
Extending TLS with Mutual Attestation for Platform

Integrity Assurance

NorazahAbd Aziz
1, 2

, NurIzura Udzir
1
, and Ramlan Mahmod

1

1
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,

43400 UPM Serdang, SelangorDarulEhsan, Malaysia
2
MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur

Email: azahaa@mimos.my;izura@fsktm.upm.edu.my; ramlan@fsktm.upm.edu.my

Abstract—Normally, secure communication between

client-server applications is established using secure

channel technologies such as Transport Layer Security

(TLS). TLS is cryptographic protocol which ensures

secure transmission of data and authenticity of

communication at each endpoint platform. However, the

protocol does not provide any trustworthiness assurance

of the involved endpoint. This paper incorporates remote

attestation in the TLS key exchange protocol to solve this

issue.The proposed embedded attestation extensionin

TLS protocolwill provide assurance of sender's platforms

integrity to receiver, and vice versa.The CA responsibility

in TLSis replaced using own Trusted Certificate

Authority (TCA) in our protocol. The credibility of the

proposed protocol is studied to secure against replay

attack and collusion attack. The proof is performed using

AVISPA with High Level Protocol Specification (HLPSL)

through Dolev-Yao intruder model implementation of the

proposed protocol.
1

Index Terms—SSL/TLS extension, integrity, TPM,

remote attestation, certificate Authority (CA).

I. INTRODUCTION

TLS and its predecessor SSL are cryptographic

protocols that are used by web services to transmit

sensitive information between client and server

applications. The protocols provides authenticated key

exchange using asymmetric cryptography, data

confidentiality using symmetric encryption and message

integrity using message authentication codes scheme.

However, these protocols’ foundation does not provide

any trustworthiness assurance of the involved endpoint.

The drawback in this technology can be used by

malicious software to create sophisticated spoofs such as

SSL certificate spoofing and SSL padlock, and may lead

to the replay attack.In the absence of remote attestation

protocol, the secure connection protocol is vulnerable to

more attacks.

This work was supported in part by the MimosBerhad and

UPMunder NBvTPM project.
Corresponding author email: azahaa@mimos.my

doi:10.12720/jcm.9.1.63-72

In order to protect against such protocol attacks, the

Trusted Computing Group (TCG)has proposedan

initiative to sustain the integrity of the computing

platform. The technology proposed aims to enhance the

security of hardware and software building block called

trusted platform through Trusted Platform Module (TPM)

[1]. TPM isa built-in hardware security chip embedded

in the motherboard and separate from the CPU(s). It

contains cryptographic mechanisms to certify the

integrity of the software running on a host and to protect

sensitive information inside the host [2]. The TPM

feature used by the attestation mechanism is the system

measurements stored on TPM and the cryptographic

functions.

Attestation is a process of assuring the correctness of

the information. It provides remote assurance of the state

of the hardware component running on a computing

device. The trust in the system depends on measurement

validation which indicates that the platform is not trusted

if it fails the attestation.

Remote attestation mechanism requiresa protocol that

can convince a communication partner that a trusted

hardware is indeed a trusted hardware. Due to that, the

TCG has come out with two protocols, i.e. Privacy CA

and Direct Anonymous Attestation (DAA).

This paper proposes a new approach that embed

remote attestation component in TLS protocol. The

approach also proposes a Trusted Certificate Authority

(TCA) component that acts as a Privacy CA to provide

the remote identification protocols to users of the

platform. The embedded attestation consists of the TCA

is able to solve the privacy issue and efficiently defending

against malicious code. It also provides confidence to the

user about the computing platform’s trustworthiness.

This paper starts with part II that discusses the related

work. Part III briefly describes the TLS handshake and

attestation protocol. The new protocol is demonstrated in

part IV and followed by the detailed description on the

extended TLS. Part V of the paper discusses about the

security analysis of the approach. The paper ends with a

conclusion.

II. RELATED WORK

Many discussions on remote attestation focus on

methods to enable a remote peer to be securely and

Journal of Communications Vol. 9, No. 1, January 2014

63©2014 Engineering and Technology Publishing

Manuscript received August 8, 2013; revised October 20, 2013.

reliably informed if the local platform has loaded new

software and whether the new local configuration adheres

to the remote platform acceptable configurations.[3, “in

press” 4, 5]. Dietrich [5] proposed a reliable method to

provide a proof for a configuration change. He claimed

the method can be implemented with only minor

modifications of the TPM specification and the TLS

protocol. The simple concept allows a reliable and secure

reporting of PCR changes and was designed to easily

integrate with TLS implementation. His method requires

some modification of TLC MAC computation within

TPM. However, no further explanations about the

linkage with the TLS protocol were provided.

Goldman et al. “in press” [6] were the first to propose

the inclusion of attestation in the setting up of secure

tunnel between two hosts. Specifically they look into

putting together SSL and remote attestation protocols.

The proposed protocol aims to establish an authenticated

shared key between two hosts and obtain assurance of the

server’s platform integrity. Their protocol uses three

certificates, namely, SSL endpoint certificate, AIK

certificate and Platform Property certificate. The first two

certificates are required for SSL and remote attestation

protocols, respectively. The Platform Property certificate

is introduced to bind the endpoint SSL certificate to the

AIK certificate. Unlike our protocol, the SSL certificate

is signed by the TPM using the AIK private key, instead

of a Certification Authority.

In 2007, Gasmi et al. “in press” [7] proposes some

changes in TLS handshake in order to insert attestation

protocol. Then in 2008, Armknecth et al.“in press” [8]

propose similar protocol but adhere to TLS protocol

standard toallow backward compatibility. Specifically,

the attestation protocol messages are sent over in the TLS

handshake extension. The protocol is defined for mutual

authentication and mutual attestation and is designed to

resist replay attack. Here each entity’s signing key pair is

generated and sealed in its TPM. In this way the protocol

provides assurance that the signature is produced by the

entity’s platform, and not another. These keys are very

similar to AIK. The difference is that Armknecth et al.

propose the signature verification keys to be included in

the TLS certificates.

