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Abstract—Modeling of network structures has been a popular 

issue in the study of complex networks. The use of complex 

network theory in modeling complex networks has gradually 

become a trend. In this study, the current research status of the 

modeling of complex networks was synthesized based on the 

BA scale-free network model. The advantages and 

disadvantages of most mainstream models were integrated, and 

a complex network model was established from the view of 

hierarchical community structures. Furthermore, a dynamic 

evolution network model was built by establishing a new 

evolution rule of cellular automata. Simulation experiments 

were conducted to validate the model. Results revealed that the 

network exhibits a power-law behavior and has a clear, 

controlled community structure. The model can suitably 

describe the characteristics of complex network topologies. 
 
Index Terms—complex network, evolution model, community 

structure, cellular automata 

 

I. INTRODUCTION 

With the increased scale of modern networks, network 

structures have become increasingly complicated. The 

requirements of complex network design have become 

difficult to satisfy when the traditional network model is 

employed. The use of complex network theory to model 

complex networks has gradually become a research hot 

spot. The geometric properties, formation mechanisms, 

statistical law, and structural stability of the network as 

well as the combination of these elements within a 

specific system are the core issues in the research on 

complex networks. Network topology can effectively 

solve the problem of network transmission behavior. 

Thus, establishing an appropriate network topology 

model for different purposes, such as to predict and 

improve network performance is very important. 

Since the emergence of complex network theory, 

modeling of complex networks has always been a hot 

topic, a lot of excellent and mature network model have 

been generated. 

As shown in Fig. 1, the evolution of complex network 

models has passed through four stages: regular networks, 

random networks, small-world networks and scale-free 

networks. 

                                                           
 Manuscript received September 2, 2013; revised December 8, 2013. 
Corresponding author email: yhliu@mail.ccnu.edu.cn. 

doi:10.12720/jcm.8.12.862-869 

In the early network theory, it is mainly through the 

regular networks to analyze network properties. In this 

model nodes must be connected to each other in 

accordance with the strict rules established in advance. In 

the 1960s, the random network model was proposed, 

which is obtained by starting with a set of n  isolated 

nodes and adding successive edges between them at 

random. This model has small average path length, and 

has no clustering characteristics, which does not match 

with the reality; a real network usually has very obvious 

aggregation characteristics. 

  

 (a) regular network (b) random network 

 
 

(c) small-world network (d) scale-free network 

Fig. 1. Comparison of four classic network models 

The small-world network is a type of mathematical 

graph in which most nodes are not neighbors of one 

another, but most nodes can be reached from every other 

by a small number of hops or steps. In 1998, Watts and 

Strogatz [1] proposed a type small-world network model, 

which is a random networks generation model that 

produces networks with small-world properties, including 

short average path lengths and high clustering coefficient. 

Given the desired number of nodes N , the mean 

degree K  (assumed to be an even integer), the model 

constructs an undirected graph with N  nodes and 

2NK  edges in the following way: 

Construct a regular ring lattice, a graph with N  

nodes each connected to K  neighbors, 2K on each 

side. Randomly with probability p reconnecting each 

edge of the network, that is, one node on the edge 

remains unchanged, another is selected randomly in the 

network. When the probability p tends to 0, the network 

will tends to a rule network, when it tends to 1; the 

network will tends to a random network. 

The major limitation of this model is that it produces 

an unrealistic degree distribution. In contrast, real 
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networks are often scale-free networks inhomogeneous in 

degree, having hubs and a scale-free degree distribution. 

The Watts and Strogatz model also implies a fixed 

number of nodes and thus cannot be used to model the 

growth of network. 

In 1998, Barabási and Albert proposed an algorithm 

for generating random scale-free networks using a 

preferential attachment mechanism [2], [3]. Scale-free 

networks are widely observed in natural and human-made 

systems, including the Internet, the world wide web, 

citation networks, and some social networks. 

The network begins with an initial connected network 

of 0m  nodes. 

