
Establishing and Fixing Security Protocols Weaknesses

Using a Logic-based Verification Tool

Anca D. Jurcut, Tom Coffey, and Reiner Dojen

University of Limerick, Limerick, Ireland

Email: anca.jurcut@ul.ie; tom.coffey@ ul.ie; reiner.dojen@ ul.ie

Abstract—Formal verification aims at providing a rigid and

thorough means of evaluating the correctness of security

protocols and also establishing that the protocols are free of

weaknesses that can be exploited by attacks. This paper

discusses the process of formal verification using a logic–based

verification tool. The verification tool with attack detection

capabilities is introduced, and the verification process is

demonstrated by way of a case study on two published security

protocols that provide mutual authentication using smart cards.

The performed verification reveals new weaknesses in the

protocols that can be exploited by a replay attack and a parallel

session attack. The impact of these attacks is that an attacker is

able to masquerade as a legitimate remote user to cheat the

system. The reasoning why these attacks are possible is detailed

and an amended protocol, resistant to these attacks is proposed.

Formal verification of the amended protocol provides

confidence in the correctness and effectiveness of the proposed

modifications.

Index Terms—freshness, replay attacks, parallel session attacks,

weaknesses, attack detection, formal verification, logic-based

verification tool, smart card, mutual authentication

I. INTRODUCTION

Security is a major issue in electronic communications.

Cryptographic protocols are used to provide security

services, such as confidentiality, authentication and non-

repudiation. The design of provably correct security

protocols is complex and highly prone to error. The main

difficulty in the development of security protocols is to

address the vast possibilities of an adversary to gain

information [1].

Frequently, informal and intuitive techniques are used

to verify such protocols. However, the absence of formal

verification of these protocols can lead to weaknesses and

security errors remaining undetected. Many published

security protocols have subsequently been found to

contain security weaknesses [2]-[6], which can be

exploited by various attacks on the protocol such as

replay and parallel session.

A replay attack occurs when a message recorded in a

previous run of the protocol is replayed by the intruder as

a message in the current run of the protocol. In a parallel

session attack the attacker starts new runs of the protocol

This work was supported by Science Foundation Ireland under Grant

No. 11/RFP.1/CMS 3340.

Corresponding author email: anca.jurcut@ul.ie; tom.coffey@ul.ie;
reiner.dojen@ ul.ie.

doi:10.12720/jcm.8.11.795-805

using knowledge gathered from previous runs. The

attacker mixes and matches pieces of session running in

parallel, to achieve advantages, which were not intended

by the security protocol designer.

A remote user authentication scheme is a two-party

protocol whereby an authentication server in a distributed

system confirms the identity of a remote individual

logging on to the server over an un-trusted, open network.

Several schemes using smart cards have been proposed

recently for remote user authentication, including: Yang-

Shieh’s scheme [7], Hwang-Li’s scheme [8], Lu-Cao’s

scheme [9], Hwang-Lee-Tang’s scheme [10] and Chien-

Jan-Tseng’s scheme [11]. The scheme proposed by Lee,

Kim and Yoo [12] is a nonce-based mutual authentication

scheme, in order to prevent the possibility of mounting

parallel session and reflection attacks.

This paper is concerned with formal verification and

its use in the design of security protocols. Section II of

the paper introduces formal verification of security

protocols. In section III a new CDVT/AD logic-based

verification tool is introduced. Section IV describes the

mutual authentication scheme of Lee, Kim and Yoo [12]

and its amended version [2]. These schemes are formally

verified in section V. New weaknesses in these schemes,

exploitable by a replay attack and a parallel session attack,

are detailed. Additionally the reasons why these attacks

are possible are explained in section VI. An amended

version of the Lee, Kim and Yoo scheme is proposed in

section VII and its formal verification is presented in

section VIII. Finally, section IX concludes this paper.

II. FORMAL VERIFICATION

Formal verification of security protocols is concerned

with proving that the goals of the protocols are

established and demonstrating the presence of any

weaknesses that may be exploitable by mountable attacks.

Formal verification is an essential part of the design

process [13], as it:

 Provides a systematic way to detect design flaws;

 Identifies the exact cryptographic properties a

protocol aims to satisfy;

 Identifies the assumptions and the environment

under which these properties hold;

 Removes ambiguity in the specifications of the

protocol.

Formal verification techniques can be categorized in

two main classes: deductive reasoning [1], [14]-[18] and

795

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

Manuscript received August 13, 2013; revised October 25, 2013.

state exploration methods [19]-[22]. Existing deductive

reasoning methods include theorem proving and logic-

based techniques. Deductive techniques are based on

theories that represent the protocol faithfully comprising

sets of axioms and deduction rules. Analysis of the

protocol in that theory entails proving one or more

theorems. State exploration methods take a quite different

approach, which is more akin to simulation and testing.

In state exploration, a protocol is characterized as the set

of all its possible traces. Given the security protocol

specification as input, the verification method explores as

many execution paths of the protocol as possible,

checking at each reachable state if some conditions hold.

A. Logic-based Verification

Formal verification using logic-based techniques has

been shown to be effective and a number of weaknesses

in protocols previously considered secure have been

discovered [13], [23], [24]. Logics have an advantage in

that they are usually decidable, efficiently computable,

and thus can be completely automated, as has been shown

by Dojen and Coffey’s automated GNY logic [1] and the

CDVT logic based verification tool [25].

Logic theories can be used to reason about the safety,

security and authenticity properties of security protocols.