Stumpf etal. [9] performed masquerading attack on

Sadeghi et al.“in press” [10] remote attestation protocol.

It happened when the server request for the attacker to

attest its platform, the attacker relay messages between

the server and a good client. So, the attacker succeeds in

attestation protocol although his platform is compromised.

This attack is successful because the server does not

know that the replies were not originally produced by the

attacker’s platform. To overcome this vulnerability,

Stumpf et al. added the Diffie-Hellman (DH) key

exchange to the remote attestation protocol.Our approach

differs in that we do not use Diffie-Hellman algorithm to

perform attestation in TLS handshake protocol.

Zhou and Zhang [11] performed collusion attack on

protocols in [8,9]. The attacker sends its DH public key to

the good client to be included in the hash and signed by

the good client’s AIK private key. This is the only way

the attacker can obtain a shared key with the server after

attestation using the good client’s platform. This attack is

applicable if there is a method to get the TPM to sign any

given data through valid software. Their approach differs

from ours because the SSL libraries do not need to be

modified when integrating with the attestation protocol.

Moreover, we also focus on preventing collusion attack.

III. PRELIMINARIES

A. TLS

SSL was developed in 1994 by Netscape

Communications Corporation to secure Internet

transaction. Then, SSL 3.0 became the basis of the

standard protocol, the TLS. The TLS authentication

protocol suite is based on public key cryptography. This

protocol allows client and server to authenticate

themselves to each other and allows both hosts to

establish an encrypted connection.

There are four components/parts of the TLS protocol,

separated into two layers. The first layer is TLS

Handshake protocol consisting of Handshake, Change

Cipher Spec and Alert protocol. The second layer is the

TLS record protocol where the data are transmitted

securely.The Handshake protocol uses the Record layer

protocol to establish a TLS connection by allowing

authentication and negotiation of a cryptographic

algorithm between a TLS-enabled server and a TLS-

enabled client.

TLS does not aim to provide the endpoint integrity

issue so it cannot assure the trustworthiness of involved

endpoints. Lack of the trustworthiness of client-server

system may lead to the Reply Illusion attack on TLS

Protocol. This can expose the private key to the attacker.

Hence, it is necessary to enhance the security of TLS

communication by enabling platform integrity between

client and server to ensure no malware or spyware is

present. The new TLS extensions protocol proposed is

embedded with Remote Attestation protocol process in

TLS to ensure the endpoint integrity of host platform.

The protocol approach will be explained in the next

section.

B. Attestation

Trusted platform module (TPM) is a hardware based

security chip which is developed in accord to the

specifications published by TCG. Currently, they are

manufactured by Infineon, Atmel and Broadcom. The

TPM provides root of trust and establishes chain of trust

of the platform. The chain of trust is the approach where

every link in the chain has been measured by the prior

one.

The TPM operations based on TCG architecture is

divided into three main categories; trusted measurement,

trusted reporting, and trusted storage [12]. Trusted or

integrity measurement consists of a service that measures

Journal of Communications Vol. 9, No. 1, January 2014

64©2014 Engineering and Technology Publishing

platform characteristics beforea measured software

component gets executed or run by producing a metric or

fingerprint using SHA-1 computed by the TPM. The

metrics will be stored in Storage Message Log (SML) and

Platform Configuration Registers (PCR). Integrity

measurement incorporates the same chain of trust process

into it, but instead of verifying, it makes the measurement.

Establishing trust of a computer system begins with

enhancing the computer BIOS with a Core Root of Trust

for Measurement (CRTM). CRTM is a piece of written

code stored in the boot block of the BIOS. This piece of

code is considered trustworthy. It reliably measures

integrity value of other entities, and stays unchanged

during the lifetime of the platform “in press” [13]. CRTM

will be the first to run to measure other parts of the BIOS

block before passing control. The BIOS then measures

hardware and the boot-loader and passes control to the

boot-loader. The boot-loader measures OS kernel and

pass control to the OS. After the OS is loaded or during

the boot process,the administrator can check for the PCR

values to see if it is running in the expected

configuration.Up to this point, the system configuration

has been measured and it is possible to verify the current

system configuration by examining the content of the

PCR.

The security of the attestation report is the value of

PCR digitally signed with the TPM public AIK. The

Endorsement Key (EK) public key is used to uniquely

identify a TPM and certified by an appropriate CA. The

EK private key can be used to sign assertions of the

trusted computer’s state. A remote computer can verify

that those assertions have been signed by a trusted TPM

[14].

Trusted storage is where cryptographic keys and data

are stored in the TPM. It consists of volatile and non-

volatile memory. The volatile memory is for the usage of

cryptographic protocols and storage of sensitive

information like passwords. The non-volatile memory

contains the AIK.

Remote attestation was adopted as the method for

remote assurance of the state of the hardware and

software running on the computing device. Attestation is

a process of assuring accurateinformationand closely

related to authentication. It is obviously a critical concept

for the trusted platform because the trust in the system is

based on taking measurements and checking the

measurements. If a system is not able to attest the

accuracy of the information, then the trust on the platform

cannot be established.

The TCG proposed two protocols for a client to

convince its remote communication partner that a piece

of hardware is trustworthy. In return, this enables two

communication partners to establish the secure

computing platform and therefore it is safe to exchange

data. These specified protocols are Privacy CA

“unpublished” [14] and Direct Anonymous Attestation

(DAA)“in press” [13, 15], [16].