New nodes are added to the network one at a time. 

Each new node is connected to 0( )m m m  existing 

nodes with a probability that is proportional to the 

number of links that the existing nodes already have. 

Formally, the probability ip  that the new node is 

connected to node i   is 

i
i

jj

k
p

k



 

where ik  is the degree of node i  and the sum is made 

over all pre-existing nodes j  (i.e. the denominator 

results in the current number of edges in the network). 

Heavily linked nodes ("hubs") tend to quickly accumulate 

even more links, while nodes with only a few links are 

unlikely to be chosen as the destination for a new link. 

The new nodes have a "preference" to attach themselves 

to the already heavily linked nodes. 

In recent years, academics believe the real network 

should also have three characteristics, namely 

small-world, community structure and scale-free. 

However, the small-world model does not reflect the 

scale-free characteristics, the scale-free model has short 

average path length, and has very low clustering 

coefficient. To this end, with the classic small-world and 

scale-free networks as the prototype, researchers made a 

lot of such as forecasts, cooperation, competition, 

absorption, elimination, the initial attractiveness, 

flow-driven and  two-way selection features to generate 

network in order to improve and perfect the real network. 

Research results starting from the scale-free network 

pose a series of questions about the microscopic 

generation mechanism of various macroscopic properties 

in an actual network system. The evolution of networks 

has become the focus of the academic community. The 

BA model reveals that the seemingly complex large-scale 

network is in fact characterized by very simple 

evolutionary dynamics; however, it also has many defects 

and cannot fully reflect the network structure. Thus, 

researchers proposed a series of improved BA models, 

such as the nonlinear preferential connection model 

proposed by Krapivsky et al. [4], the preferential linking 

model with initial attraction factor, and the model with 

accelerating growth of communications proposed by 

Dorogovtsev et al. [5], [6]. Bianconi et al. [7] proposed 

the preferential connection model with fitness, and Peköz 

et al. [8] studied the model with both preferential and 

random attachments. Sen and Guan [9] proposed an 

evolving network model in the real world. Dargazany [10] 

proposed a purely micromechanical network evolution 

theory granting new insight into the damage mechanism 

and further formulated the network evolution model for 

implementation into finite element simulations. Liu et al. 

[11], [12] established a model based on the scale-free 

network by introducing coupling coefficients and 

attracting factors in the BA scale-free network. Wang and 

Chen [13] introduced dynamics equation into complex 

networks, through linear coupling diffusion, proposed a 

general dynamic scale-free network model. Chen [14] 

considered in scale-free networks, the priority connection 

usually occurs within the local world, which conducted a 

promotion for the BA model, and proposed a new type of 

local world evolving network model. This model is 

another progress of human knowledge in the real 

networks. According to the statistical properties of the 

Internet, Li et al. [15] proposed a new definition of 

scale-free networks and a concept of structural measure, 

using non-random connections to generate scale-free 

networks in line with the natural reality. These models 

are significant for the development of the modeling of 

complex networks. 
This study aims to explore the relation between the 

network model and the communication that exists among 

communities and to reveal the intrinsic link between 

network topology and community structure in complex 

communication networks. The current research status of 

the modeling of complex networks was synthesized based 

on the BA scale-free network model. The advantages and 

disadvantages of most mainstream models were 

integrated. We focused on the node and link to join and 

dissolution, new internal connections within the network, 

and the conversion relationship between nodes. We also 

established a complex network model from the view of 

hierarchical community structures. Furthermore, a 

dynamic evolution network model was established 

through the establishment of a new evolution rule of 

cellular automata. The simulation experiments revealed 

that the network exhibits a power-law behavior and has a 

clear, controlled community structure. The degree 

distribution, average path length, and other major 

parameters of the model in the evolutionary process can 

suitably describe the characteristics of complex network 

topologies. 