The objective of the conventional logical analysis is to

verify whether the desired goals of the protocols can be

derived from the initial assumptions and protocol steps

using a deductive reasoning process. Although different

conventional logics may use distinct notations and

involve different axioms, postulates or rules, these logics

follow the same steps for the application of deductive

reasoning process, as described in [13]:

 Formalization of the protocol messages;

 Specification of the initial assumptions;

 Specification of the protocol goals;

 Application of the logical postulates.

Manual application of formal logics theories to prove

the correctness of security protocols can be difficult and

error prone [13], mainly because logic-based techniques

require a high level of skill to use, relying on the ability

and experience of a user to generate the formal proof of

the protocol. Automation of the verification process

minimizes the risk of faulty proofs and simplifies the

verification process for the protocol verifier. Details of

logic specific implementation issues for automation can

be found in [1].

III. CDVT/AD - A LOGIC-BASED VERIFICATION TOOL

WITH ATTACK DETECTION

The CDVT/AD verification tool (cf. Fig. 1) is a new

automated system that implements a modal logic of

knowledge and an attack detection theory. The tool uses a

proving engine based on Layered Proving Trees concept

[1]. The implemented tool can analyze the evolution of

both knowledge and belief during a protocol execution

and therefore is useful in addressing issues of both

security and trust. Additionally, the verification tool has

the capability of detecting protocol design weaknesses

that can be exploited by replay or parallel session attacks.

This attack detection facility incorporates detection rules

that are classified into five main categories addressing

problems related to: (1) message freshness, (2) message

symmetries, (3) handshake construction, (4) signed

statements and (5) certificates. The resulting automated

system, as shown in Fig. 1, enables both attack detection

analysis and conventional logic-based protocol

verification from a single protocol specification.

Figure 1. The CDVT/AD verification tool.

The verification tool applies the axioms and rules of

the implemented logic theory in an attempt to derive the

protocol goals as a logical consequence of the initial

assumptions and the protocol steps. If such a derivation

exists, the verification is successful and the verified

protocol can be considered secure within the scope of the

logic. Additionally, the verification tool triggers an attack

detection rule violation if the prerequisites of the rule can

be derived from the formal specification. If the

verification fails (i.e. goals are not proven or an attack

detection rule is triggered), investigation of the

verification process can point to missing assumptions or

weaknesses in the protocol. In this case the protocol

should be re-designed and re-verified.

A. The Language of the CDVT/AD tool

The CDVT/AD verification tool uses a parser to read

in the protocol specification from a text file. Table I

summarizes the atomic units of the textual grammar.

796

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

TABLE I. ATOMIC UNITS OF TEXTUAL GRAMMAR

Textual

Grammar
Regular Expression

Principal [AB-EIJLMOQRSU-Z][A-Za-z_0-9_]*

Trusted Principal TTP[A-Za-z0-9_]*

Sym. Key K[a-z][a-zA-Z0-9_]*

Public Key K[a-z][A-Za-z0-9_]*Pub

Private Key K[a-z][A-Za-z0-9_]*Priv

Nonce N[a-z][A-Za-z0-9_]*

Timestamp TS[a-z][A-Za-z0-9_]*

Function F[A-Za-z0-9_]*

Hash H[A-Za-z0-9_]*

Binary Data [a-z][A-Za-z0-9_]*

Composite data components are constructed according

to Table II, where elements follow the regular

expressions as given in Table I and “Data” represents an

arbitrary data element (either atomic unit or composite

data).

TABLE II. COMPOSITE DATA CONSTRUCTION

Composite Data Textual Representation

Concatenation Data,Data

Group Element (Data)

Symmetric Encryption {Data}Data

Public Key Encryption {Data}KPub

Private Key Encryption {Data}KPriv

Function of Data F(Data)

Hash of Data H(Data)

Key Material of Data KMaterial(Data)

Statements are defined according to the rules presented

in Table III, where elements follow the regular

expressions as given in Table I, “Data” is either an atomic

data unit or a composite data as defined in Table II, “i”

indicates the indexed discrete time and “Statement”

represents an arbitrary statement. “Operator” can be any

of: “send,” “receive” or “possess,” while

“Trans_Operator” are the transmission operators and can

be any of the following: “send to” or “receive from”. The

purpose of these transmission operators is to be used for

the construction of a specific type of statement expressing

reception from a principal or emission to a principal.

TABLE III. STATEMENT CONSTRUCTION

Principal Operator at[i] Data

Principal Trans_Operator Principal at[i] Data

Principal know at[i] Statement

Principal believe at[i] Statement

Principal know at[i] NOT (Statement)

Principal believe at[i] NOT (Statement)

(Statement)

NOT(Statement)

(Statement AND Statement)

(Statement IMPLY Statement)

Each line of the textual specification file is preceded

by a label. Assumptions are labeled “An,” protocol steps

are labeled “Sn” and protocol goals are labeled “Gn,”

where n numbers each group sequentially. Every line

must be closed with a semicolon (‘;’) and comments are

introduced by a double forward slash (‘//’ – C++ style

comments).

The inference rules provided are the standard rules of

natural deduction. The axioms of the logic of knowledge

express the fundamental properties of public-key

cryptographic protocols such as the ability of a principal

to encrypt/decrypt based on knowledge of a

cryptographic key, while the axioms in the case of the

attack detection logic theory enable reasoning about

message characteristics in cryptographic protocols. The

axioms also reflect the underlying assumptions of the

logics, which are as follows:

 The communication environment is reliable, but

hostile. That is, message loss or modification can

only occur as consequence of hostile intervention.

