
Worm Detection without Knowledge Base in Industrial

Networks

Huayang Cao
1
, Jinjing Zhao

2,3
, Peidong Zhu

1
, Xicheng Lu

1
, and Chonglun Zhao

1

1
National University of Defense Technology, Changsha, 410073, China

2
Beijing Institute of System Engineering, Beijing, 100029, China

3
National Key Laboratory of Science and Technology on Information System Security, Beijing, 100029, China

Email: huayang.cao@gmail.com; misszhaojinjing@hotmail.com; {pdzhu, xclu, clzhao}@nudt.edu.cn

Abstract—A sophisticated worm, namely Stuxnet, attacked Iran

nuclear facilities in 2010. This incident, together with newly

found similar worms, e.g., Duqu, Flame, Gauss, highlight the

cyber threat in industrial networks. These worms are highly-

targeted and are carefully tested before being released. They are

difficult to be detected by current security products, as there is

no knowledge about them when they are spreading. We

introduce a worm detection mechanism in this paper, which

doesn’t need any knowledge of known worms. This mechanism

maintains a worm propagation model and traces the spread of

suspicious files and triggers alerts based on the model. The

experiment of detecting Stuxnet shows its efficiency. We also

give a performance analysis at the end of this paper. 

Index Terms—industrial network, Stuxnet, worm detection,

colored petri net.

I. INTRODUCTION

Industrial networks are critical infrastructures of our

society. This kind of network was thought to be reliable

and safety due to the complex architecture and

specialized network technologies which act as a barrier in

front of adversaries. However, with the incremental

connection with public network and adoption of standard

network technologies, such thought is not applicable

anymore. Traditional cyber-attacks may also appear in

the industrial networks. Stuxnet has been an impressive

example. In 2010, a worm named Stuxnet invaded in Iran

nuclear power station and damaged many centrifuges

without being detected[1], this worm is considered as a

real start of cyber warfare[2].

Current worm detection measures can be classified into

two categories, say signature-based approach and

behavior-based approach. The former method relies on

signature extracted by human experts and uses these

signatures to find known malwares in the local file

system. The high accuracy in detecting known malwares

makes it widely adopted in Anti-Virus security softwares.

In contrast, the latter method judges an executable

process or network flow by monitoring its behaviors, i.e.,

calling critical APIs or aggressively scanning ports. This

Corresponding author email: huayang.cao@gmail.com

doi:10.12720/jcm.8.11.716-723

method can deal with unknown threat and is often used in

IDS.

We can see from these newly found industrial worms

that these worms are not opportunistic, but highly-

targeted. These worms adopt technologies that are

different from that of well-known Internet worms. They

exploit some quite-new or even zero-day vulnerabilities,

so there are no signatures of such worms in the Anti-

Virus software database. Besides, the industrial network

environment is not the same as the Internet, in which the

Anti-Virus database is not always up to date. On the other

side, as the worm is highly-targeted, it behaves in-

offensive on non-target hosts, which also makes it

difficult to be detected by behavior-based manners. In

addition, Stuxnet contains many industrial process codes

which beyond the understanding of COTS security

products.

To secure the industrial network, we need a defense-in-

depth technique which is distinguished from that in the

Internet circumstance. This technique should focused on

defending against new, never-before-seen, highly-

targeted threats, than against well-known, widely

distributed, and opportunistic threats[3]. Here we define

Highly-target and New as follows:

Highly-target: the worm sneaks from a publicly

accessible network zone to the core part of the industrial

network and unfold its destructive power here. During the

propagation, the worm carefully hides its behaviors on

the infected non-target host.

New: the worm or its polymorphic forms have never

been seen before, thus there are no signatures in security

software’s database, and no usable malware samples for

any knowledge training process that often used in

detecting unknown polymorphic worms.