II. CELLULAR AUTOMATA 

A cellular automata is a discrete model studied in 

many field. It has been widely applied in various fields of 

social, economic, military, and scientific research since 

their inception. The applications of cellular automata 

involve sociology, biology, ecology, information science, 
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computer science, mathematics, physics, chemistry, 

geography, military science and so on. 

The concept [16] was originally discovered in the 

1940s by Stanislaw Ulam and John von Neumann while 

they were contemporaries at Los Alamos National 

Laboratory. While studied by some throughout the 1950s 

and 1960s, it was not until the 1970s and Conway's Game 

of Life, a two-dimensional cellular automata, that interest 

in the subject expanded beyond academia. In the 1980s, 

Stephen Wolfram engaged in a systematic study of 

one-dimensional cellular automata, or what he calls 

elementary cellular automata; his research assistant 

Matthew Cook showed that one of these rules is 

Turing-complete. Wolfram [17] claiming that cellular 

automata have applications in many fields of science in 

2002. These include computer processors and 

cryptography. Cellular automata can simulate a variety of 

real-world systems, including biological and chemical 

ones. There has been speculation that cellular automata 

may be able to model reality itself, i.e. that the universe 

could be viewed as a giant cellular automata. 

A cellular automata is a dynamic system that is 

discrete in time dimension change, namely, time f is an 

integer with continuity straits and equal to the interval. If 

time interval dt = 1 and t = 0 at the initial time, then t = 1 

for the succeeding moment. In the above conversion 

function, a cell’s state at time t+1 (directly) depends only 

on its states and its neighbors’ state at time t. However, 

the states of the cell and its neighbors at time t-1 

indirectly affect the state of the cell at time t+1. 

A standard cellular automata (A) is composed of the 

cell, its state, its neighbors, and the update rules of states, 

which are expressed as follows: 

( , , , , )A L d S N f  

where L is the cellular space, d is the dimension of the 

cellular space in cellular automata, S is the finite and 

discrete state set of the cell, N is the set of all cells within 

a neighborhood, and f is the local mapping or local rules. 

A cellular space is a set of spatial networks in which 

cells are distributed. Theoretically, a cellular space has 

unlimited extension in every dimension. Boundary 

conditions, including period type, reflection type, and 

constant value type, are defined for implementation on 

computers. 

Cells are usually obtained from a state in a finite set at 

a time, such as {0, 1}; the cell’s state can represent 

individual attitudes, traits, and behavior [18]. The cellular 

automata on the space-adjacent cells comprise a 

neighborhood. 

Considering the adjacency matrix of the network, two 

states of cells exist depending on whether an edge is 

connected, i.e., 0 means no connection, and 1 denotes a 

connection. The black square in the Fig. 2 below 

represents the central cell, and the gray squares represent 

the neighbors of the central cell. 

The neighbors of the central cell are defined as 

follows: 

 
Fig. 2. Moore neighborhood 

2

{ ( , ) || | 1,

              | | 1, ( , ) }

Moore i ix iy ix ox

iy oy ix iy

N v v v v v

v v v v Z

   

  
 

The definitions of ixv , iyv , and oxv  are the same as 

the previous. At this time, when the dimension is d, the 

number of one cell’s neighbors is (3
d
-1) for the square 

lattice. 

III. DYNAMIC HIERARCHICAL COMMUNITY 

STRUCTURE EVOLUTION MODEL BASED ON 

CELLULAR AUTOMATA 

The hierarchical community network was constructed 

first in the establishment of the model. The cellular 

automata rules were then introduced. The following is a 

specific algorithm of this model. 

Only one edge exhibits agreement between nodes; each 

node cannot have edges connected to itself. 

1) An initial network with 0m  backbone nodes and 

0n  edges is given. 

2) An operation is randomly performed in each time 

step as follows: 

 A backbone node is generated according to the 

probability of p and is connected to the existing 

backbone node i according to the probability of i . 

( )

i

i

l
l

k

k


 


              (1) 

where   is a local network consisting of backbone 

nodes. 