 The cryptosystem is ideal. That is, the encryption

and decryption functions are completely non-

invertible without knowledge of the appropriate

cryptographic key and are invertible with

knowledge of the appropriate cryptographic key.

The cryptosystem is collision-free so that it is not

possible to create the same ciphertext from two

different pieces of plaintext.

 A public key used by the system is considered

valid if it has not exceeded its validity period and

only its rightful owner knows the corresponding

secret key.

 If a piece of data is encrypted/decrypted, then the

entity which performed the encryption/decryption

must know that data (the data can be plaintext or

ciphertext).

IV. LKY NONCE-BASED MUTUAL AUTHENTICATION

SCHEME AND ITS DERIVATIVE

In 2005, Lee, Kim, and Yoo (LKY) [12] proposed a

nonce-based mutual authentication scheme using smart

cards. The scheme employs the same authentication

structure in both the remote user and the system. The

scheme consists of three phases: the registration phase,

the login phase, and the verification phase. The

registration phase is performed only once when a new

user registers itself with the server. The login and

verification phases are carried out whenever a user wants

to gain access to the server.

In 2007 Nam, Kim, Park and Won (NKPW) [2]

claimed that the LKY scheme is vulnerable to a parallel

session attack, in which an intruder who is not registered

with the server is able to gain access to the server. The

authors proposed a fix in order to prevent the claimed

parallel session attack.

A. Lee, Kim, and Yoo Scheme

A description for each of the registration, login and

verification phases of the LKY is as follows:

1) Registration phase

Let x be the only secret key maintained by the system

(denoted AS) and h() be a one-way cryptographic hash

function. Assume a remote user Ui registers his identifier

IDi and password PWi to the system in a secure channel.

The system computes Ri = h(IDi x) PWi, where

797

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

denotes the bit-wise exclusive-OR operator, stores h()

and Ri into the memory of a smart card, and issues the

smart card to Ui.

2) Login phase

When Ui wants to log into the system, he inserts his

smart card into the terminal and enters his identifier IDi

and password PWi. The smart card then performs the

following operations:

 Compute C1 = Ri PWi and C2 = C1 N1,

where N1 is a random nonce.

 Send the message M1 = (IDi,C2) to the system.

3) Verification phase

After the authentication request message M1 is

received, the system and the smart card execute the

following operations to achieve mutual authentication.

a) The system checks the validity of IDi and then

computes:

C1 = h(IDi x),

N1 = C2 C1,

V1 = h(C2,N1), and

C3 = C1 N2, where N2 is a random nonce.

b) The system sends the message M2 = (V1,C3) to Ui.

c) Upon receiving the message M2, Ui verifies

whether V1 = h(C2,N1). If equal, Ui believes that

the system is authenticated. Then the smart card

computes:

N2 = C3 C1 and

V2 = h(C3,N2).

d) The smart card sends the message M3 = (V2) to the

system.

e) The system verifies whether V2 = h(C3,N2). If

equal, the system believes that Ui is authenticated.

Fig. 2 outlines the authentication session of the scheme.

1. Ui ->AS: M1 = (IDi,C2)

2. AS->Ui: M2=(V1,C3)=(h(C2,N1), h(IDi x) N2)

3. Ui ->AS: M3 = (V2) = h(C3,N2)

Figure 2. Authentication session of LKY scheme.

B. NKPW Modified LKY Scheme

Nam, Kim, Park and Won (NKPW) [2] identified a

weakness in the authentication session of the LKY

scheme relating to symmetric structure of the messages

exchanged between the user and the server. In order to

address this problem, the authors proposed a fix, where

the sender’s identity is to be included as part of the hash

input in computing V1 and V2. Thus, V1 was changed

from V1=h(C2, N1) to V1=h(AS, C2, N1) and V2 was

changed from V2=h(C3, N2) to V2=h(Ui, C3, N2). The

steps of the authentication session for NKPW modified

LKY scheme are shown in Fig. 3.

1. Ui ->AS: M1 = (IDi,C2)

2. AS->Ui: M2 = (V1,C3) =

 (h(AS, C2, N1), h(IDi x) N2)

3. Ui ->AS: M3 = (V2) = h(Ui, C3, N2)

Figure 3. Authentication session of NKPW modified LKY scheme.

V. VERIFICATION OF THE LKY AND NKPW MUTUAL

AUTHENTICATION SCHEMES

In this section the CDVT/AD verification tool is used

to establish the correctness of the authentication session

of the LKY and the NKPW modified LKY authentication

schemes. In addition, any vulnerability in the design of

the verified protocol that may be exploited by replay or

parallel session attacks will be highlighted by the

verification tool.

Prior to verification, the protocol must be formalized,

i.e. translated into the language of the tool. A formalized

protocol consists of three components:

 Initial assumptions (conditions that hold before

the protocol starts);

 Protocol steps (the messages exchanged between

the principals);

 Protocol goals (conditions that are expected to

hold if the protocol terminates successfully).