In this paper, we propose a novel mechanism that

comprises detection server and distributed agents to

detect highly-targeted new worms in industrial networks

in a cooperation way. This mechanism doesn’t need any

knowledge base or training phase, but maintains a worm

propagation model and monitors the penetration

behaviors of suspicious files in the industrial network. By

performing the monitoring over the whole network, this

mechanism provides a defense-in-depth measure that

against worm-based intrusion.

716

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

Manuscript received June 10, 2013; revised October 14, 2013.

II. RELATED WORK

Worm detection has been a hotspot in computer

security research area, as various worms pose serious

threats to our information systems. There are two trends

in worm detection technologies, which are signature-

based approach and behavior-based approach. The former

method detects worms based on the signatures that

extracted from known worm samples, and focuses on

how to accurately and efficiently extract signatures from

these worms. Ref. [4] proposed a general virus scanner

that based on regular expression matching. A pattern

matching algorithm was used to compare all known

viruses with a suspicious file to see if it matches a known

virus. This kind of detection heavily depends on the virus

knowledge base and can be bypassed with polymorphic

viruses. Based on computer measurements extracted from

the operating system, Ref. [5] proposed a technique to

detect the presence of unknown worms. A series of

experiments were designed to find proper feature set that

can be used to detect unknown worms. An active learning

approach was also used to maintain a low false-positive

rate. This method is efficient on detecting polymorphic

worms, but cannot deal with new worms which are

described above. Ref. [6] proposed a new worm signature,

namely the position-aware distribution signature, to

improve the detection accuracy. The new signature was a

collection of position-aware byte frequency distributions,

and is thought to be more flexible than the traditional

signatures of fixed strings while it is more precise than

the position-unaware statistical signatures. Basically

speaking, the signature-based measures have low

accuracy on detecting polymorphic worms, and have

nothing to do with new worms as there are no signatures

for them. On the contrary, the behavior-based approaches

mainly focus on detecting polymorphic worms, which

detect worms based on monitoring malicious behaviors

and doesn’t depend on the content-signatures. vEye [7]

was a novel mechanism that detects worms based on a

behavior sequence of common self-propagate worms.

Various worms are analyzed and the authors proposed

that there are shared behavior sequence among self-

propagate worms, that is, target selection/probing,

exploitation and replication. However, a sophisticated

worm like Stuxnet behaves quite in-offensive on non-

target hosts, and several zero-day vulnerabilities are

exploited, which makes its behaviors difficult to be

sensed by any monitoring measures. Authors of [8]

proposed an Internet worm monitoring system. This

system monitored the trend of illegitimate traffic to detect

a worm at its early propagation stage. Kalman filter

estimation was used to against the background noise. The

authors conducted experiment on detecting Code Red[9]

worm to show the efficiency of the proposed system. Ref.

[10] and [11] also detect fast worms by monitoring

anomaly traffics. Current behavior-based measures based

on the hypothesis that while polymorphic worms have

different signatures from original ones, they share the

same malicious behaviors on the infected hosts. This

hypothesis may be true for the polymorphic worms, but is

not true for a specialized and highly-targeted new worm,

such as Stuxnet.

Generally speaking, current signature-based and

behavior-based worm detection measures are both

knowledge-based measures, as they need either collected

knowledge or training knowledge. This kind of measure

can detect known and polymorphic worms, but not

highly-targeted new worm as stated previously.

III. SYSTEM AND THREAT MODEL

In a typical industrial network, there are several inter-

connected network zones. According to security

requirements, they can be divided as public zone,

enterprise control zone, support zone, wireless

communication zone, manufacturing operations zone,

perimeter zone, process control zone, etc. These zones

have different safety protection levels that some of these

zones are connected publicly and some only can be

accessed by authorities. In the core part of an industrial

network, such as a group of process controller computers,

the network components are isolated from other network

zones with gap technology. However, in most scenarios,

even the core zone is not absolutely isolated because of

maintenance or corrective requirements. And that’s why

there are worms that can invade into the network from a

peripheral network zone and find a way to sneak into the

core part of network.