 An initial community network, including 1m  

ordinary nodes and 1n  edges, is generated according 

to the probability of q . This network has the features 

of automatic dynamic growth and first connection. 

This network is connected to the existing backbone 

node i through 2m edges in accordance with Formula 

(1). 

 A community is randomly selected to establish 2m  

edges according to the probability of s , and 
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3m edges are constructed between two communities 

that are randomly selected. One side of the edge is 

selected randomly, and the other edge is selected 

according to the probability of Formula (2). 

j

j

l
l

k

k
 


              (2) 

denominator  

ordinary nodes’ degrees. 

 The 4m  edges in a community are randomly 

demised according to the probability of 1( )s ; the 

5m  edges between two communities are also 

randomly demised. One side of the edges is selected 

randomly, and the other edges are selected according 

to Formula (3). 

' 1
j

j

l
l

k

k
  


,               (3) 

Isolated nodes that emerge in the process are removed. 

3) Step 2 is repeated until the size of the network 

satisfies the requirement. 

These parameters satisfy the conditions of 

0 1p q   , 0.5 1s  , and + =1p q . In step 2, the 

rate of growth of the generating community is random in 

each time step to ensure that all communities have 

different nodes and edges at time t. 

After the above scale-free evolution, the adjacency 

matrix of the network is obtained. The adjacency matrix 

is modified as follows: the value of the edge whose one 

end is the backbone node is modified into 2. The cell is 

the data of the matrix, and the set of states includes {0, 1, 

2} as indicated in the definition of cellular automata. The 

cell has three states: 0 means no edge exists, 1 

corresponds to an existing edge whose ends are ordinary 

nodes, and 2 corresponds to an existing edge, at least one 

end of which is the backbone node. A spatial network set 

in which cells are distributed is called cellular space. 

Cellular space is two dimensional, that is, the adjacency 

matrix of network nodes. Moore’s selection method was 

employed in this study to select the cellular neighbors. 

The specific evolution rules are as follows: 

1) As the number of connections or attraction factors 

increases, ordinary nodes can become backbone 

nodes and would thus require rules. Ordinary 

nodes can transform into backbone nodes, but the 

probability is generally low. The condition is that 

the state of the node is 1, the state of three or 

more neighbors is 2, and the next state of the 

node is 2. 

2) The no-edge nodes may also be connected at a 

specific moment and would thus require rules; a 

connection may exist between ordinary nodes. 

The condition is that the state of the node is 0, the 

state of three or more neighbors is 1, and the next 

state of the node is 1. 

3) Ordinary nodes may lose their connection 

because they do not update for a long time or 

their activity decreases and may thus require rules; 

a connection may exist between common nodes. 

The condition is that the state of the node is 1, the 

state of five or more neighbors is 0, and the next 

state of the node is 0. 

4) For the same reason, backbone nodes can be 

reduced or even lose their connection although 

the probability is low. Thus, rules are needed. 

Backbone nodes can transform into ordinary 

nodes, but the probability is relatively low. The 

condition is that the state of the node is 2, the 

state of five or more neighbors is 0, and the next 

state of the node is 1. 

5) Based on the adjacency matrix border, if a node is 

a left boundary node, the right boundary nodes of 

its corresponding row and column will become its 

left neighbor nodes. This rule also applies to the 

top and bottom nodes. 

IV. ANALYSIS OF DEGREE DISTRIBUTION 

The proposed model has two types of nodes; the 

evolution rules of these nodes are different. The mean 

field theory was employed to obtain the degree 

distribution of node i at time t. Below is the derivation 

process. 