The Privacy CA similar to Public Key Infrastructure

(PKI) which involves TTP in each transaction and the

party must be fully trusted by all other parties. The

Privacy CA is assumed to know the public parts of the

Endorsement Keys of all valid TPM. This valid TPM

refers to an uncompromised TPM. In contrasts, a rogue

TPM is a TPM that has been compromised and had its

secrets extracted. Now, whenever a TPM needs to

authenticate itself to a verifier, it generates a second RSA

key pair, called an Attestation Identity Key (AIK). Then,

it sends the AIK public key to the Privacy CA, and

authenticates this public key relating to the EK. The

Privacy CA will issue a certificate on the TPM’s AIK if it

finds the EK in its list.

DAA implements the Camenisch-Lysyanskaya

signature scheme [16] and zero-knowledge proof [17] to

exclude the usage of a Privacy CA, but various

exponential operations in its protocol leads to the lack of

efficiency. In this paper, we focus on built-in Privacy CA

implementationnamed as Trusted CA (TCA).

IV. NEW EXTENSION APPROACH

Our approach protocol does not require modification of

the TLS library and hence no changes to plug-ins in

user’s browser or application. Through this protocol, we

achieve the mutual authentication and mutual attestation

between two parties with the following advantages:

 Easy deployment because there are no changes

required in the TLS library. Theattestation protocol is

not yet standardized, so attestation only need to be

appliedasadditional plugin while using existing TLS

plugin.

 Backward compatible - if a host does not have TPM,

it can still connect toa server without attestation.

 Achieve anonymity and unlinkability via TPM and

TCA.

TABLE I: NOTATIONS OF PROTOCOLS

nhost non-predictable nonce of host getting from TLS

certRSA public key certificate signed by CA i.eVerisign

idhost unique Identifier of host for certRSA

idAIK identity label for the new AIK (AIK identifier)

SPCR
selection of PCR values verifier (client or server) is

interested in

PKAIK public verification key of AIK

SKAIK private verification key of AIK

pkTCA public verification key of the Trusted CA

PKEK public verification key of EK

SKEK private verification key of EK

Nv Nonce (anti-replay value) chosen by the verifier

IV
Indicator whether verifier is interested in TPM
version information

TPMinfo TPM version and revision information

certAIK Attestation Credential (from Trusted CA)

Mlog TPM Platform measurement log

Journal of Communications Vol. 9, No. 1, January 2014

65©2014 Engineering and Technology Publishing

The extended protocol consists of three defined

protocols: registration (P1), AIK certificate creation (P2)

and TPM-based attestation (P3) protocol. Table I defines

the notations of the protocols.

A. Registration Protocol (P1)

This protocol must take place first before any

transaction between client and server. It requires the host

to request EK certificate from the TCA by providing the

necessary TPM EK public key. The TCA signs the

certificate request using its private key if the TPM EK

public key is valid and thenthe identity of host is added to

the list of acknowledged clients. The EK certificate also

indicates that the EK has been properly created and

embedded into a TPM. In this paper, the TCA acts as the

TPM manufacturer and is fully trusted not to reveal any

information to any other party. This is important to

protect any correlation of AIKs with corresponding

platform identity (EK).

In this phase, the host needs to register to other

communicating entity to acknowledge each other’s

policies such as integrity measurement reference point.

Based on the policies, the host computes the core

integrity measurement values and sends the valuesto the

endpoint entity for future reference. The entity can use

TPM sealing mechanism to secure the core values. As we

know, the TPM can generate authentic reports of current

PCR contents that contain current integrity measurement

values. These current values will be compared with the

core values in the attestation channel.

B. AIK Certificate Creation Protocol (P2)

TABLE II: AIK CERTIFICATE CREATION PROTOCOL (P2)

Protocol : AIK Certificate Creation Phase (P2)

SUMMARY: Host(H) creates AIK and signing the AIK with
TCA (T)

RESULT: Unilateral AIK certificate creation with TCA

H : Retrieve nhost

H : Generate idAIK = hash(idhostǁnhost)

H : TPM loadKey(skAIK)

H :
σTPM = TPM MakeIdentity=

sign(hash(idAIKǁ pkTCA))

H→T : encTCA(pkAIK,certRSA, nhost, σTPM,pkEK)

T : Verify EK credential, σTPM

T : Verify certRSA, generate idAIK= hash(idhostǁnhost)

T : Issue certAIK = signTCA(pkAIK, idAIK)

T : Create symmetric encryption key, K

H←T : C1 = encEK(K, hash(pkAIK)), C2 = encK(certAIK)

H :
K, hash(pkAIK) =TPM

ActivateIdentity=decEK(C1)

H : Verify pkAIK, hash(pkAIK)

H : Retrieve certAIK = decK(C2)

Table II illustrates the AIK generation process adopted

from [12]. In order to prevent replay and collusion attack,

we have proposed the creation of identity label for new

AIK as:

idAIK= hash (idcertRSA ǁ nhost)

This AIK unique identity is linkable with TLS

connection which the nhost is generated during TLS

handshake and idcertRSA is unique identifier of the host

signed by other CA. Hence, idcertRSA is represented by

idhostas in Table II.

C. TPM-based Attestation Protocol (P3)

The integrity reporting protocol represent as P3 which

was extracted from [19], [20]. This protocol is based on

TPM challenge-response authentication and able to

prevent non-authentic integrity information execution by

maintaining freshness and authenticity of the integrity

information. The random number nonce of client and

server are used to verify freshness. MAC of TLS session

key-establishment is used as encryption key for all

messages between client and server including integrity

information in order to ensure the messages’ authenticity.

Table III simplifies this TPM-based attestation protocol

[9], [18] after each host performs P2 to get CertAIK.

TABLE III: TPM-BASED ATTESTATION PROTOCOL (P3)

Protocol : AIK Certificate Creation Phase (P3)

SUMMARY: S answers the attestation challenge of platform C

RESULT: Integrity reporting - unilateral attestation

C ← S : NS, IV, SPCR

C : TPM loadKey(skAIK)

C :
σTPM=TPM_Quote=sign{PCR, NS, TPMinfo}
SKAIK

C : Retrieve Mlog

C → S : Q = (Mlog, σTPM, TPMinfo, certAIK), MACsess(Q)

S : Verify CertAIKusing PKAIK

S : Verify σTPMusing TPMinfo, NS, and PCRSPCR

D. Mutual Attestation on TLS

In our protocol, we used the AIK certificate for the

TLS handshake in order to achieve anonymity from

server and unlinkability by eavesdropper active listener.