We assume that an adversary cannot directly put a

worm in the core zone due to the high level protection

here. In the contrary, the worm is introduced into the

industrial network from an edge network, e.g., the public

network. Due to the zoning mechanism and air-gap, the

core zone cannot be directly accessed from outside. So

the worm cannot just exist in memory like Slammer [12],

it must exist as disk files and propagate via various ways,

otherwise the worm may be easily erased by a reboot of

infected host.

The main motivation behind this work is the

observation that while the worm may be able to exploit

zero-day vulnerabilities and hide their attempts on

infected host, they cannot hide their propagation routine

that approaches the critical hosts, only on which can it get

access to industrial facilities. In contrast, a valid file

normally doesn’t have copies across multiple security

level zones.

In industrial network, there are only a group of hosts

that directly control the physical facilities. We don’t try

to find the worm when it begins to infect the first host in

the whole network, because it is difficult, if not

impossible. Instead, we alert the administrator to the

worm before it causes serious accidents on the underlying

industrial facilities. We think that a proper warning which

can lead to a deep inspection of critical facilities is of

great help of saving the facilities from a potential

catastrophe.

717

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

We will give a worm propagation model in industrial

network as a Colored Petri Net. Colored Petri Nets are a

powerful modeling technique for complex systems[13],

which are very good at representing complex processes.

Traditional Petri Nets can only model processes of single

kind of resources by token. Colored Petri Nets extend the

traditional Petri Nets model and combine state and action

into a single diagram by labeling the tokens with various

colors that reside in places (or states). Colors can indicate

various attributes of resources in the system, and thus the

Colored Petri Nets can model multiple processes at the

same time. Tokens move from one place to another

through transitions. A transition allows tokens to pass if it

is fired. Normally, a transition can fire if all input arcs are

enabled, which means that tokens are available in places

for each input arc. The quantity of tokens can decrease as

tokens from multiple places may be merged (or unified)

at transitions. It can also increase when tokens left

transitions and are duplicated to multiple destination

places. Colored Petri Nets can be organized in

hierarchical structure to allow reuse and top-down or

bottom-up development, just the same as in computer

programming languages.

Petri Nets are usually represented in graphical

representation. In an illustration of Colored Petri Nets,

places are denoted by ovals or circles, Transitions are

represented by rectangles or squares, and lines with

arrows indicate arcs. If a predicate or tuple is written next

to an arc, a token must satisfy the predicate or unify with

the tuple before it may pass through the arc. Token colors

are defined at the top of each Colored Petri Net in terms

of tuples of standard values, such as booleans, integers,

strings, or even data structures.

Enterprise Control NetworkEnterprise Control Network

WAN

Manufacturing Operations
Network

Manufacturing Operations
Network

Perimeter NetworkPerimeter Network

Process Control NetworkProcess Control Network

Control System NetworkControl System Network

Support Station

Support Station

Support Station

Figure 1. A typical industrial network.

Perimeter
Network

Manufacturing
Operations

Network

Support
Stations

Enterprise
Control

Network

Wireless

Process
Control

Network

Public
Network

Figure 2. Colored Petri Net model of an industrial network prior to worm infection.

718

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

Fig. 1 is a typical industrial network [14], in which the

whole network is divided as multiple network zones. We

give a worm propagation model for this network with

Colored Petri Net in Fig. 2. In Petri Nets, the ovals are

called as places, here they are network zones. The

rectangles are transitions, which are the worm

propagation channel. The dots in a place are called as

tokens, which represents that there are worms in this

place. Colored Petri Net extends classic Petri Net that the

tokens can have attributes, thus we can model multiple

worms by introducing more tokens in the same model.