A. Formalisation of LKY Scheme

The following notations are used when translating the

LKY authentication scheme(s) into the language of the

CDVT/AD tool:

user Ui: principal A

system AS: TTP

identifier IDi: identifier of A

nonce N1: nonce generated by principal A, Na

nonce N2: nonce generated by server TTP, Nttp

data data: {data}data

expression C1: H({A}datax)

expression C2: {Na}H({A}datax)

expression C3: {Nttp}H({A}datax)

expression V1: H({Na}H({A}datax), Na)

expression V2: H({Nttp}H({A}datax), Nttp)

The description of the authentication session of LKY

scheme (Fig. 2), using the above presented notations is as

follows:

1. A ->TTP: A, {Na}H ({A}datax)

2. TTP->A: H({Na}H({A}datax),Na),

 {Nttp}H({A}datax)

3. A ->TTP: H({Nttp}H({A}datax), Nttp)

1) Initial assumptions

Initial assumptions are statements defining what each

principal possesses and knows at the beginning of a

protocol run. The following specifies the initial

assumptions of the LKY scheme:

A1: A possess at[0] H({A}datax);

A2: A know at[0] TTP possess at[0] H({A}datax);

A3: A possess at[0] Na;

A4: A know at[0] NOT(Zero possess at[0] Na);

A5: TTP possess at[0] H({A}datax);

A6: TTP know at[0] A possess at[0] H({A}datax);

A7: TTP possess at[0] Nttp;

A8: TTP know at[0] NOT(Zero possess at[0] Nttp);

Statements A1-A4 define the initial assumptions for

principal A before a protocol run with TTP (i.e. at time

t0). Assumption A1 states that A possesses symmetric

key “H({A}datax)”. A2 specifies that A is aware of the

fact that TTP possesses “H({A}datax)”. A3 specifies that

798

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

A possesses the nonce Na and assumption A4 states that

A knows that nonce Na is fresh for the current run of the

protocol. Statements A5-A8 define the initial

assumptions of TTP’s possessions and knowledge before

the start of the protocol run. A5 states that TTP possesses

key “H({A}datax)”. A6 specifies that TTP is aware of the

fact that principal A possesses “H({A}datax)”. A7

expresses the fact that TTP possesses the nonce Nttp and

A8 states that TTP knows that Nttp is fresh for the

current run of the protocol.

2) LKY scheme steps

The LKY scheme steps are formalised as follows:

S1: TTP receivefrom A at [1] A,{Na}H({A}datax);

S2: A receivefrom TTP at [2]

H({Na}H({A}datax),Na), {Nttp}H({A}datax);

S3: TTP receivefrom A at [3] H({Nttp}H({A}datax),

Nttp);

3) LKY scheme goals

The objective of the LKY scheme is the mutual

authentication of the user and the system (i.e. the

authentication of A to TTP and of TTP to A). The

formalized goals of the LKY scheme are as follows:

G1: A know at [2] TTP send at [2]

 H({Na}H({A}datax),Na);

G2: A know at [2] NOT(Zero send at [0]

 H({Na}H({A}datax), Na));

G3: A know at [2] TTP send at[2] {Nttp}H({A}datax);

G4: A know at [2] NOT (Zero send at [0]

 {Nttp}H({A}datax));

G5: TTP know at [3] A send at [3]

 H({Nttp}H({A}datax),Nttp);

G6: TTP know at[3] NOT(Zero send at [0]

 H({Nttp}H({A}datax),Nttp));

Goals G1-G4 relate to authentication of TTP to A. G1

states that A knows at step 2 that TTP is the source of

message component H({Na}H({A}datax),Na), which is

the reply to A’s nonce challenge. G2 states that A knows

that this message component has been created during the

current protocol run. G3 states that A knows at step 2 that

TTP is the sender of the message component

{Nttp}H({A}datax) and G4 states A knows that this

message component has been created during the current

protocol run. Goals G5-G6 are the corresponding goals

regarding authentication of A to TTP. G5 states that TTP

knows at step 3 that A is the source of message

component H({Nttp}H({A}datax), Nttp), i.e. of the reply

to TTP’s nonce challenge. G6 states that TTP knows that

this message component has been created during the

current protocol run.

4) LKY scheme verification results

The results of the automated verification of the LKY

scheme are presented in Fig. 4 - Fig. 6. The verification

results of the LKY scheme shown in Fig. 5, indicate that

a number of the security goals (represented by “(4),”

“(5)” and “(6)”) are not satisfied. Browsing the

verification tool allows further investigation of the

reasons for the failed goals. For example, Fig. 5 details

the failed verification of goal G3, where A’s inability to

establish the freshness of nonce Nttp in step 2 is the

reason for the failure.

Figure 4. Verification results of LKY scheme

Figure 5. Investigating the reason why a security goal failed verification

Investigating the verification results for failed protocol

goals in this fashion reveals that the protocol suffers from

the following weaknesses:

 A’s inability to establish that TTP is the source of

message component {Nttp}H({A}datax) in step 2

(goal G3) prevents the authentication of TTP to A.

799

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

 A’s inability to establish that message component

{Nttp}H({A}datax) of step 2 (goal G4) is fresh.

 TTP’s inability to establish that A is the source of

message component H({Nttp}H({A}datax),Nttp)

in step 3 (goal G5) prevents the authentication of

A to TTP.

Thus, neither authentication of A to TTP nor

authentication of TTP to A is achieved by the LKY

scheme.

Additionally, three weaknesses in the design of LKY

scheme, identifying freshness and parallel session

vulnerabilities are revealed. It can be seen from Fig. 6

that three attack detection rules of the verification tool

(one freshness rule and two symmetry rules) are triggered.

The result obtained with respect to the freshness rules is

that the cryptographic expression in step 2

{Nttp}H({A}datax) is not freshness protected. This

implies that {Nttp}H({A}datax) does not contain data

which the receiver A recognizes as being fresh (i.e. a

nonce previously generated by A in the same protocol

run). The results derived for the symmetry rules reveal

the following two weaknesses in the LKY scheme:

 The cryptographic expressions {Na}H ({A}datax)

of step 1 and {Nttp}H({A}datax) of step 2 are

symmetric;

 The hashed expressions H({Na}H({A}datax), Na)

of step 2 and H({Nttp}H({A}datax,A), Nttp) of

step 3 are symmetric.

