This protocol is based on 

TPM challenge-response authentication and able to 

prevent non-authentic integrity information execution by 

maintaining freshness and authenticity of the integrity 

information.  The random number nonce of client and 

server are used to verify freshness. MAC of TLS session 

key-establishment is used as encryption key for all 

messages between client and server including integrity 

information in order to ensure the messages’ authenticity.   

Table III simplifies this TPM-based attestation protocol 

[9], [18] after each host performs P2 to get CertAIK. 

TABLE III: TPM-BASED ATTESTATION PROTOCOL (P3) 

Protocol : AIK Certificate Creation Phase (P3) 

 

SUMMARY: S answers the attestation challenge of platform C 

RESULT: Integrity reporting - unilateral attestation 

C ← S : NS, IV, SPCR 

C : TPM loadKey(skAIK) 

C : 
σTPM=TPM_Quote=sign{PCR, NS, TPMinfo} 
SKAIK 

C : Retrieve Mlog 

C → S : Q = (Mlog, σTPM, TPMinfo, certAIK), MACsess(Q) 

S : Verify CertAIKusing PKAIK 

S : Verify σTPMusing TPMinfo, NS, and PCRSPCR 

D. Mutual Attestation on TLS 

In our protocol, we used the AIK certificate for the 

TLS handshake in order to achieve anonymity from 

server and unlinkability by eavesdropper active listener. 

After the TLS handshake, we use the session key to 

perform remote attestation to handle the endpoint 

integrity issue. We have overcome the following issues: 

 The client and server host without integrity 

verification cannot be trusted because secret 

information can be revealed to any adversary platform 

by unverified applications inside the host system itself. 

 The unverified applications can be compromised 

either by malicious codes. 
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Fig. 1. New extend TLS with attestation approach 

TABLE IV: EXTENDED TLS WITH MUTUAL ATTESTATION PROTOCOL 

Protocol : Achieving mutual attestation on TLS 

SUMMARY: C and S sends attestation challenge to each other 

RESULT: Mutual authentication and mutual attestation between C 

and S 

1. System Setup 

C and S must generate idx and sign it with CA (i.e. Verisign) to get 

CertRSA(x) then perform registration protocol (P1) to S to obtain 

CertEK. 

2. Protocol Messages 

1 C → S : nc, Sid, Pc (client  hello) 

1 C ← S : ns, Sid, Ps (server hello) 

2 C ← S : certRSA(s) (server cert) 

3 (1) C (2) : (3) VerifycertRSA(c)(pkCA) (4) (certverify) 

4 (5) C→S (6) : (7) cert RSA(c) (8) (clientcert) 

4 C → S : Finished sessionkey, kcs (client finished) 

5 S : Verify certRSA(c)(pkCA) (cert verify) 

6 C ← S : Finished sessionkey, kcs (server finished)  

7’ S : idAIKs  = hash(ids|| ns) 

7’ S : certAIK(s) AIK creation  Protocol (P2) 

7’ S : attestDataS Attestation Protocol (P3) 

8’ C ← S : attestDataS, MACkcs(attestDataS) 

9’ C : id’scertRSA(s) 

9’ C : id”s hash (id’s || ns) 

9’ C : Verify [certAIK(s), (id”s,pkAIKs), pkTCA] 

9’ C : 
Verify attestDataSAttestation Protocol 

(P3) 

10’ C : idAIKc  = hash(idc || nc) 

10’ C : certAIK(c) AIK creation  Protocol (P2) 

10’ C : attestDataC Attestation Protocol (P3) 

11’ C → S : attestDataC, MACkcs(attestDataC) 

12’ S : id’ccertRSA(c) 

12’ S : id”c hash (id’c|| nc) 

12’ S : Verify [certAIK(c), (id”c,pkAIKc), pkTCA] 

12’ S : 
Verify attestDataCAttestation Protocol 

(P3) 

12’ C ← S : status, MACkcs (status) 

We have illustrated this protocol sequence as Fig. 1 

and detail protocol message in Table IV. 