We define this Colored Petri Net model as follow:

Definition 1. The model is a quintuple
() where:

 is place set. According to Fig. 1, Table I gives

some typical facilities in each place.

 is transition set. In Petri Nets, a transition may

fire if there are sufficient tokens in all of its input

places, and certain preconditions are met.

 is the set of arcs. Arcs run between a place and a

transition, but never between places or between

transitions.

 is color set. Each color stands for a kind of

worm in this model. We assume there are three

worms can propagate in this industrial network

and define them as follows:

 (). (1)

 (). (2)

 (). (3)

We use subscript to indicate different worms. The

Boolean returns a True or a False if there is or is not a

worm in the place.

 is the initial configuration. We assume the

three worms come from the public network, then:

 () ()

 (𝐸𝑛 𝑝 𝑛 𝑘)
 (𝑆 𝑝𝑝 𝑆 𝑛)
 (𝑛 𝑓 𝑐 𝑛𝑔 𝑂𝑝 𝑛 𝑘)
 (𝑘)
 (𝑐 𝑛 𝑘)
 (𝑊)

 () (5)

where the triple stands for occurrence of the three worms.

Definition 2. Transition rules:

 A transition can fire if ①all input places of

have token②propagation channel between input

and output places of has vulnerabilities.

 When a transition fires, it doesn’t consume tokens

from input places, but creates one token in each of

its output places. The attribute of created token is

the same as the one that fires this transition. If the

out place already has such a token, then no new

tokens will be created.

As described above, in classic Petri Nets, when a

transition fires, it consumes tokens from input places, and

creates tokens in its output places. Since we know that

worms normally don’t remove their original copy after

infecting new targets, we define the transition rule No.2.

And in this paper, we don’t care worm propagation

among hosts in the same network zone, so a token only

represents whether a network zone contains such kind of

worms, but not the worm quantity in the zone.

TABLE I. TYPICAL FACILITIES IN INDUSTRIAL NETWORK PLACES

Places Typical facilities in places

Public Network
Wide Area Networks, e.g., the

Internet

Enterprise Control Network

WinCC Web Client, OS Web

Client, Data Monitor Web Client,
Historian Web Client, etc.

Support Stations
Perform maintenance and

corrective operations

Wireless Wireless connections

Manufacturing Operations

Network

Historian Web Client, SIMATIC
IT Server, SIMATIC IT SQL-

Server

Perimeter Network
Virus scan Server, WSUS Server,
Web Navigator Server, PCS7 OS

Web Server, CAS Server

Process Control Network

WinCC Server, PCS7 OS Server,

Maintenance Server, Engineering
Station. This area controls

industrial facilities.

According to this Petri Net model, in a worm-based

intrusion, the worm comes from an adversary and

chooses a publicly accessible network zone as the initial

landing point. Then, the worm propagates over various

channels, such as network connection (including file/print

share channels), removable media, etc. Due to the

aforementioned reasons, the worm is not discovered by

current security products when it is spreading. And after a

long-time-hiding, it reaches the most critical part of the

network, says Process Control Network in our model, and

performs attacks. In contrast, an ordinary file is more

likely to move inside the same network zone only, and

not likely to appear everywhere in the industrial network,

especially for the files that reside in the most critical

network zone.

IV. WORM DETECTION MECHANISM

A. Framework

The detection mechanism is based on the worm

propagation model. As shown in Fig. 3, this mechanism

maintains the above model and comprises a detection

server and many monitoring agents. These agents are

deployed on hosts in the industrial environment and

monitor file systems of these hosts.

The mechanism detects worms based on the following

criteria:

1) Unknown files

There are numbers of files in the industrial network,

and most of them are valid. Our mechanism only detects

719

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

, (4)

worms from suspicious unknown files. A reliable method

to differentiate valid and unknown files is manual

recognition conducted by human experts. However,

identifying all files in the industrial network is somewhat

an impossible mission. In practice, we assume that the

initial state of industrial network is secure, and ignore all

files that already exist before the deployment of agents.

That means only new files which occur after the

deployment of our mechanism will be monitored.