We assume that at time t, the network has N nodes and 

E edges without considering the isolated nodes. Then, 

0 1( )N m pt qt m t    , where the backbone nodes are 

0BN m pt   and 

0 1 1

2 3 4 5

4 5

( )
( )

( )

E n pt qt n mt m
st m m m m
t m m

    
   

 

 

a) A backbone node is generated with 

probability p . Then, 

0

( )

( )
( )

i i

li
l

k k
p m pt

t k


 
   

  
 

The right side of the equal sign shows the selection 

rules of the already existing backbone node i. 

b) An initial community network is generated with 

probability q . Then, 

2 0

( )

( )
( )

i i

lii
l

k k
qm m pt

t k


 
   

  
 

The above equation describes a new community 

network associated with the network only through the 

backbone nodes. 

c) 2m  edges are established in one community 

network, and 3m  edges are randomly 

established between two random community 

networks with probability s . Then, 
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The right side of the equal sign in the first part 

describes the selection of edges in one community 

network; the second part describes the selection of edges 

between two random community networks. One end of 

the edge is randomly selected; the other end is selected by 

the priority probability. 

d) 4m  edges in one community network are 

removed, and 5m  edges between two random 

community networks are randomly removed 

with probability 1( )s . Then, 

4 5

0( )

(1 )( ) 1 1 1
(1 ) (1- )

( ) ( ) ( ) 1

ji

liv
l

kk s m m

t m pt N t N t N t k  

 
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  


 

( )N t  represents the mean value of the ordinary 

nodes under backbone node   at time t. Then, 

0 1
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N t

m pt
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
 

When t is large, 
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When the above equation is solved and when 1a  , 
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We can then obtain the degree distribution as 

2

1

1

{ [ ( ) ]}
( )

1

( 1)( )

          [ / ( 1)] [ / ( 1)]

i

ra

P k t k
P k

k

a pt qt

m b t a k b t a 

 




 
 

    

 

where 
1

1
1

r
a

 


. 

The above indicates that 1( ) ( / ( )) rP k k b t a    , 

revealing that the network has the characteristics of 

power law but is different from the BA model. 

1/ ( )b t a  illustrates that the generation rule of the local 

network significantly influences the global network. 

The following is main steps of the algorithm: 
for i=1:Base_Num

    Ordinary_Net(i)={SFNG(ceil(rand*Ordinary_scale),4,Ordinary_seed)};

    temp=cell2mat(Ordinary_Net(i)); 

    for j=1:length(temp)

        temp(j,j)=nan;

    end

    j=1;

    [a,b]=find(temp==1); 

    for u=1:m1

        c=a(ceil(rand*size(a,2)));

        d=b(ceil(rand*size(b,2)));

        temp(c,d)=0;

        temp(d,c)=0;

        u=u+1;

    end

    u=1;

    [a,b]=find(temp==0); 

    for v=1:m2

        c=a(ceil(rand*size(a,2)));

        d=b(ceil(rand*size(b,2)));

        temp(c,d)=1;

        temp(d,c)=1;

        v=v+1;

    end

    v=1;

    c=ceil(rand*size(temp,2));

    temp(:,c)=[];

    temp(c,:)=[];

    for k=1:length(temp)

        temp(k,k)=0;

    end

    k=1;

    Ordinary_Net(i)=mat2cell(temp);

    Ordinary_Length=Ordinary_Length+length(temp);

end

clear temp;

clear a,b;

temp=1;

Net=zeros(Ordinary_Length+Base_Num,Ordinary_Length+Base_Num);

Base_Net(Base_Net==1)=2;

Net(Ordinary_Length+1:Ordinary_Length+Base_Num,

Ordinary_Length+1:Ordinary_Length+Base_Num)=Base_Net;

for i=1:Base_Num

    t=length(cell2mat(Ordinary_Net(i)));

    Net(temp:temp+t-1,temp:temp+t-1)=cell2mat(Ordinary_Net(i));

    Net(Ordinary_Length+i,temp:temp+ceil(0.5*t))=2;