B. Formalisation of NKPW Modified LKY Scheme

The description of the authentication session of scheme,

using the above presented re-denotations is as follows:

1. A ->TTP: A, {Na}H ({A}datax)

2. TTP->A: H({Na}H({A}datax),Na,TTP),

 {Nttp}H({A}datax)

3. A ->TTP: H({Nttp}H({A}datax,A), Nttp,A)

1) Initial assumptions

The formalized initial assumptions are the same as that

of the LKY scheme.

2) Steps

The steps of the scheme are formalised as follows:

S1: TTP receivefrom A at [1] A,{Na}H({A}datax);

S2: A receivefrom TTP at [2]

 H({Na}H({A}datax),Na,TTP), {Nttp}H({A}datax);

S3: TTP receivefrom A at [3]

 H({Nttp}H({A}datax,A),Nttp,A);

Figure 6. LKY scheme attack detection verification results.

Figure 7. Verification results of NKPW scheme

800

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

Figure 8. NKPW scheme attack detection verification results.

3) Goals

The formalized goals are similar to the LKY scheme.

G1: A know at [2] TTP send at [2]

 H({Na}H({A}datax), Na, TTP);

G2: A know at [2] NOT(Zero send at [0]

 H({Na}H({A}datax), Na, TTP));

 G3: A know at [2] TTP send at [2]

{Nttp}H({A}datax);

G4: A know at [2] NOT (Zero send at [0]

 {Nttp}H({A}datax));

G5: TTP know at [3] A send at [3]

 H({Nttp}H({A}datax), Nttp, A);

G6: TTP know at [3] NOT(Zero send at [0]

 H({Nttp}H({A}datax), Nttp, A));

4) NKPW modified LKY scheme verification results

The verification results are presented in Fig. 7 and Fig.

8. The results show that the NKPW modified LKY

scheme continues to suffer from two of the three

previously found weaknesses on the LKY scheme:

 The cryptographic expression in step 2

{Nttp}H({A}datax) is not freshness protected (i.e.

does not contain anything which the receiver A

recognizes it as being fresh)

 The cryptographic expressions {Na}H ({A}datax)

of step 1 and {Nttp}H({A}datax) of step 2 are

symmetric

Hence, the modified scheme is still susceptible to a

possible replay attack which will be discussed in the

following section.

VI. DISCUSSION ON DESIGN WEAKNESSES LEADING

TO REPLAY AND PARALLEL SESSION ATTACKS

ON LKY AND NKPW MODIFIED LKY SCHEMES

The two types of weaknesses revealed above in the

design of LKY and NKPW modified LKY schemes can

be exploited by an attacker in a new replay attack and a

parallel session attack.

Both LKY and NKPW modified LKY schemes are

vulnerable to a replay attack due to the fact that the

cryptographic expression in step 2 {Nttp}H({A}datax)

does not contain any component which the receiver A

recognizes as being fresh. The impact of this attack is that

an attacker, without knowing any secret of a remote user,

can masquerade as a legitimate remote user and can

obtain the valid authentication message from any normal

session between the remote user and the system TTP.

The LKY scheme is vulnerable to a parallel session

attack due to the symmetrical structure of (1) the pair of

cryptographic expressions {Na}H({A}datax) and

{Nttp}H({A}datax) and (2) the pair of hashed

expressions H({Na}H({A}datax),Na) and

H({Nttp}H({A}datax), Nttp). The impact of this attack is

that an intruder is able to masquerade as a legitimate

remote user and fool the server into accepting a login

request even from a user who is not registered with the

system.

A. A New Replay Attack on the LKY Scheme

Our verification of the LKY scheme, outlined above,

reveals that a remote user A cannot tell whether data

received from the server TTP is fresh. As a consequence,

a replay attack can be carried out against the LKY

protocol, where an attacker can impersonate a target

remote user A. Assuming I(A) denotes the attacker I

impersonating A, the attack can be carried out as follows:

i.1. A -> TTP: A, {Na}H ({A}datax)

ii.1 I(A) ->TTP: A, {Ni}H ({A}datax)

i.2. TTP -> I(A): H({Na}H({A}datax),Na),

 {Nttp}H({A}datax)

 ii.2. TTP -> I(A): H({Ni}H({A}datax),Ni),

 {Nttp_1}H({A}datax)

i.2’. I(TTP) -> A: H({Na}H({A}datax),Na),

 {Nttp_1}H({A}datax)

i.3. A ->I(TTP): H({Nttp_1}H({A}datax,A), Nttp_1)

ii.3. I(A)->TTP: H({Nttp_1}H({A}datax,A),Nttp_1)

Figure 9. New attack on LKY scheme.