2) Anomaly based

Our mechanism monitors the propagation of unknown

files. If a file propagates along a path in the Petri Net

model and finally reaches the most critical zones, our

mechanism will consider it as a malicious file and fire

alerts. The more security levels and network zones the

file transmitted, the more severe it is considered by our

mechanism. Notice that if an unknown file only occurs in

a core network zone, no alerts will be fired, because we

assume that the worm cannot be directly put into the core

zone and those newly occurred files may be manually

created by administrator or may be the system

log/cache/temp files. This paper doesn’t consider a

malicious inner administrator who directly put a malware

in the core zone.

The workflow of the detection mechanism can be

simply described as follows:

Step1: Set up the detection server, and deploy

monitoring agents on each host in the infrastructure

network.

Step2: Each agent scans local file system periodically

to find newly created files, gets fingerprints of these files

and submits this information to detection server using a

one-way transmission channel. The adoption of one-way

transmission is to avoid adding a bypass channel between

different security level zones.

Step3: Detection server traces these files. If finding any

propagation path that coincides with the worm

propagation model, it will alert administrators.

B. One-way Transmission

Figure 3. Worm detection framework.

As shown in Fig. 3, our mechanism employs a

detection server that receives monitoring data from agents

located in different network zones. This measure actually

introduces a potential bypass channel among different

security level zones. To remove such threat, we need to

set up a one-way transmission channel that only accepts

data transmission from agents to server, but not vice

versa. By doing this, no data can be exchanged among

different security level zones via these channels.

Since industrial networks normally deployed over

large area and comprise of multiple network zones,

setting up a transmission channel from every agent to

server is difficult. We set up the channels as follow:

As shown in Fig 3, we introduce a proxy agent in each

network zone. In each zone, monitoring agents sends data

to the proxy agent over existing network links. Then

several relays are deployed in the industrial network,

which receive collected data from proxy agents over

wireless channels, and forward these data to the detection

server. The links and arrows in Fig. 4 only indicate data

transmission of our mechanism, but not existing network

flows. To meet the requirement of one-way transmission,

the input and output ports on relays and proxy agents

should be implemented as independent hardware. The

output port on agents, proxy agents and relays can only

send data to specific destination addresses, and input port

on proxy agents, relays and detection server can only

receive data from specific source addresses. The

transmission protocol can use IP and UDP as underlying

protocols. We assume that an adversary can put worms in

the industrial network, but cannot capture or replace

industrial devices. Otherwise, the adversary can sabotage

the industrial network without designing the sophisticated

worms. Due to time constraints, we have not

implemented the one-way transmission hardware, but

realize their function via software.

Zone

Zone
Zone

proxy
agent

relay

agent

server

monitoring
data flow

Figure 4. One-way transmission with proxy agents and relays.

C. Detection of polymorphic worms

As stated above, the main focus of our mechanism is

detecting highly-targeted new worms in industrial

network environment. However, this mechanism still

faces the task of detecting polymorphic worms. A worm

may update and modify itself while propagation, which

poses an obstacle for our mechanism to trace its

propagation.

A worm normally has two ways to change its

appearance, that is, online update and self-modification.

If a worm changes itself via online update, it can be

appeared totally different from its original copy because

it can receive any information from the worm writer. But

if it changes via self-modification, there must be some

similarities between resulted worm and original one, at

least they share the same code of self-modification, and

can be detected by content matching.

720

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

In industrial network, most network zones are

disconnected from the Internet, thus a polymorphic worm

is most likely to be the result of self-modification. We

introduce a content matching algorithm in our mechanism

as shown in Fig. 5 to find same content patterns in two

files. When finished, the pattern_set stores all patterns

that are shared by both files.

Figure 5. Process of the proposed file matching.

On an agent host, the monitoring agent firstly finds all

new files. Then these files are sent to detection server.

The server checks these files by the file matching

function to extract shared content patterns. A threshold is

set to determine if two files are the same. In this scenario,

the detection server traces content patterns instead of file

to find worm penetration.