After the TLS handshake, we use the session key to

perform remote attestation to handle the endpoint

integrity issue. We have overcome the following issues:

 The client and server host without integrity

verification cannot be trusted because secret

information can be revealed to any adversary platform

by unverified applications inside the host system itself.

 The unverified applications can be compromised

either by malicious codes.

Journal of Communications Vol. 9, No. 1, January 2014

66©2014 Engineering and Technology Publishing

Fig. 1. New extend TLS with attestation approach

TABLE IV: EXTENDED TLS WITH MUTUAL ATTESTATION PROTOCOL

Protocol : Achieving mutual attestation on TLS

SUMMARY: C and S sends attestation challenge to each other

RESULT: Mutual authentication and mutual attestation between C

and S

1. System Setup

C and S must generate idx and sign it with CA (i.e. Verisign) to get

CertRSA(x) then perform registration protocol (P1) to S to obtain

CertEK.

2. Protocol Messages

1 C → S : nc, Sid, Pc (client hello)

1 C ← S : ns, Sid, Ps (server hello)

2 C ← S : certRSA(s) (server cert)

3 (1) C (2) : (3) VerifycertRSA(c)(pkCA) (4) (certverify)

4 (5) C→S (6) : (7) cert RSA(c) (8) (clientcert)

4 C → S : Finished sessionkey, kcs (client finished)

5 S : Verify certRSA(c)(pkCA) (cert verify)

6 C ← S : Finished sessionkey, kcs (server finished)

7’ S : idAIKs = hash(ids|| ns)

7’ S : certAIK(s) AIK creation Protocol (P2)

7’ S : attestDataS Attestation Protocol (P3)

8’ C ← S : attestDataS, MACkcs(attestDataS)

9’ C : id’scertRSA(s)

9’ C : id”s hash (id’s || ns)

9’ C : Verify [certAIK(s), (id”s,pkAIKs), pkTCA]

9’ C :
Verify attestDataSAttestation Protocol

(P3)

10’ C : idAIKc = hash(idc || nc)

10’ C : certAIK(c) AIK creation Protocol (P2)

10’ C : attestDataC Attestation Protocol (P3)

11’ C → S : attestDataC, MACkcs(attestDataC)

12’ S : id’ccertRSA(c)

12’ S : id”c hash (id’c|| nc)

12’ S : Verify [certAIK(c), (id”c,pkAIKc), pkTCA]

12’ S :
Verify attestDataCAttestation Protocol

(P3)

12’ C ← S : status, MACkcs (status)

We have illustrated this protocol sequence as Fig. 1

and detail protocol message in Table IV.

V. SECURITY ANALYSIS

This paper will discuss the security analysis using

informal analysis followed by formal analysis using the

AVISPA protocol prover [21].

A. Informal Security Analysis

For informal security analysis, we focus on replay

attack and collusion attack that are handled by our

approach. Replay attack is an attack where data packets

are intercepted between two parties and are later re-sent

by the attacker to one or more of the parties. It is also

called as freshness attack because the loss of freshness of

the information during transmission. In this case, the

adversary does not necessarily distinguish the message

content since he only retransmit the older message and

blocking any new fresh messages to receiver. This

hacking technique usually was played by the adversary

called as Man-in-the-Middle attack.

Collusion attack is a new type of attack during which a

compromised host asks the information from a trusted

host in order to answer attestation challenges. This attack

also utilizes the replay attack technique with collaborative

mechanism. As example, we adopted [9] protocol that is

vulnerable to this attack as discussed in [11] as in Fig. 2.

The figure shows that the server M passed attestation

challenge request of client C without revealing M's

session key information.

Fig. 2. Collusion attack scenario example

Replay attack can be launched by the client or the

server. For our protocol, the aim of the attack is for a

compromised host to attest successfully. This is achieved

by making another host to provide good attestation data

and relaying it to the verifier. As such, the compromised

host will be accepted as a good platform. Suppose the

server S wants to launch a replay attack in the protocol.

The server S will begin the attack after the TLS ends and

the attestation stage begins. Server S will coerce another

host, V to provide attestation data, attestData which

includes PCR values and SML values which will then be

signed with V's AIK signing key. When server S obtains

the values, signature and V's AIK certificate, S computes

the Message Authentication Code (MAC) of the whole

message using the session key k.Then S sends all of the

information to the client.

Journal of Communications Vol. 9, No. 1, January 2014

67©2014 Engineering and Technology Publishing

We argue that the AIK certificate verification will fail

because

ids = hash(idsǁ ns) ≠idV

where ids is the server’s identifier in its RSA certificate

while idV is the victimized host AIK identifier in the AIK

certificate. At this point the protocol will be aborted and

hence the attack fails.

The only way for S to make the attack successful is by

registering V's RSA certificate to the TCA to be

associated with S’s endorsement key. Assuming that the

TCA carefully verifies the submitted RSA certificate

against the identity of the host during registration phase,

attempts to associate one host’s RSA certificate to

another host’s endorsement key will fail. Clearly, here the

TCA is a fully trusted party.

Collusion attack is similar to replay attack, but the

third host is now an accomplice of the adversarial host.

As in the replay attack example, let the adversary be in

the server S. For collusion attack, the host V cooperates

with S to enable S to successfully attest itself to the client.

Clearly, in this attack, the best chance to be successful is

to register S's RSA certificate with V's TPM EK. The

alternatives are to register S’s RSA certificate with its

own EK or register V’s RSA certificate with V's EK to

the TCA. If the first option is performed, then verification

of attestation data will fail because it will be signed using

V’s AIK signing key. The second choice will fail at the

AIK certificate verification stage because TLS will only

be successful if S’s RSA certificate is presented, while

the AIK certificate contains V’s identifier.