V. SECURITY ANALYSIS 

This paper will discuss the security analysis using 

informal analysis followed by formal analysis using the 

AVISPA protocol prover [21]. 

A. Informal Security Analysis 

For informal security analysis, we focus on replay 

attack and collusion attack that are handled by our 

approach.  Replay attack is an attack where data packets 

are intercepted between two parties and are later re-sent 

by the attacker to one or more of the parties. It is also 

called as freshness attack because the loss of freshness of 

the information during transmission. In this case, the 

adversary does not necessarily distinguish the message 

content since he only retransmit the older message and 

blocking any new fresh messages to receiver. This 

hacking technique usually was played by the adversary 

called as Man-in-the-Middle attack. 

Collusion attack is a new type of attack during which a 

compromised host asks the information from a trusted 

host in order to answer attestation challenges. This attack 

also utilizes the replay attack technique with collaborative 

mechanism. As example, we adopted [9] protocol that is 

vulnerable to this attack as discussed in [11] as in Fig. 2. 

The figure shows that the server M passed attestation 

challenge request of client C without revealing M's 

session key information. 

 
Fig. 2. Collusion attack scenario example 

Replay attack can be launched by the client or the 

server. For our protocol, the aim of the attack is for a 

compromised host to attest successfully. This is achieved 

by making another host to provide good attestation data 

and relaying it to the verifier. As such, the compromised 

host will be accepted as a good platform. Suppose the 

server S wants to launch a replay attack in the protocol. 

The server S will begin the attack after the TLS ends and 

the attestation stage begins. Server S will coerce another 

host, V to provide attestation data, attestData which 

includes PCR values and SML values which will then be 

signed with V's AIK signing key. When server S obtains 

the values, signature and V's AIK certificate, S computes 

the Message Authentication Code (MAC) of the whole 

message using the session key k.Then S sends all of the 

information to the client. 
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We argue that the AIK certificate verification will fail 

because 

ids = hash(idsǁ ns) ≠idV 

where ids is the server’s identifier in its RSA certificate 

while idV is the victimized host AIK identifier in the AIK 

certificate. At this point the protocol will be aborted and 

hence the attack fails. 

The only way for S to make the attack successful is by 

registering V's RSA certificate to the TCA to be 

associated with S’s endorsement key. Assuming that the 

TCA carefully verifies the submitted RSA certificate 

against the identity of the host during registration phase, 

attempts to associate one host’s RSA certificate to 

another host’s endorsement key will fail. Clearly, here the 

TCA is a fully trusted party. 

Collusion attack is similar to replay attack, but the 

third host is now an accomplice of the adversarial host. 

As in the replay attack example, let the adversary be in 

the server S. For collusion attack, the host V cooperates 

with S to enable S to successfully attest itself to the client. 

Clearly, in this attack, the best chance to be successful is 

to register S's RSA certificate with V's TPM EK. The 

alternatives are to register S’s RSA certificate with its 

own EK or register V’s RSA certificate with V's EK to 

the TCA. If the first option is performed, then verification 

of attestation data will fail because it will be signed using 

V’s AIK signing key. The second choice will fail at the 

AIK certificate verification stage because TLS will only 

be successful if S’s RSA certificate is presented, while 

the AIK certificate contains V’s identifier. 

Here we attack by having server S registers its RSA 

certificate with V's endorsement key EK. During 

registration, there will be discrepancy between the 

identifier in the RSA certificate which holds S's name and 

the TPM (or EK) owner name which contains V's name. 

The TCA is expected to detect such discrepancies and 

reject the registration.  

Otherwise, during the protocol, V generates AIK key 

pair and then S relay all messages between TCA and V to 

obtain AIK certificate. Then, S performs TLS with the 

client using its RSA certificate as usual. TLS run will be 

successful and the session key will be established. 

However, at the attestation stage, S again relays the 

message to V who would provide the attestation data. 

In this case, the AIK certificate is found valid by the 

client because the AIK certificate contains S's identifier. 

Hence, the protocol will establish a trusted channel 

between the client and server S. Therefore, the TCA must 

be honest and trusted to perform identity checks during 

registration. 