V. VALIDATION

A. Case Study

To validate our mechanism, we deploy a prototype of

our mechanism and evaluate it by detecting the Stuxnet

worm. The experiment is conducted in the LAN

environment of our lab as shown in Fig. 6. We roughly

divide the LAN into three zones. Computers in zone A

and B belong to two projects respectively, which are

considered as non-critical zones. Zone C is considered as

a critical zone, as computer VII doesn’t belong to any

project and is occasionally used. Computer VIII is our

detection server. We also establish LAN_2 environment

which has the same structure as LAN_1, but without

people using it. Computers in LAN_2 all run Windows

XP operation system with the service pack 2. Given this

simple experimental environment, we don’t install relay

devices.

A

B

C VIII

non-critical zone

non-critical zone critical zone detection server

II

III

IV
I

proxy

V VI VII

proxy

monitoring
data flow

Figure 6. LAN environment of worm detection experiment.

We deploy our mechanism in LAN_1 to see if our

normal working can trigger alerts, as this LAN is a daily

working environment. And then we deploy LAN_2 and

inject Stuxnet into this LAN to evaluate the ability of our

detection mechanism. The Stuxnet worm is injected into

computer I by using an USB disk. To avoid the self-

deactivation [1], we adjust the system date back to May

02, 2012. To ease the worm propagation, we turn off

firewalls, uninstall AV software and don’t install any

security patch for these computers.

TABLE II. DETECTION RESULTS OF NORMAL WORMS

Worms Detected files

Worm.Nimaya. spoclsv.exe

W32.HLLW.Kilonce

Killonce.exe

Run32.exe

Regedit.exe.sys
Riched20.dll

Shdocvw.dll

W32.HLLW.Gaobot.gen
Csrrs.exe
Scvhost.exe

System.exe

W32.viking

rundl132.exe
logo_1.exe

_desktop.ini

vdll.dll

As Stuxnet doesn’t modify itself while propagation, we

only use file name as the file-fingerprint during this

experiment. Host II and host VI act as proxy agents in

zone A and B respectively. Host VII sends data to

detection server directly. In the experiment, detection

server in LAN_1 finds some duplicate files that appear in

multiple computers. However, no alert is fired as

computer VII doesn’t hold these files. In contrast,

detection server in LAN_2 triggered six alerts, because

six new files are found both in zone A, B and C. The six

files are mdmcpq3.PNF, mdmeric3.PNF, oem6C.PNF,

oem7A.PNF, mrxcls.sys, mrxnet.sys, which are the same

as reported malicious files of Stuxnet[15]. We can also

see from this experiment that Stuxnet has an effective

propagation mechanism. Only one hour after the initial

infection, it infects computer II, III, IV, V and VI. And

after about another one hour, it infects computer VII and

triggers alerts.

From the experiment we can see that the detection

server doesn’t make false alert in the scenario of normal

working environment and successfully alert us to the

Stuxnet worm in the infected environment.

We also test the framework with some normal self-

propagation worms. Table II shows the detection results.

B. Performance

The storage and computation cost is evaluated in this

subsection.

As for the storage cost, on the agent side, we need to

maintain two file-lists that contain the disk file

information in adjacent scanning intervals. Both of the

lists are sorted at first, and then are compared to get the

new files in the latter interval. Fig. 7 is a schematic

721

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

diagram of the process of finding new files on agent hosts.

The rectangles indicate file fingerprints. Our mechanism

doesn’t need manual intervention. All of the new files

found on agent hosts are considered as unknown files and

their fingerprints are sent to detection server for tracing

purpose.

previous scan

file lists

current scan

new files

Figure 7. Process of finding new files on agent hosts.

We assume each host stores files on disk and creates

 new files at each interval on average. And each piece

of file information occupies bytes. If the agent works

for duration of hours and each interval is hours, then

the storage cost on agent host is:

𝑆 [

 (

)]

 [(

)] . (6)

On the server side, given that there are hosts in the

industrial network. We need to maintain the Petri Net

model which can be stored as an adjacent matrix which

consumes bytes. We can organize the received file

information as Fig. 8. The host information is arranged

into lists and is attached to corresponding file fingerprint.