Here we attack by having server S registers its RSA

certificate with V's endorsement key EK. During

registration, there will be discrepancy between the

identifier in the RSA certificate which holds S's name and

the TPM (or EK) owner name which contains V's name.

The TCA is expected to detect such discrepancies and

reject the registration.

Otherwise, during the protocol, V generates AIK key

pair and then S relay all messages between TCA and V to

obtain AIK certificate. Then, S performs TLS with the

client using its RSA certificate as usual. TLS run will be

successful and the session key will be established.

However, at the attestation stage, S again relays the

message to V who would provide the attestation data.

In this case, the AIK certificate is found valid by the

client because the AIK certificate contains S's identifier.

Hence, the protocol will establish a trusted channel

between the client and server S. Therefore, the TCA must

be honest and trusted to perform identity checks during

registration.

B. Formal Security Analysis

We used the Automated Validation of Internet Security

Protocols and Applications (AVISPA) [22] tool in order

to prove our security protocol. AVISPA uses High Level

Protocol Specification (HLPSL) [23] as the specification

language to present the analyzed protocols and to specify

the protocol’s security properties. AVISPA is very

expressive with great flexibility to analyze cryptographic

protocols. This tool doesnot require expertise or skills in

mathematics. However, it is so complex to define

implementation environment of a protocol and user-

defined intrusion model in order to convert the protocol

into HLPSL

All formal cryptographic protocols analyzers generally

implement Dolev-Yao intruder model [24]. The Dolev-

Yao model assumesan intruder can control the entire

network, performs cryptographic operations available to

authentic users of a system, and is in association with a

subset of dishonest principals. But, the special types of

insider attacks which are able to create authentic message

might not be detected in the Doley-Yao model. The

insider attacks are a very potent attack type because the

adversary takes over the honest platform including the

TPM. However, through AVISPA, our protocol’s

security properties can be achieved using the

authentication phase and key-establishment verification

and against the Dolev-Yao attackers.

The HLPSL is a role-based language consisting of

basic roles and composition roles. Basic roles are defined

as communicating entities which participate in the

protocol. Other than the communicating entities,

environment and session of protocol execution also

declared as roles. Composition roles represent scenario of

the basic roles. Each role has its own variables.

Communication networks in the protocol are represented

by the variables which transmits different properties of a

particular environment. In HLPSL model of our protocol,

we define several roles; A (modelling the client) and B

(modelling the server), intruder model and environment.

Since our protocol integrates with TLS protocol, we

modified the HLPSL model of TLS protocol adopted

from [23].The complete code of the HLPSL model for

this protocol is presented in Appendix A.

The basic roles defined the information of initial

parameters, state, and the state transition. Refer the role

of client (A) and server (B) with their global variables in

Appendix Afor the state transition.

Currently, AVISPA tool only supportsDolev-Yao model

which is handled by (dy) channels. As mentioned earlier,

the intruder in Dolev-Yao model is an authentic user of

the network who has full ability to control all

transmission messages over the network. In the HLPSL,

we named the channel as SA, RA which denotes send or

receive for Client (A) and SB, RB denotes as send or

receive for Server (B). Since the channels comprise of

changes values, whether it is empty or not, so we assume

these values are represented by a global parameter. This

parameter aremodeled as variable V which is also known

as potential attacker.role session (A,B: agent, V: text,

Ka, Kb, Ks, Kca, KaikA, KaikB: public_key,

 H, PRF, KeyGen: hash_func)

def=
 local SA, SB, RA, RB: channel (dy)

composition

 client(A,B,H,PRF,KeyGen,V,Ka,Ks,KaikA,Kca,SA,RA)

Journal of Communications Vol. 9, No. 1, January 2014

68©2014 Engineering and Technology Publishing

 /\server(A,B,H,PRF,KeyGen,V,Kb,Ks,KaikB,Kca,SB,RB)
end role

The environment role contains the knowledge of the

intruder behaviour and composition of session. The

knowledge specified to the intruder is defined by global

constants of assigned variables. The composition of

session is modeled in order to make the intruder able to

play as legitimate user.

The section goal is to define the security properties

using predefines macros. The available macros relate to

the secrecy of some information and the strong or weak

authentication of agents of some information. The goal is

identified by predefined predicates (secret, witness,

request, and wrequest) in the state transition. The

protocol goal is mutual authentication and to establish a

secret key between the client and server. The intruder

should not be able to accomplish valid authentication

since he could not learn the secret session key, ClientK

and ServerK.

goal

secrecy_ofsec_clientk,sec_serverk
 %Client authenticates Server on na_nb1

authentication_on na_nb1

 %Server authenticates Client on na_nb2
authentication_on na_nb2

authentication_onsk_verify

secrecy_ofsec_smla, sec_smlb
authentication_onsmla_verify, smlb_verify

We have specified different security goals based on

state transitions in the events using secret, witness and

request structure which are verified through AVISPA as

follows:

 Client authenticates Server on the value of Ncwhereby

only Server is able to sign Nc using his own private

key.

 Server authenticates Client on the value of Nswhere

only Server is able to sign Ns using his own private

key.

 Client and Server authenticate the TPM attestation

data of each other on the Finished messages where

Client and Server share the key Kcs. The Kcs remains

secret and confidential.

 Client and Server share the Stored Measurement Log

(SML) to re-compute value for attestation validation

which is kept secret and privacy related.

Through AVISPA, we are able to specify the

authentication goals using witness and request command.

The secrecy goal also can be attained using secret

command. We are going to discuss these commands as

unilateral authentication. For normal authentication goal

as statement [1a][1b][2a][2b] and attestation goal which

involves TPM as statement [1c][2c].