B. Formal Security Analysis 

We used the Automated Validation of Internet Security 

Protocols and Applications (AVISPA) [22] tool in order 

to prove our security protocol.   AVISPA uses High Level 

Protocol Specification (HLPSL) [23] as the specification 

language to present the analyzed protocols and to specify 

the protocol’s security properties. AVISPA is very 

expressive with great flexibility to analyze cryptographic 

protocols. This tool doesnot require expertise or skills in 

mathematics.  However, it is so complex to define 

implementation environment of a protocol and user-

defined intrusion model in order to convert the protocol 

into HLPSL 

All formal cryptographic protocols analyzers generally 

implement Dolev-Yao intruder model [24]. The Dolev-

Yao model assumesan intruder can control the entire 

network, performs cryptographic operations available to 

authentic users of a system, and is in association with a 

subset of dishonest principals. But, the special types of 

insider attacks which are able to create authentic message 

might not be detected in the Doley-Yao model.  The 

insider attacks are a very potent attack type because the 

adversary takes over the honest platform including the 

TPM.  However, through AVISPA, our protocol’s 

security properties can be achieved using the 

authentication phase and key-establishment verification 

and against the Dolev-Yao attackers. 

The HLPSL is a role-based language consisting of 

basic roles and composition roles. Basic roles are defined 

as communicating entities which participate in the 

protocol.  Other than the communicating entities, 

environment and session of protocol execution also 

declared as roles. Composition roles represent scenario of 

the basic roles. Each role has its own variables. 

Communication networks in the protocol are represented 

by the variables which transmits different properties of a 

particular environment.  In HLPSL model of our protocol, 

we define several roles; A (modelling the client) and B 

(modelling the server), intruder model and environment. 

Since our protocol integrates with TLS protocol, we 

modified the HLPSL model of TLS protocol adopted 

from [23].The complete code of the HLPSL model for 

this protocol is presented in Appendix A. 

The basic roles defined the information of initial 

parameters, state, and the state transition.  Refer the role 

of client (A) and server (B) with their global variables in 

Appendix Afor the state transition. 

Currently, AVISPA tool only supportsDolev-Yao model 

which is handled by (dy) channels.   As mentioned earlier, 

the intruder in Dolev-Yao model is an authentic user of 

the network who has full ability to control all 

transmission messages over the network.  In the HLPSL, 

we named the channel as SA, RA which denotes send or 

receive for Client (A) and SB, RB denotes as send or 

receive for Server (B). Since the channels comprise of 

changes values, whether it is empty or not, so we assume 

these values are represented by a global parameter. This 

parameter aremodeled as variable V which is also known 

as potential attacker.role session (A,B: agent, V: text,  
 

Ka, Kb, Ks, Kca, KaikA, KaikB: public_key, 

            H, PRF, KeyGen: hash_func) 

def= 
            local  SA, SB, RA, RB: channel (dy) 

composition 

    client(A,B,H,PRF,KeyGen,V,Ka,Ks,KaikA,Kca,SA,RA) 
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   /\server(A,B,H,PRF,KeyGen,V,Kb,Ks,KaikB,Kca,SB,RB) 
end role 

 

The environment role contains the knowledge of the 

intruder behaviour and composition of session. The 

knowledge specified to the intruder is defined by global 

constants of assigned variables. The composition of 

session is modeled in order to make the intruder able to 

play as legitimate user. 

The section goal is to define the security properties 

using predefines macros.  The available macros relate to 

the secrecy of some information and the strong or weak 

authentication of agents of some information.  The goal is 

identified by predefined predicates (secret, witness, 

request, and wrequest) in the state transition.  The 

protocol goal is mutual authentication and to establish a 

secret key between the client and server.  The intruder 

should not be able to accomplish valid authentication 

since he could not learn the secret session key, ClientK 

and ServerK. 

 
goal 

secrecy_ofsec_clientk,sec_serverk 
  %Client authenticates Server on na_nb1 

authentication_on na_nb1   

  %Server authenticates Client  on na_nb2 
authentication_on na_nb2   

authentication_onsk_verify 

secrecy_ofsec_smla, sec_smlb 
authentication_onsmla_verify, smlb_verify 

 

We have specified different security goals based on 

state transitions in the events using secret, witness and 

request structure which are verified through AVISPA as 

follows: 

 Client authenticates Server on the value of Ncwhereby 

only Server is able to sign Nc using his own private 

key. 