Every time when receiving file information, the server

scans corresponding host lists to decide whether to send

alert. It should be noted that there may be same hosts in

host lists of different file fingerprint, but this will not

occupy redundant disk space, as they are just pointers to

the original host information.

file fingerprint list

……

…
…

host lists

file 1

file 2

file n

Figure 8. Structure of hosts list of each traced file information.

If each piece of host information needs Bytes space,

and each file appears on hosts on average, then the

storage cost on server is:

𝑆

 [

 (

)] (7)

Given an industrial network with one thousand hosts, if

we set () as (),

then the mechanism occupies about 24MB and 1170MB

free space on agent host and server respectively. If we set

a time threshold on server that the server can discard file

information that exceeds the threshold, the storage cost

can be further reduced.

As for the computation cost, the agent performs one

sort and comparison operation during each interval, so the

computation cost is 𝑂(𝑛 𝑛) , where 𝑛 is the

number of files on disk. On the server side, each time the

server receives file information, it checks the file and host

lists and decide whether an alert should be fired. The file

and host lists can be sorted with binary insertion sort, so

the computation cost can achieve 𝑂(𝑛), where 𝑛 is

the number of hosts in the industrial network.

VI. CONCLUSION

The sophisticated, highly-targeted worms pose serious

threat to industrial network, as current security products

are not effective against them. In this paper, we propose a

novel mechanism for detecting worms in industrial

network without knowledge base. Our mechanism based

on worm propagation model and monitors the penetration

of unknown files. While the penetration can be viewed as

a kind of malicious behavior, the proposed measure can

be classified as a behavior-based approach. However,

traditional measures only consider worm behaviors in a

single host, but our proposal looks over worm behaviors

at a higher level, that is, the whole network level. By

maintaining the worm propagation model, our measure

doesn’t require a training phase or knowledge base of

known worms. The experiment has shown its potential

capacities for detecting unknown worm. Since no training

or knowledge base is required, this measure is generally

applicable to protect industrial network against worm-

based intrusions. However, in the Internet environment,

due to the large scale and complex network connections,

this technique may be unpractical. Our next step will be

further investigation of the detection of hidden worms.

At last, we suggest that industrial network owners

adopt COTS security products to defense against known

worms, as they are effective against traditional malwares.

However, COTS security products are mainly designed

for desktop environment and may be deeply inspected by

organized malware writers, e.g., the terrorists or opponent

organizations, and as a necessary complement,

customized security measures should be set up.

ACKNOWLEDGMENT

This work was supported by the National Natural

Science Foundation of China under Grant 61170285 and

61100223. Hunan Provincial Innovation Foundation for

Postgraduate under Grant CX2010B030, and NUDT

Innovation Foundation for Postgraduate under Grant

B100605.

REFERENCES

722

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

[1] Stuxnet. Wikipedia. (June 2013). [Online]. Available:
http://en.wikipedia.org/wiki/Stuxnet

[2] T. M. Chen, “Stuxnet, the real start of cyber warfare?” IEEE

Network, vol. 24, pp. 2-3, November, 2010.
[3] The Stuxnet Worm and Defenses for Advanced Threats. (June

2013). Industrial Defender, Inc. [Online]. pp. 10. Available:

http://www.industrialdefender.com/advisory/stuxnet/tech_paper/2
011_01_05_stuxnet_defenses.pdf

[4] S. Kumar and E. H. Spafford, “A generic virus scanner in c++,” in

Proc. 8th Computer Security Applications Conf., 1992, pp. 210-
219.

[5] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici, “Detecting

unknown computer worm activity via support vector machines and
active learning,” Pattern Analysis and Applications, vol. 15, pp.

459-475, November 2012.

[6] Y. Tang and S. Chen, “An automated signature-based approach
against polymorphic internet worms,” IEEE Trans. on Parallel

And Distributed Systems, vol. 18, pp. 879-892, July 2007.