/\ witness(A,B,na_nb2,Na.Nb') [1a]
/\ witness(A,B,sk_verify,ClientK) [1b]

The statement [1a] means that agent A createsNa.Nb’

value for agent B and wants agent B to agree to the value.

The value created is for the na_nb2 purpose, which

means that it is secure from intruder. Similarly, statement

[1b] means that agent A declares the sk_verify purpose

and he wants agent B to agree on the value ClientK.

/\ request(B,A,na_nb2,Na.Nb) [2a]

/\ request(B,A,sk_verify,ServerK) [2b]

The statement [2a] implies that agent B believes that

he communicates with agent A and accepts the value of

Na_Nb for the na_nb2 purpose. The statement [2b] is

read as agent B requests a check of ServerK value (where

ClientK is equal to ServerK), agrees with agent A on this

valueswhich relies on the guarantee that agent A exists.

/\ request(A,B,smlb_verify,SMLb) [1c]

/\ witness(B,A,smlb_verify,SMLb’) [2c]

The attestation goal starts with the statement [2c]

which declares that agent B is the witness for the

information SMLband wants agent A to agree with the

information for smlb_verify purposes. Then in statement

[1c], agent A requests a check of the information SMLb

and agrees with the value.

We analyzed the HLPSL model of protocol using

SPAN [25]. The result showed that no attack trace is

found. So, the security properties of the protocol are

fulfilled and secure against Dolev-Yao attackers.

VI. CONCLUSION

This paper proposed extending TLS protocol with

mutual attestation in order to guarantee platform integrity

of client-server environment. Many existing solution

required the TLS library modification since the attestation

embedded in the TLS handshake protocol. Our solution

does not require the changes since the attestation protocol

can be applied as additional plugin to theexisting TLS

library. This solution achieves anonymity and

unlinkability through TPM and Trusted CA and provides

linkagebetween identity and integrity of endpoint

platform. Similar with Zhang et.Al., our protocol is also

resistant to thenew type of collusion attack as well as

replay attack. Through the informal security analysis, we

discussed the probability of the protocol to prevent the

attacks. Using the AVISPA, the result shows that our

protocol is secure against the Dolev-Yao attackers where

no attack trace is found.

APPENDIX A AVISPA SOURCE FOR EXTENDED TLS WITH

MUTUAL ATTESTATION PROTOCOL

role client(A, B : agent, H, PRF, KeyGen: hash_func, V: text,

Ka, Ks, KaikA,Kca: public_key,

 %% Ks is the public key of a T3P (ie. CA)
 SND, RCV: channel (dy))

played_by A

def=

 local Na, Nb, Sid, Pa, Nw: text,

 State: nat,
 Finished: hash(hash(text.text.text).agent.agent.text.text.text),

ClientK, ServerK: hash(agent.text.text.hash(text.text.text)),

Kb,KaikB: public_key,

Journal of Communications Vol. 9, No. 1, January 2014

69©2014 Engineering and Technology Publishing

 % certificates for the private key inv(KaikA)

CertAikA: {agent.public_key.text}_inv(public_key),
 % certificates for the private key inv(KaikB)

CertAikB: {agent.public_key.text}_inv(public_key),

KaikSetA, KaikSetB:public_key set,
KcaSet:public_key set,

SMLa,SMLb:hash(agent.nat.text.text),

PCRa, PCRb:{hash(agent.nat.text.text)}_inv(public_key),
M: hash(text.text.text)

constsec_clientk, sec_serverk : protocol_id
init State := 0

 transition
 1. State = 0

 /\ RCV(start)

 =|>
 State' := 2

 /\ Na' := new()

 /\ Pa' := new()
 /\ Sid' := new()

 /\ SND(A.Na'.Sid'.Pa')

 2. State = 2

 /\ RCV(Nb'.Sid.Pa.{B.Kb'}_(inv(Ks)))

 =|>
 State' := 4

 /\ Nw' := new()

 /\ M' := PRF(Nw'.Na.Nb')
 /\ Finished' := H(PRF(Nw'.Na.Nb').A.B.Na.Pa.Sid)

 /\ ClientK' := KeyGen(A.Na.Nb'.PRF(Nw'.Na.Nb'))

 /\ ServerK' := KeyGen(B.Na.Nb'.PRF(Nw'.Na.Nb'))
 /\ SND({Nw'}_Kb'.

 {A.Ka}_(inv(Ks)).

 {H(Nb'.B.Nw')}_(inv(Ka)).
 {H(PRF(Nw'.Na.Nb').

A.B.Na.Pa.Sid)

 }_KeyGen(A.Na.Nb'.PRF(Nw'.Na.Nb')))
 /\ witness(A,B,na_nb2,Na.Nb')

 3. State = 4
 /\ RCV({Finished}_ServerK)

 =|>

 State' := 6
 /\ request(A,B,na_nb1,Na.Nb)

 /\ secret(ClientK,sec_clientk,{A,B})

 /\ secret(ServerK,sec_serverk,{A,B})

 4. State=6

 /\ RCV(B.PCRb'.SMLb'.CertAikB'.
{PRF(PCRa'.SMLb'.CertAikB)}_ClientK)

 /\ CertAikB'={B.KaikB'.KaikSetB'}_inv(Kca')

 /\ in(Kca',KcaSet)
 /\ request(A,B,smlb_verify,SMLb)

 =|>

 State' := 8

 /\ SMLa':= new()

 /\ PCRa':= {SMLa}_inv(KaikA)
 /\ KaikA' := new()

 /\ CertAikA':={A.KaikA'.KaikSetA'}_inv(Kca')

 /\ SND(A.PCRa'.SMLa'.CertAikA'.
{PRF(PCRa'.SMLa'.CertAikA')}_ClientK)

 /\ witness(A,B,sk_verify,ClientK)

 /\ secret(SMLa,sec_smla,{A,B})
 /\ witness(A,B,smla_verify,SMLa)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role server(A, B : agent,