The replay attack (detailed in Fig. 9) assumes that a

remote user A initiates the protocol with the system, by

sending message i.1 consisting of its identity

concatenated with the component {Na}H({A}datax) to

the server TTP. An attacker I intercepts the message i.1

intended for TTP and initiates a new session (denoted ii)

with the server TTP, by sending message ii.1, where Ni is

801

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

a random number generated by attacker I. After receiving

the message i.1 and ii.1, the server TTP generates and

sends messages i.2 and ii.2 according to the specification

of the exchange in the two running sessions i and ii. After

the attacker intercepts and blocks the messages i.2 and

ii.2, it sends the fabricated message i.2’ to A, according

to the specification exchange of step 2. The attacker

computes i.2’, by replaying first component of the

message i.2 together with the second component of

message ii.2. Upon receiving the message i.2’, principal

A computes and sends the message i.3, according to the

specification of the exchange. Note that A computes the

message i.3 (i.e. the response of the nonce challenge

emitted as the second component of message ii.2’), since

it successfully verifies the message H({Na}H({A}datax),

Na), which is the corresponding response to its challenge

sent as part of the message i.1. The attacker can replay i.3

as message ii.3 to finish its session and pass the system’s

authentication.

As a result, although A authenticates the system in the

first session i, after the attacker’s session ii, the system

TTP mistakenly believes that the attacker is the honest

user. Hence, LKY scheme fails to provide the mutual

authentication service, since the attacker without

knowing any secret information can impersonate a remote

user A to cheat the system.

This replay attack can also be mounted on the NKPW

modified LKY scheme.

1) Reasoning on replay attack

This replay attack can be mounted due to the weakness

in the message components transmitted in step 2 of the

authentication session of the scheme. The cryptographic

expression {Nttp}H({A}datax) does not contain any

component which the receiver A can recognize as being

fresh, since Nttp is a new nonce generated by the sender

(server TTP) in step 2. Therefore principal A has no

assurance that the nonce Nttp is fresh and is not replayed

from a previous run of the protocol. Hence, an intruder

can substitute a previously recorded message 2 from TTP

to A ({Nttp_1}H({A}datax)) and mislead principal A to

accept an old and possibly compromised nonce (Nttp_1).

B. A Parallel Session Attack on the LKY Scheme

Our verification of the LKY scheme, outlined above,

reveals that two pairs of cryptographic messages are

symmetric. As a consequence a parallel session attack

that can be mounted against the LKY protocol, where an

attacker can forge login messages to impersonate a

legitimate user.

Assume that an intruder I wants to gain access to the

server masquerading as a legitimate user A. The

corresponding attack scenario is outlined in Fig. 10.

i.1. I(A)-> TTP: A, {Ni}H ({A}datax)

i.2. TTP -> I(A): H({Ni}H({A}datax),Ni),

 {Nttp}H({A}datax)

 ii.1 I(A) -> TTP: A, {Nttp}H({A}datax)

 ii.2. TTP -> I(A): H({Nttp}H({A}datax),Nttp),

 {Nttp_1}H({A}datax)

i.3. I(A) ->TTP: H({Nttp}H({A}datax),Nttp)

 ii.3. dropped

Figure 10. A parallel session attack on LKY scheme.

The intruder, impersonating user A, launches the attack

by choosing a random number Ni and sending message

i.1 as a login request message to the server TTP. Note

that from the server’s point of view, Ni is

indistinguishable from nonce Na of an honest execution,

since both are random numbers. The server TTP sends

the message i.2 to the intruder masquerading as A,

according to the specification of the exchange. After

receiving message i.2, the attacker starts a parallel session

ii, posing again as user A and replaying the challenge

{Nttp}H({A}datax) sent out by the server in the original

session i.2. The server TTP cannot distinguish the

replayed response {Nttp}H({A}datax) sent by the

intruder from a genuine message ii.1 sent by a honest

user A. Hence, TTP computes

H({Nttp}H({A}datax),Nttp) and sends the message ii.2

in response to ii.1, as specified in the protocol. The

component H({Nttp}H({A}datax), Nttp) sent as part of

message ii.2 in the parallel session is exactly what the

intruder needs in order to gain access permission in the

original session i. Now that the attacker has obtained

access to the server, it drops the parallel session with TTP.

Hence, the attacker without knowing any secret

information can impersonate a remote user A to cheat the

system.

1) Reasoning on parallel session attack

The above parallel session attack can be mounted due

to the symmetrical structure of two pairs of cryptographic

messages:

 The pair of cryptographic expressions exchanged

in steps 1 and 2

({Na}H({A}datax),{Nttp}H({A}datax));

 The pair of hashed expressions exchanged in steps

2 and 3 (H({Na}H({A}datax),Na),

H({Nttp}H({A}datax)).

Hence, an intruder I can impersonate an honest user A

in a parallel run, where the cryptographic expression

{Nttp}H({A}datax) obtained in step 2 of the first

protocol run (run i) is used in step 1 of the parallel run

(run ii) and respectively, the hashed expression

H({Nttp}H({A}datax), Nttp) obtained in step 2 of the

parallel protocol run is used in step 3 of the first run. As

the cryptographic expression required in step 1 of the

parallel run is symmetric with {Nttp}H({A}datax) of step

2 of the first run and the hashed expression required in

step 3 of the first run is symmetric with

H({Nttp}H({A}datax), Nttp) of step 2 of the parallel run,

the server TTP cannot distinguish the replayed messages

in step 1 of the parallel run and step 3 of the first run, sent

by the intruder, from the legitimate messages sent by A.

VII. AMENDING THE LKY SCHEME

802

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

As shown in the previous sections, neither the LKY

scheme [12] nor the modified version [2] can be

considered secure. We now present an amended version

of the LKY scheme to overcome the described

weaknesses that can be exploited by replay and parallel

session attacks.