[7] X. Jiang and X. Zhu, “vEye: Behavioral footprinting for self-
propagating worm detection and profiling,” Knowledge and

Information Systems, vol. 18, pp. 231-262, February 2009.

[8] C. C. Zou, W. Gong, D. Towsley, and L. Gao, “The monitoring
and early detection of internet worms,” IEEE/ACM Trans. on

Networking, vol. 13, pp. 961-974, October 2005.

[9] Code Red (Computer worm). Wikipedia. (June 2013). [Online].
Available:http://en.wikipedia.org/wiki/Code_Red_(computer_wor

m)

[10] Y.-C. Jhi, P. Liu, L. Li, et al., “PWC: A proactive worm
containment solution for enterprise networks,” Security and

Communication Networks, vol. 3, pp. 334-354, July 2010.

[11] S. Chen, X. Wang, L. Liu, X. Zhang, and Z. Zhang,
“WormTerminator: An effective containment of unknown and

polymorphic fast spreading worms,” in Proc. ACM/IEEE

Symposium on Architecture for Networking and Communications
Systems, 2006, pp. 173-182.

[12] SQL Slammer. Wikipedia. (June 2013). [Online]. Available:

http://en.wikipedia.org/wiki/SQL_Slammer
[13] G. Helmer, J. Wong, M. Slagell, et al., “Software fault tree and

colored petri net based specification, design and implementation
of agent-based intrusion detection systems,” International Journal

of Information and Computer Security, vol. 1, pp. 109-142,

January 2007.
[14] Security Concept PCS 7 and WinCC - Basic document. (June

2013). White Paper, Siemens, Simatic. [Online]. pp. 47. Available:

https://a248.e.akamai.net/cache.automation.siemens.com/dnl/jE/jE
2MjIwNQAA_26462131_HB/wp_sec_b.pdf

[15] N. Falliere, L. O. Murchu, and E. Chien. (June 2013). W32.

Stuxnet Dossier. White paper, Symantec Corp., Security Response.

[Online]. pp. 18. Available:
http://www.symantec.com/content/en/us/enterprise/media/security

_response/whitepapers/w32_stuxnet_dossier.pdf

Huayang Cao received his B.S. degree in

Network Engieering and M.S. degree in
Computer Science from Department of

Computer Science, National University of

Defense Technology (NUDT), Changsha,
Hunan, China, in 2007 and 2009 respectively.

He is now a PhD student of NUDT. His

research is focused on Internet routing security,
and security for cyber-physical systems and

social networks.

He visited Helsinki Institute for Information Technology(HIIT), Finland
as a visiting Ph.D. student during December 2011–November 2012.

Mr. Cao is now a student member of IEEE.

Jinjing Zhao received her Ph.D. degrees in School of Computer from

NUDT, Changsha, China, in 2007. She is currently an associate

professor at Beijing Institute of System Engineering. Her major research
interests include computer networks, and information security.

Peidong Zhu is a professor with School of Computer Science of NUDT,
China. He received his PhD degree in computer science from NUDT in

1999. His research interests include network routing, network security

and architecture design of the Internet and various wireless networks.
He was the visiting professor at St Francis Xavier University, Canada,

from December 2008 to December 2009.

Prof. Zhu is now a member of IEEE.

Xicheng Lu received his B.Sc. degree in computer science from Harbin

Military Engineering Institute, China, in 1970. He is currently a
professor in the School of Computer Science, NUDT. His research

interests include distributed computing, computer networks, and parallel

computing.
He was a visiting scholar at the University of Massachusetts between

1982 and 1984.
Prof. Lu has served as a member of editorial boards of several journals

and has co-chaired many professional conferences. He is an

academician of the Chinese Academy of Engineering.

Chonglun Zhao received his B.Sc. degree in School of Computer from

Northeastern University, Shenyang, China, in 2011. He is now a Master
student of NUDT. His research is focused on security of cyber-physical

systems.

723

Journal of Communications Vol. 8, No. 11, November 2013

©2013 Engineering and Technology Publishing