 H, PRF, KeyGen: hash_func,
 V: text,

 Kb, Ks,Kca,KaikB: public_key,

 SND, RCV: channel (dy))

played_by B

def=

 local Na, Nb, Sid, Pa, Nw: text,
State:nat,

Ka,KaikA: public_key,

ServerK:hash(agent.text.text.hash(text.text.text)),
 % certificates for the private key inv(KaikA)

CertAikA: {agent.public_key.text}_inv(public_key),

 % certificates for the private key inv(KaikB)
CertAikB: {agent.public_key.text}_inv(public_key),

KaikSetA, KaikSetB:public_key set,
KcaSet:public_key set,

SMLa, SMLb:hash(agent.nat.text.text),

PCRa,PCRb:{hash(agent.nat.text.text)}_inv(public_key)

init State := 1

 transition
 1. State = 1

 /\ RCV(A.Na'.Sid'.Pa')

 =|>
 State' := 3

 /\ Nb' := new()

 /\ SND(Nb'.Sid'.Pa'.{B.Kb}_(inv(Ks)))
 /\ witness(B,A,na_nb1,Na'.Nb')

 2. State = 3
 /\ RCV({Nw'}_Kb.{A.Ka'}_(inv(Ks)).

 {H(Nb.B.Nw')}_(inv(Ka')).

 {H(PRF(Nw'.Na.Nb).
A.B.Na.Pa.Sid)

 }_KeyGen(A.Na.Nb.PRF(Nw'.Na.Nb)))

 =|>
 State' := 5

 /\ ServerK':=KeyGen(B.Na.Nb.PRF(Nw'.Na.Nb))

 /\ SND({H(PRF(Nw'.Na.Nb).
A.B.Na.Pa.Sid)

 }_KeyGen(B.Na.Nb.PRF(Nw'.Na.Nb)))

 /\ request(B,A,na_nb2,Na.Nb)

 3. State = 5

 /\ RCV(start)
 =|>

 State' := 7

 /\ SMLb':= new()
 /\ PCRb':= {SMLb}_inv(KaikB)

 /\ CertAikB':={A.KaikB'.KaikSetB'}_inv(Kca')

 /\ SND(A.PCRb'.SMLb'.CertAikB.{
PRF(PCRb'.SMLb'.CertAikB)}_ServerK)

 /\ witness(B,A,smlb_verify,SMLb)

 /\ secret(SMLb,sec_smlb,{A,B})
 /\ request(B,A,sk_verify,ServerK)

 4. State= 7
 /\ RCV(A.PCRa'.SMLa'.CertAikA.{

PRF(PCRa'.SMLa'.CertAikA)}_ServerK)

 /\ CertAikA'={A.KaikA'.KaikSetA'}_inv(Kca')
 /\ in(Kca',KcaSet)

 =|>

 State' := 9
 /\ request(B,A,smla_verify,SMLa)

end role

role session(A,B: agent, V: text,
 Ka, Kb, Ks, Kca, KaikA, KaikB: public_key,

 H, PRF, KeyGen: hash_func)

def=
 local SA, SB, RA, RB: channel (dy)

 composition

 client(A,B,H,PRF,KeyGen,V,Ka,Ks,KaikA,Kca,SA,RA)
 /\ server(A,B,H,PRF,KeyGen,V,Kb,Ks,KaikB,Kca,SB,RB)

end role

Journal of Communications Vol. 9, No. 1, January 2014

70©2014 Engineering and Technology Publishing

role environment()

def=

const
na_nb1, na_nb2, sec_smla, sec_smlb,

smla_verify, smlb_verify, sk_verify: protocol_id,

h, prf, keygen : hash_func,
a, b : agent,

v : text,

ka, kb, ki, ks, kaika, kaikb, kca: public_key
intruder_knowledge =

 { a, b, ka, kb, ks, kca, kaika, kaikb, ki, inv(ki),
 {i.ki}_(inv(ks)), {i.ki}_(inv(kca)) ,v}

 composition

 session(a,b,v,ka,kb,ks,kca, kaika,kaikb,h,prf,keygen)
 /\ session(a,i,v,ka,ki,ks,kca,kaika,kaikb,h,prf,keygen)

 /\ session(i,b,v,ki,kb,ks,kca,kaika,kaikb,h,prf,keygen)

end role

goal

secrecy_ofsec_clientk,sec_serverk

authentication_on na_nb1
authentication_on na_nb2

authentication_onsk_verify

secrecy_ofsec_smla, sec_smlb
authentication_onsmla_verify,smlb_verify

end goal

environment()

REFERENCES

[1] Trusted Computing Group. Trusted Platform Module (TPM)

Specifications. Technical Report. [Online]. Available:

https://www.trustedcomputinggroup.org/specs/TPM, 2008.

[2] Trusted Computing Group, TCG TPM Specification Version 1.2

Revision 103, Design Principles, Technical report, TCG, July

2007.

[3] A. Bottoni and D. Gianluca, “Credentials and beliefs in remote

trusted platforms attestation,” in Proc. International Symposium

on a World of Wireless, Mobile and Multimedia Networks, IEEE,

University of Pisa, Italy, 2006.

[4] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on

legacy operating system with trusted platform modules,” Elsevier

Science of Computer Programming, vol. 74, no. 1-2, pp. 13-22,

2008.

[5] K. Dietrich, “A secure and reliable platform configuration change

reporting mechanism for trusted IEEE computing enhanced secure

channels,” presented at the 9th International Conference for

Young Computer Scientists, 2008.

[6] K. Goldman, R. Perez, and R. Sailer, “Linking remote attestation

to secure tunnel endpoints,” in First ACM Workshop on Scalable

Trusted Computing, New York, ACM, November 2006, pp. 21-24.

[7] Y. Gasmi, A. R. Sadeghi, P. Stewin, M. Unger, and N. Asokan,

“Beyond secure channels,”in Proc. ACM Workshop on Scalable

Trusted Computing, 2007.