    Net(temp:temp+ceil(0.5*t),Ordinary_Length+i)=2;

    temp=temp+t;

end

temp=Net;

for j=1:length(temp)

    temp(j,j)=nan;

end

[a,b]=find(temp==1); 

for u=1:m3

    c=a(ceil(rand*size(a,2)));

    d=b(ceil(rand*size(b,2)));

    temp(c,d)=0;

    temp(d,c)=0;

    u=u+1;

end

[a,b]=find(temp==0); 

for v=1:m4

    c=a(ceil(rand*size(a,2)));

    d=b(ceil(rand*size(b,2)));

    temp(c,d)=1;

    temp(d,c)=1;

    v=v+1;

end

for k=1:length(temp)

    temp(k,k)=0;

end

Net=temp;
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for i=1:Base_Num

    Ordinary_Net(i)={SFNG(ceil(rand*Ordinary_scale),4,Ordinary_seed)};

    temp=cell2mat(Ordinary_Net(i)); 

    for j=1:length(temp)

        temp(j,j)=nan;

    end

    j=1;

    [a,b]=find(temp==1); 

    for u=1:m1

        c=a(ceil(rand*size(a,2)));

        d=b(ceil(rand*size(b,2)));

        temp(c,d)=0;

        temp(d,c)=0;

        u=u+1;

    end

    u=1;

    [a,b]=find(temp==0); 

    for v=1:m2

        c=a(ceil(rand*size(a,2)));

        d=b(ceil(rand*size(b,2)));

        temp(c,d)=1;

        temp(d,c)=1;

        v=v+1;

    end

    v=1;

    c=ceil(rand*size(temp,2));

    temp(:,c)=[];

    temp(c,:)=[];

    for k=1:length(temp)

        temp(k,k)=0;

    end

    k=1;

    Ordinary_Net(i)=mat2cell(temp);

    Ordinary_Length=Ordinary_Length+length(temp);

end

clear temp;

clear a,b;

temp=1;

Net=zeros(Ordinary_Length+Base_Num,Ordinary_Length+Base_Num);

Base_Net(Base_Net==1)=2;

Net(Ordinary_Length+1:Ordinary_Length+Base_Num,

Ordinary_Length+1:Ordinary_Length+Base_Num)=Base_Net;

for i=1:Base_Num

    t=length(cell2mat(Ordinary_Net(i)));

    Net(temp:temp+t-1,temp:temp+t-1)=cell2mat(Ordinary_Net(i));

    Net(Ordinary_Length+i,temp:temp+ceil(0.5*t))=2;

    Net(temp:temp+ceil(0.5*t),Ordinary_Length+i)=2;

    temp=temp+t;

end

temp=Net;

for j=1:length(temp)

    temp(j,j)=nan;

end

[a,b]=find(temp==1); 

for u=1:m3

    c=a(ceil(rand*size(a,2)));

    d=b(ceil(rand*size(b,2)));

    temp(c,d)=0;

    temp(d,c)=0;

    u=u+1;

end

[a,b]=find(temp==0); 

for v=1:m4

    c=a(ceil(rand*size(a,2)));

    d=b(ceil(rand*size(b,2)));

    temp(c,d)=1;

    temp(d,c)=1;

    v=v+1;

end

for k=1:length(temp)

    temp(k,k)=0;

end

Net=temp;

 

V. SIMULATIONS AND RESULTS 

MATLAB was employed to verify the accuracy of the 

model. The specific evolution of the network was 

simulated by analyzing the degree distribution and 

average path length of the entire network. 
A total of 200 randomly generated networks were 

compared in accordance with the following parameter 

values: 0 5m  , 0 4n  , 1 3m  , 1 2n  , 2 20m  , 

3 4m  , 4 4m  , 5 6m  , 0.8p  , 0.2q  , and 

0.66s  . 

Fig. 3 shows the adjacency matrix of a complex 

network consisting of 10 hierarchical communities under 

different evolutionary t. As shown in Fig. 3, network 

evolution becomes more complex with the increase in t; 

however, the community structure is always easily visible. 

The boundary of the communities blurs gradually, and 

small communities are derived aside from the large 

communities. Some randomly scattered connections 

emerge. However, these connections do not form a new 

community. 