 Server authenticates Client on the value of Nswhere 

only Server is able to sign Ns using his own private 

key. 

 Client and Server authenticate the TPM attestation 

data of each other on the Finished messages where 

Client and Server share the key Kcs.  The Kcs remains 

secret and confidential. 

 Client and Server share the Stored Measurement Log 

(SML) to re-compute value for attestation validation 

which is kept secret and privacy related. 

Through AVISPA, we are able to specify the 

authentication goals using witness and request command.   

The secrecy goal also can be attained using secret 

command.  We are going to discuss these commands as 

unilateral authentication.  For normal authentication goal 

as statement [1a][1b][2a][2b] and attestation goal which 

involves TPM as statement [1c][2c]. 
 

/\ witness(A,B,na_nb2,Na.Nb')     [1a] 
/\ witness(A,B,sk_verify,ClientK)  [1b] 

 

The statement [1a] means that agent A createsNa.Nb’ 

value for agent B and wants agent B to agree to the value. 

The value created is for the na_nb2 purpose, which 

means that it is secure from intruder.  Similarly, statement 

[1b] means that agent A declares the sk_verify purpose 

and he wants agent B to agree on the value ClientK. 

 
/\ request(B,A,na_nb2,Na.Nb)  [2a] 

/\ request(B,A,sk_verify,ServerK)  [2b] 

 

The statement [2a] implies that agent B believes that 

he communicates with agent A and accepts the value of 

Na_Nb for the na_nb2 purpose. The statement [2b] is 

read as agent B requests a check of ServerK value (where 

ClientK is equal to ServerK), agrees with agent A on this 

valueswhich relies on the guarantee that agent A exists. 

 
/\ request(A,B,smlb_verify,SMLb)  [1c] 

/\ witness(B,A,smlb_verify,SMLb’) [2c] 

 

The attestation goal starts with the statement [2c] 

which declares that agent B is the witness for the 

information SMLband wants agent A to agree with the 

information for smlb_verify purposes. Then in statement 

[1c], agent A requests a check of the information SMLb 

and agrees with the value.   

We analyzed the HLPSL model of protocol using 

SPAN [25].  The result showed that no attack trace is 

found.  So, the security properties of the protocol are 

fulfilled and secure against Dolev-Yao attackers.  

VI. CONCLUSION 

This paper proposed extending TLS protocol with 

mutual attestation in order to guarantee platform integrity 

of client-server environment.   Many existing solution 

required the TLS library modification since the attestation 

embedded in the TLS handshake protocol.  Our solution 

does not require the changes since the attestation protocol 

can be applied as additional plugin to theexisting TLS 

library. This solution achieves anonymity and 

unlinkability through TPM and Trusted CA and provides 

linkagebetween identity and integrity of endpoint 

platform.  Similar with Zhang et.Al., our protocol is also 

resistant to thenew type of collusion attack as well as 

replay attack.  Through the informal security analysis, we 

discussed the probability of the protocol to prevent the 

attacks.  Using the AVISPA, the result shows that our 

protocol is secure against the Dolev-Yao attackers where 

no attack trace is found. 

APPENDIX A AVISPA SOURCE FOR EXTENDED TLS WITH 

MUTUAL ATTESTATION PROTOCOL 

role client(A, B : agent,  H, PRF, KeyGen: hash_func, V: text, 

Ka, Ks, KaikA,Kca: public_key,   

                %% Ks is the public key of a T3P (ie. CA) 
               SND, RCV: channel (dy)) 

played_by A 

 
def= 

         local Na, Nb, Sid, Pa, Nw: text, 

         State: nat, 
         Finished: hash(hash(text.text.text).agent.agent.text.text.text), 