In order to prevent a potential replay attack the

cryptographic messages transmitted in the scheme needs

to be freshness protected, when necessary. The

cryptographic message {Nttp}H({A}datax) in step 2

should include a component which the recipient of step 2,

recognizes as fresh. This can be achieved by including

nonce Na, previously generated by A in step 1 in the

content of the second message of step 2, as presented in

Fig. 11. Thus, the cryptographic expression that contains

the nonce Nttp generated by the server can be identified

by user A as fresh, i.e. as belonging to the current

protocol run. Consequently, any attempt by an intruder to

replay second message of step 2 will fail, as A can

identify the replay through the incorrect value of Na. In

order to prevent a potential parallel session attack the

symmetrical structure of the hashed expressions

transmitted in steps 2 and 3 and the symmetrical structure

of the pair of cryptographic expressions exchanged in

steps 1 and 2 of the scheme should be broken.

1. A ->TTP: A, {Na}H ({A}datax)

2. TTP->A: H({Na}H({A}datax),Na),

 {Nttp, Na}H({A}datax)

3. A ->TTP: H({Nttp, Na}H({A}datax,A),

Nttp,A)

Figure 11. Amended version proposed for LKY scheme.

Fig. 12 outlines our proposed amended version in the

original notations for the LKY nonce-based mutual

authentication scheme using smart cards:

1. Ui ->AS: M1 = (IDi,C2)

2. AS->Ui:M2=(V1,C’3)=(h(C2,N1),

h(IDi x)N2N1)

3. Ui ->AS: M3 = (V’2) = h(C’3,N2,Ui)

Figure 12. Proposed amended version for LKY scheme.

VIII. VERIFICATION OF THE PROPOSED AMENDED

VERSION OF THE LKY SCHEME

A. Initial Assumptions

The initial assumptions are identical with the ones for

the LKY scheme.

B. Amended Scheme Steps

Having changed the steps of the scheme, these changes

need to be reflected in the formalisation of the steps:

S1: TTP receivefrom A at [1] A,{Na}H({A}datax);

S2: A receivefrom TTP at [2]

 H({Na}H({A}datax),Na), {Nttp, Na}H({A}datax);

S3: TTP receivefrom A at [3]

 H({Nttp, Na}H({A}datax,A),Nttp,A);

C. Amended Scheme Goals

The modifications of the steps are also reflected in the

corresponding goals:

G1: A know at [2] TTP send at [2]

 H({Na}H({A}datax), Na);

G2: A know at [2] NOT(Zero send at [0]

 H({Na}H({A}datax), Na));

G3: A know at [2] TTP send at [2]

 {Nttp, Na}H({A}datax);

G4: A know at [2] NOT (Zero send at [0]

 {Nttp, Na}H({A}datax));

G5: TTP know at [3] A send at [3]

 H({Nttp, Na}H({A}datax), Nttp, A);

G6: TTP know at [3] NOT(Zero send at [0]

 H({Nttp, Na}H({A}datax), Nttp, A));

D. Results of the Verification

The results of the automated verification for the

amended version of the scheme are shown in Fig. 13 and

Fig. 14. As can be seen, the outcome for the attack

detection verification is free of any message indicating a

weakness in the protocol’s design that can be exploited

by mountable replay or parallel session attacks.

Additionally, all goals are verified successfully. This

provides confidence in the correctness and effectiveness

of the amended scheme.

Figure 13. Proposed amended LKY scheme verification results.

803

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

Figure 14. Proposed amended LKY scheme attack detection verification results.

IX. CONCLUSION

In this paper the process of formal verification of

cryptographic security protocols using a modal logic was

discussed. A new (automated) logic-based verification

tool with attack detection capabilities for replay and

parallel session attacks was introduced. The tool was

used to verify the LKY nonce-based mutual

authentication scheme using smart cards and NKPW

amended version of the scheme.

The performed verification revealed new weaknesses

in these authentication schemes that can be exploited by

mountable replay and parallel session attacks. The

impact of these attacks is that an attacker is able to

masquerade as a legitimate remote user to cheat the

system. The reasons why these attacks are possible were

detailed and an amended protocol, resistant to these

attacks was proposed. Formal verification of the

amended protocol provides confidence in the correctness

and effectiveness of the proposed modifications.

ACKNOWLEDGMENT

This work was funded by Science Foundation Ireland -

Research Frontiers Programme (11/RFP.1/CMS 3340).

REFERENCES

[1] R. Dojen and T. Coffey, “Layered proving trees: A novel approach

to the automation of logic-based security protocol verification,”

ACM Transactions on Information and System Security, vol. 8, no.

3, pp. 287-311, 2005.

[2] J. Nam, S. Kim, S. Park, and D. Won, “Security analysis of a

nonce-based user authentication scheme using smart cards,”

IEICE Transactions Fundamentals, vol. E90-A, no. 1, pp. 299-302,

Jan 2007.

[3] X. Fu and Y. Guo, “A lightweight RFID mutual authentication

protocol with ownership transfer,” Advances in Wireless Sensor

Networks Communications, Computer and Information Science,

vol. 334, pp. 68-74, 2013.

[4] R. Dojen, V. Pasca, and T. Coffey, “Impersonation attacks on a

mobile security protocol for end-to-end communications,”

Security and Privacy in Mobile Information and Communication

Systems, Lecture Notes of the Institute for Computer Sciences,

Social-Informatics and Tele-communications Engineering, vol. 17,

pp. 278-287, September 2009.

[5] R. Dojen, A. Jurcut, T. Coffey, and C. Györödi, “On establishing

and fixing a parallel session attack in a security protocol,”

Intelligent Distributed Computing, Systems and Applications,

Springer Berlin / Heidelberg, vol. 162, September 2008, pp. 239-

244.