 

   

   

Fig. 3. Evolution of the network adjacency matrix consisting of 10 

hierarchical communities. 

TABLE I: THE AVERAGE DEGREE AND THE AVERAGE CLUSTERING 

COEFFICIENT OF THE EVOLUTION NETWORK IN FIG. 3. 

t 
Average 
Degree 

Average Clustering 
Coefficient 

0 7.716981132 0.475875163 

2020 8.107692308 0.465025599 

4010 8.199782845 0.433280963 

5010 8.077922078 0.451432304 

7010 8.031246807 0.450823219 

9010 7.953179867 0.444285875 

 
Fig. 4. The structure of the Evolution network when t = 4010. 

P
(k
)

k

t=100 evolution,c=20
communities
t=50 evolution,c=20
communities
t=10 evolution,c=20
communities
t=100 evolution,c=10
communities
t=50 evolution,c=10
communities

 
Fig. 5. Degree distribution of a complex network under different c and t. 

Table I is the average degree and the average 

clustering coefficient of the Evolution network consisting 

of 10 hierarchical communities in Fig. 3. 

As shown, the fluctuation range of both values is small, 

the average degree fluctuates around 8, the Average 

Clustering Coefficient fluctuates around 0.45, and the 

fluctuation range is associated with the initial state of the 

network. 

Fig. 4 is the structure of the Evolution network 

consisting of 10 hierarchical communities when t = 4010. 

Therein the Maximum Degree is 39 and Minimum 

Degree is 2, the average Degree is 8.20, and the Average 

Clustering Coefficient is 0.433, after repeated evolutions, 

the community structure of the whole network is still 

definitely exists. 

Fig. 5 shows the degree distribution of the above 

complex network under different c and t, where t 

represents the time number of evolution and c represents 

the number of communities in the network. According to 

the figure, the node degree distribution meets the 

power-law distribution. However, after a period of 

evolution, the curve trend slows and nodes with high 

connections gradually increase. 
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Fig. 6. Average path length variation trend of the network when c = 10 
communities and 20 communities. 
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Fig. 7. Degree distribution comparison of our model on the left and 

Zheng’s model on the right. 

 

Fig. 6 shows the average path length variation trend of 

the network when c = 10 and 20. The evolutionary time is 

long, and the average path length of the network is short. 

The network with more communities has a relatively 

larger average path length. After several tests, the average 

path length of the network stabilizes at approximately 1.9 

when the number of evolutionary times is greater than 

1000, indicating that the network has a stable average 

path length at this time. 

Fig. 7 shows the Degree distribution comparison of our 

model and Zheng’s model in [10], we can see that the 

distribution of the two models are independent of the 

network size and time asymptotic distribution. 

From the above analysis, we know that our model 

conforms to the characteristics of   small-world 

networks and scale-free networks. The results of several 

simulations revealed similar characteristics. The model 

has stability. 

VI. CONCLUSION 

The modeling of network structures is a problem long 

studied in the research on complex communication 

networks. A complex communication network model was 

established in this study based on the BA scale-free 

network model from the view of hierarchical community 

structures. A dynamic evolution network model was also 

established through the establishment of a new evolution 

rule of cellular automata. The simulation experiments 

revealed that the network exhibits power-law behavior 

and has a clear, controlled community structure. The 

model can suitably describe the characteristics of 

complex network topologies. The proposed model 

extends the BA model and is consistent with actual 

abstraction and close to the evolution of the actual 

network. The model has certain stability and versatility 

and is easy to implement and extend.  

In our future work, we will focus on how we can 

increase the weight of the edges and improve the 

efficiency of the model. In addition, more realistic 

constraint condition will be considered. The model is 

easy to implement and extend. We believe that the 

evolution model has tremendous potential on modelling 

the complex network based on hierarchical community 

structure. We hope that this new algorithm helps to 

uncover new interesting properties. 
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