ClientK, ServerK: hash(agent.text.text.hash(text.text.text)), 

Kb,KaikB: public_key, 
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        % certificates for the private key inv(KaikA) 

CertAikA: {agent.public_key.text}_inv(public_key),   
        % certificates for the private key inv(KaikB) 

CertAikB: {agent.public_key.text}_inv(public_key),          

KaikSetA, KaikSetB:public_key set,     
KcaSet:public_key set, 

SMLa,SMLb:hash(agent.nat.text.text), 

PCRa, PCRb:{hash(agent.nat.text.text)}_inv(public_key), 
M: hash(text.text.text) 

 

constsec_clientk, sec_serverk : protocol_id 
init  State := 0 

   transition 
   1.  State = 0 

       /\ RCV(start) 

       =|> 
       State' := 2 

       /\ Na' := new() 

       /\ Pa' := new() 
       /\ Sid' := new() 

       /\ SND(A.Na'.Sid'.Pa')  

 
   2.  State = 2 

       /\ RCV(Nb'.Sid.Pa.{B.Kb'}_(inv(Ks))) 

       =|> 
       State' := 4 

       /\ Nw' := new() 

       /\ M' := PRF(Nw'.Na.Nb') 
       /\ Finished' := H(PRF(Nw'.Na.Nb').A.B.Na.Pa.Sid) 

       /\ ClientK' := KeyGen(A.Na.Nb'.PRF(Nw'.Na.Nb')) 

       /\ ServerK' := KeyGen(B.Na.Nb'.PRF(Nw'.Na.Nb')) 
       /\ SND({Nw'}_Kb'. 

              {A.Ka}_(inv(Ks)). 

              {H(Nb'.B.Nw')}_(inv(Ka)). 
              {H(PRF(Nw'.Na.Nb'). 

A.B.Na.Pa.Sid) 

              }_KeyGen(A.Na.Nb'.PRF(Nw'.Na.Nb'))) 
       /\ witness(A,B,na_nb2,Na.Nb') 

 

   3.  State = 4 
       /\ RCV({Finished}_ServerK) 

       =|> 

       State' := 6 
       /\ request(A,B,na_nb1,Na.Nb) 

       /\ secret(ClientK,sec_clientk,{A,B}) 

       /\ secret(ServerK,sec_serverk,{A,B}) 
 

 4. State=6 

 /\ RCV(B.PCRb'.SMLb'.CertAikB'. 
{PRF(PCRa'.SMLb'.CertAikB)}_ClientK) 

      /\ CertAikB'={B.KaikB'.KaikSetB'}_inv(Kca') 

 /\ in(Kca',KcaSet) 
     /\ request(A,B,smlb_verify,SMLb) 

       =|> 

 
     State' := 8  

       /\ SMLa':= new() 

       /\ PCRa':= {SMLa}_inv(KaikA) 
       /\ KaikA' := new() 

       /\ CertAikA':={A.KaikA'.KaikSetA'}_inv(Kca') 

       /\ SND(A.PCRa'.SMLa'.CertAikA'. 
{PRF(PCRa'.SMLa'.CertAikA')}_ClientK) 

       /\ witness(A,B,sk_verify,ClientK) 

       /\ secret(SMLa,sec_smla,{A,B}) 
       /\ witness(A,B,smla_verify,SMLa) 

 
end role  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

role server(A, B : agent, 

  H, PRF, KeyGen: hash_func, 
               V: text, 

  Kb, Ks,Kca,KaikB: public_key, 

  SND, RCV: channel (dy)) 

 

played_by B 
 

def= 

   local Na, Nb, Sid, Pa, Nw: text, 
State:nat, 

Ka,KaikA: public_key, 

ServerK:hash(agent.text.text.hash(text.text.text)), 
         % certificates for the private key inv(KaikA) 

CertAikA: {agent.public_key.text}_inv(public_key),  

        % certificates for the private key inv(KaikB) 
CertAikB: {agent.public_key.text}_inv(public_key), 