[6] G. Lowe, “Some new attacks upon security protocols,” in Proc.

9th IEEE Computer Security, Foundations Workshop, 1996, pp.

162–169.

[7] W. H. Yang and S. P. Shieh, “Password authentication schemes

with smart cards,” Computer and Security, vol. 18, no. 8, pp. 727-

733, 1999.

[8] M. S. Hwang and L. H. Li, “A new remote user authentication

scheme using smart cards,” IEEE Transactions on Consumer

Electronics, vol. 46, no. 1, pp. 28-30, 2000.

[9] R. X. Lu and Z. F. Cao, “Efficient remote user authentication

scheme using smart card,” Computer Networks, vol. 49, no. 4, pp.

535-540, 2005.

[10] M. S. Hwang, C. C. Lee, and Y. L. Tang, “A simple remote user

authentication scheme,” Mathematical and Computer Modelling,

vol. 36, no. 1-2, pp. 103-107, 2002.

[11] H. Y. Chien, J. K. Jan, and Y. M. Tseng, “An efficient and

practical solution to remote authentication: Smart card,” Computer

and Security, vol. 21, no. 4, pp. 372-375, 2002.

[12] S. W. Lee, H. S. Kim, and K. Y. Yoo, “Efficient nonce-based

remote user authentication scheme using smart cards,” Applied

Mathematics and Computation, vol. 167, no. 1, pp. 355-361, 2005.

[13] T. Coffey, R. Dojen, and T. Flanagan, “Formal verification: An

imperative step in the design of security protocols,” Computer

Networks, Elsevier Science, vol. 43, no. 5, pp. 601-618, 2003.

[14] M. Burrows, M. Abadi, and R. Needham, “A logic of

authentication,” ACM Transactions on Computer Systems, vol. 8,

no. 1, pp. 18-36, 1990.

[15] L. Paulson, “The inductive approach to verifying cryptographic

protocols,” Journal of Computer Security, vol. 6, no. 1, 1998.

[16] E. Cohen, “First-order verification of cryptographic protocols,”

Journal of Computer Security, vol. 11, no. 2, 2003.

804

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

[17] T. Coffey and P. Saidha, “A Logic for verifying public key

cryptographic protocols,” IEE Journal Proceedings-Computers

and Digital Techniques, vol. 144, no. 1, pp. 28-32, 1997.

[18] A. Datta, A. Derek, J. Mitchell, and A. Roy, ”Protocol

composition logic (PCL),” Electronic Notes in Theoretical

Computer Science, vol. 172, pp. 311-358, 2007.

[19] G. Lowe, “Casper: A compiler for the analysis of security

protocols,” Journal of Computer Security, vol. 6, pp. 53–84, 1998.

[20] D. Basin, S. Mödersheim, and L. Vigano, “OFMC: A symbolic

model checker for security protocols,” International Journal of

Information Security, vol. 4, no. 3, pp. 181–208, 2005.

[21] C. Meadows and P. Syverson, “Formalizing GDOI group key

management requirements in NPATRL,” in Proc. 8th ACM

Conference on Computer and Communications Security, Nov

2001, pp. 235-244.

[22] D. Song, S. Berezin, and A. Perrig, “Athena: A novel approach to

efficient automatic security protocol analysis,” Journal of

Computer Security, vol. 9, pp. 47–74, 2001.

[23] V. Kessler and G. Wedel, “AUTLOG - an advanced logic of

authentication,” in Proc. Computer Security Foundations

Workshop VII, IEEE Computer Society, June 1994, pp. 90-99.

[24] S. Brackin, “Automatically detecting most vulnerabilities in

cryptographic protocols,” in DARPA Information Survivability

Conference and Exposition, vol. 1, Hilton Head, South Carolina,

January 2000, pp. 222–236.

[25] R. Dojen, I. Lasc, and T. Coffey, “Establishing and fixing a

freshness flaw in a key-distribution and authentication protocol,”

in Proc. IEEE International Conference on Intelligent Computer

Communication and Processing, Cluj-Napoca, Romania, 2008, pp.

185-192.

Anca D. Jurcut received a bachelor of

mathematics and computer science from West

University of Timisoara, Romania (2007) and a

PhD from University of Limerick, Ireland (2013).
She is currently working as a postdoctoral

researcher in the Department of Electronic and
Computer Engineering at the University of

Limerick, Ireland. Her research interests are:

cryptographic protocols analysis, logics-based
verification techniques, data and network security, software engineering,

and engineering mathematics.

 Tom Coffey is professor of electronic and

computer engineering at the University of
Limerick, Ireland, where he is also director and

founder of Data Communication Security

Laboratory. He is a Chartered Engineer; he holds
Master of Science (1978) and Doctor of

Philosophy (1994) degrees from City University

(London) and University of Ulster (Ireland)
respectively. His research work encompasses:

encryption systems, verifiably secure cryptographic protocols for open

hostile environments, formal verification of security protocols using
logic-based and state space-based techniques, generation of modal-

logics of knowledge and belief, automated proving systems for security

protocol verification.

Reiner Dojen received title of Dipl.-Ing.(FH)

from University of Applied Sciences Osnabrück,
Germany (1999), MEng from University of

Limerick (2000) and PhD from University of

Limerick (2004). He is currently employed as
Lecturer in the Department of Electronic and

Computer Engineering at the University of
Limerick, Ireland. Research interests are:

cryptography, security protocols, data and

network security, automated theorem peorem P TDMEP interests are:
roving and artificial intelligence.

805

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