[8] F. Armknecht, Y. Gasmi, A-R. Sadeghi, P. Stewin, M. Unger, G.

Ramunno, and D. Vernizzi, “An efficient implementation of

trusted channels based on open SSL,” in Proc. 3rd ACM

Workshop on Scalable Trusted Computing, New York, ACM,

2008, pp. 41-50.

[9] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert, “A robust

integrity reporting protocol for remote attestation,” presented at

Second Workshop on Advances in Trusted Computing, Tokyo,

Japan, November 2006.

[10] A. R. Sadeghi and C. Stueble. “Property-based attestation for

computing platforms: Caring about properties, not mechanisms,”

in Proc. Workshop on New Security Paradigms, ACM, 2004, pp.

66-77.

[11] L. Zhou and Z. Zhang, “Trusted channels with password-based

authentication and TPM-based attestation,” in Proc. International

Conference on Communications and Mobile Computing, 2010, vol.

1, pp. 223-227.

[12] A. R. Sadeghi, “Trusted computing–special aspects and

challenges,” in Proc. SOFSEM 2008: Theory and Practice of

Computer Science, Lecture Notes in Computer Science, 2008, vol.

4910, pp. 98-117.

[13] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous

attestation,” in Proc. 11th ACM Conference on Computer and

Communications Security, New York, 2004, pp. 132-145.

[14] J. Farris, “Remote attestation,” presented at Urbana-Champaign,

University of Illinois, Dec 6, 2005,

[15] L. Q. Chen, R. Landfermann, H. Löhr, M. Rohe, A-R. Sadeghi, C.

Stueble, and Horst Görtz, “A protocol for property-based

attestation,” in Proc. First ACM workshop on Scalable Trusted

Computing, New York, 2006, pp. 7-16.

[16] J. Camenisch, “Direct anonymous attestation: Achieving privacy

in remote authentication,” Technical report, Information Security

Colloquium, IBM Research, Zurich Research Laboratory, 2004.

[17] J. Camenisch, “Better privacy for trusted computing platforms,”

Technical Report, IBM Research, Zurich Research Laboratory,

2005.

[18] J. Reid, J. M. G. Nieto, and Ed Dawson, “Privacy and trusted

computing,” in Proc. 14th International Workshop on Database

and Expert Systems Application, IEEE, 2003.

[19] F. Stumpf, “Leveraging attestation techniques for trust

establishment in distributed systems,” Ph.D dissertation,

Department of Computer Science, Technische Universitat

Darmstadt, Germany, 2010.

[20] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and

implementation of a TCG-based integrity measurement

architecture,” presented at 13th USENIX Security Symposium,

IBM T. J. Watson Research Center, 2004.

[21] S. Goldwasser, S. Micali, and C. Racko, “The knowledge

complexity of interactive proofs,” SIAM J. Computer, vol. 18, no.

1, pp. 186-208, 1989.

[22] Automated Validation of Infinite-State Systems. (2002). AVISPA

v1.1 User Manual, Document version: 1.1 edn., Information

Society Technologies Programme (1998-2002). [Online].

Available: www.avispa-project.org

[23] The AVISPA Team. (2006). HLPSL Tutorial-Beginners Guide to

Modelling and Analysing Internet Security Protocols, 1st edn.,

European Community under the Information Society Technologies

Programme (1998-2002). [Online]. Available: www.avispa-

project.org

[24] D. Dolev, and A. C. Yao, “On the security of public key protocols,”

presented at the IEEE 22nd Annual Symposium on Foundations of

Computer Science, 1981.

[25] Y. Gloucher, T. Genet, and E. Houssay, “SPAN a security

protocol animator for AVISPA,” INRIA/IRISA LANDE Project,

2008.

NorazahAbd Aziz is Senior Researcher at
MIMOS Berhad since 2001. She graduated

from the University Technology Malaysia with

a bachelor's degree in Computer Science in
2003. Currently, she is pursuing her Masters

degree at UPM. Her research focus is on

utilisation of Trusted Platform module,
specificallyon attestation protocol.

Journal of Communications Vol. 9, No. 1, January 2014

71©2014 Engineering and Technology Publishing

http://link.springer.com/book/10.1007/978-3-540-77566-9
http://link.springer.com/book/10.1007/978-3-540-77566-9
http://link.springer.com/bookseries/558

Assoc. Prof. Dr. NurIzuraUdzir is an

academic staff at the Faculty of Computer

Science and Information Technology,

Universiti Putra Malaysia (UPM) since 1998.

She received her Bachelor of Computer

Science (1995) and Master of Science (1998)

from UPM, and her PhD in Computer Science

from theUniversityof York, UK (2006). She is

a member of IEEE Computer Society and a

Committee Member of Information Security Professionals Association

of Malaysia (ISPA.my). Her areas of specialization are access control,

secure operating systems, intrusion detection systems, coordination

models and languages, and distributed systems. She is currently the

Leader of the Information Security Group at the faculty.

Professor DrRamlanMahmod obtained his
degree in Computer Science from Michigan

State University, USA and his Master in

Computer Science from Central Michigan
University, USA. His PhD is in Artificial

Intelligence from Bradford University, United

Kingdom. He has been a lecturer atUniversiti
Putra Malaysia1985 and is currently the Dean

of Computer Science Faculty, Universiti Putra

Malaysia. He was seconded to MIMOS
Berhad for two years from 2008 -2009 to help R&D in Trusted

Computing and Information Security. He has published more than 75

journal papers and more than 110 articles in conference proceedings. He
has filed 10 patents and holding more than 10 software copyrights.

More than 25 PhD and Master student graduated under his supervision

and currently supervising and co-supervising more than 15 PhD and
Master student. His current research interest is Information Security

especially in Cryptographic Algorithms, Steganography, Digital

Forensics and Trusted Computing.

Journal of Communications Vol. 9, No. 1, January 2014

72©2014 Engineering and Technology Publishing