KaikSetA, KaikSetB:public_key set,     
KcaSet:public_key set, 

SMLa, SMLb:hash(agent.nat.text.text), 

PCRa,PCRb:{hash(agent.nat.text.text)}_inv(public_key) 
 

init  State := 1 

   transition 
   1.  State = 1 

       /\ RCV(A.Na'.Sid'.Pa') 

       =|> 
       State' := 3 

       /\ Nb' := new() 

       /\ SND(Nb'.Sid'.Pa'.{B.Kb}_(inv(Ks))) 
       /\ witness(B,A,na_nb1,Na'.Nb') 

 

   2.  State = 3 
       /\ RCV({Nw'}_Kb.{A.Ka'}_(inv(Ks)). 

              {H(Nb.B.Nw')}_(inv(Ka')). 

              {H(PRF(Nw'.Na.Nb). 
A.B.Na.Pa.Sid) 

              }_KeyGen(A.Na.Nb.PRF(Nw'.Na.Nb))) 

       =|> 
       State' := 5 

       /\ ServerK':=KeyGen(B.Na.Nb.PRF(Nw'.Na.Nb)) 

       /\ SND({H(PRF(Nw'.Na.Nb). 
A.B.Na.Pa.Sid) 

              }_KeyGen(B.Na.Nb.PRF(Nw'.Na.Nb))) 

       /\ request(B,A,na_nb2,Na.Nb) 
 

  3.  State = 5 

        /\ RCV(start) 
        =|> 

      State' := 7 

      /\ SMLb':= new() 
      /\ PCRb':= {SMLb}_inv(KaikB) 

      /\ CertAikB':={A.KaikB'.KaikSetB'}_inv(Kca') 

      /\ SND(A.PCRb'.SMLb'.CertAikB.{ 
PRF(PCRb'.SMLb'.CertAikB)}_ServerK) 

       /\ witness(B,A,smlb_verify,SMLb) 

       /\ secret(SMLb,sec_smlb,{A,B}) 
       /\ request(B,A,sk_verify,ServerK) 

 

  4. State= 7 
      /\ RCV(A.PCRa'.SMLa'.CertAikA.{ 

PRF(PCRa'.SMLa'.CertAikA)}_ServerK) 

      /\ CertAikA'={A.KaikA'.KaikSetA'}_inv(Kca') 
      /\ in(Kca',KcaSet) 

       =|> 

     State' := 9 
      /\ request(B,A,smla_verify,SMLa) 

 

end role 
 

 

role session(A,B: agent, V: text, 
 Ka, Kb, Ks, Kca, KaikA, KaikB: public_key, 

      H, PRF, KeyGen: hash_func) 

def= 
   local  SA, SB, RA, RB: channel (dy) 

   composition 

            client(A,B,H,PRF,KeyGen,V,Ka,Ks,KaikA,Kca,SA,RA) 
        /\ server(A,B,H,PRF,KeyGen,V,Kb,Ks,KaikB,Kca,SB,RB) 

end role 
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role environment() 

def= 

const 
na_nb1, na_nb2, sec_smla, sec_smlb,  

smla_verify,  smlb_verify, sk_verify: protocol_id, 

h, prf, keygen : hash_func, 
a, b           : agent, 

v : text, 

ka, kb, ki, ks, kaika, kaikb, kca: public_key 
intruder_knowledge = 

 { a, b, ka, kb, ks, kca, kaika, kaikb, ki, inv(ki), 
 {i.ki}_(inv(ks)),  {i.ki}_(inv(kca)) ,v}   

   composition 

 session(a,b,v,ka,kb,ks,kca, kaika,kaikb,h,prf,keygen) 
    /\ session(a,i,v,ka,ki,ks,kca,kaika,kaikb,h,prf,keygen) 

    /\ session(i,b,v,ki,kb,ks,kca,kaika,kaikb,h,prf,keygen) 

 
end role 

 

 
goal 

secrecy_ofsec_clientk,sec_serverk 

authentication_on na_nb1   
authentication_on na_nb2   

authentication_onsk_verify 

secrecy_ofsec_smla, sec_smlb 
authentication_onsmla_verify,smlb_verify 

end goal 

 
environment() 
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