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Abstract—Simulation and test are important for the 

development and validation of automotive ECU (Electronic 

Control Unit). However, problems arise in the combination of 

today’s automotive control algorithm development and function 

test. There are lots of professional tools for simulation and test, 

but lack of interfacing capability between them, especially in 

the simulation and test of today’s automotive network. The 

approach of COM (Component Object Model) technology is 

used to solve this problem, and a complete co-simulation-and-

test system is introduced in this article, which is made up of 

CAN (Controller Area Network) Bus Simulation Environment – 

AutoCAN, and CAN Bus Disturbance Generator – CANspider 

and MATLAB. AutoCAN and CANspider have great 

advantages in simulation and test of automotive CAN bus, while 

MATLAB has superior performance in modeling. The 

integration of these tools makes it possible to realize the internal 

communication between them, and combine their respective 

advantages and increase the efficiency of engineering 

application. Experiments are performed to prove the 

effectiveness of the platform for developing and testing the 

automotive network system based on automotive CAN Bus.  
 
Index Terms—AutoCAN, CANspider, MATLAB, COM, Co-

simulation-and-test 

 

 

I. INTRODUCTION 

With the rapid development of automotive electronic 

technology, the communication network on-board is 

becoming more and more complicated, including the 

development of the control algorithm as well as the 

validation of the functionality and reliability. 

MATLAB is a high level programming language and 

interactive environment developed by MathWorks. It is 

used for algorithms development, data visualization and 

analysis, numerical computing and interfacing with 

programs written in other languages to share the resource. 

MATLAB/Simulink plays an important role in the system 

level modeling and validation of the automotive product 

[1], however, without specific toolboxes provided by the 

tool vendor, it has limited ability to access the automotive 

CAN Bus and perform real-time simulation and 

validation. 

IHR’s AutoCAN is a powerful tool for automotive 

CAN bus design, simulation and test, which is able to 
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simulation a whole CAN network, create communication 

among virtual nodes and real nodes on the CAN bus. 

Various measurement windows make signal displayed 

and monitored much easier, and its built-in AC Language 

provides unlimited possibilities for simulation and test. 

Using its unique AC programming language, the behavior 

of virtual CAN node can be controlled with ease, 

however, the ability of its AC language is limited in 

developing algorithms in the increasingly complex CAN 

bus system. 

IHR’s CANspider is a CAN Disturbance Generator, it 

provides a high-performance CAN test environment, 

which can be used not only for testing the given CAN 

nodes, but also the specific CAN network system. With 

CANspider the user can intentionally and reproducibly 

disturb the CAN bus. With CANspider, the fault recovery 

ability of the automotive ECU can be fully tested. 

CANspider can be easily interfaced with other 

applications. 

In order to reduce the complexity, the method of co-

simulation-and-test of CAN Bus with AutoCAN, 

CANspider and MATLAB is necessary [2], so as to 

combine with their respective advantages and increase the 

efficiency of engineering applications. Thus MATLAB 

can also participate in the communication on CAN bus, 

and make the data on CAN and in MATLAB associated 

and synchronous, while simulating disturbances that may 

occur during the actual working process, and evaluate the 

real-time performance and reliability of the system by test. 

 Nowadays, there are some relevant applications in the 

field of CAN bus system on-board, such as Dual Clutch 

Transmission (DCT) control system and Electronic 

Throttle Control System (ETCS), by using of CANoe and 

MATLAB/Simulink [3]-[4]. It can be seen that the 

integration of CAN bus simulation tool and modeling tool 

makes the simulation-and-test platform much more 

efficient and complete, contributing to the development 

of automotive CAN bus system. 

In this paper, the method of creating communication 

between different applications via COM technology on 

Windows is introduced [5]. A test system is built based 

on this method [6]-[8], which tests the algorithm of the 

ABS (Anti-lock Brake System) system in the MATLAB, 

simulates the whole CAN network communication in 

AutoCAN. Unlike other co-simulation-and-test solutions, 

CAN bus disturbance is also injected in the network by 

controlling the CANspider, so as to test the fault 

tolerance and fault recovery capabilities of a specific 

control algorithm. A stand-alone test engine is built to 
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execute a list of test cases. This gives the developer and 

test engineer access to all the test tools in one test bench 

simultaneously. With the help of the interfacing 

technology [9], complex simulation and test problems can 

be solved with high efficiency. 

II. RESEARCH METHOD 

A. System Structure Definition 

The system is mainly composed of four parts: 

AutoCAN, CANspider, MATLAB and the interfaces 

between MATLAB and the real CAN bus as shown in 

Fig. 1. 

The AutoCAN hardware is connected through a USB 

cable from PC (Personal Computer) to the real CAN bus, 

CANspider can be connected to the CAN bus in the same 

way, however, it is usually connected in series in the 

CAN network, so as to achieve programmable break and 

short circuit on the CAN bus. 

MATLAB is a stand-alone software platform, which 

connects to the CAN bus through the interfaces provided 

by AutoCAN and CANspider. 

During the simulation process of the system, all 

messages transmitted on the CAN bus by virtual or real 

CAN nodes can be monitored by MATLAB, or disturbed 

by MATLAB applications through the interfaces 

provided. The validation and test of the ECU can be 

better achieved based on the system setup.  

 

Figure 1.  The definition of the system structure. 

AutoCAN

Node 1 Node 2 Node N

CANspider

...

AutoCAN/MATLAB 
COM Interface

CANspider/MATLAB 
COM Interface

Model of 
Control 

Algorithm

MATLAB/Simulink

 

Figure 2.  The interfacing principle of the system. 

B. Interfacing Principle of the System 

Fig. 2 illustrates the interfacing principle among 

multiple tools of the co-simulation-and-test system. 

The seamless integration of AutoCAN, CANspider and 

MATLAB is based on OLE (Object Linking and 

Embedding) Automation that allows one application (the 

client or controller) to control objects exported by another 

application (the server). The automation client is able to 

access the objects, properties and methods in the 

automation server, which complements each other’s 

advantages. The core element of automation is 

Component Object Model (COM), which defines a group 

of APIs (Application Programming Interfaces) and binary 

standard to enable the component objects, from different 

platforms and in different languages, to communicate 

with each other well [10]. Since the COM technology is 

widely used in the automation all over the world, and 

MATLAB has COM support, it is necessary that this 

interfacing technique is studied.  

The communication between the automation server 

and client is on the basis of client request and server 

response. Specific functions as well as the interface for 

accessing these functions are defined in the automation 

server. Upon receiving the request submitted by the 

automation client, the corresponding events are triggered 

and processed in the automation server, the results are 

finally sent back to the client. In Fig. 2, AutoCAN and 

CANspider act as automation servers, while 

MATLAB/Simulink acts as an automation client. After 

the communication is established between the client and 

servers, MATLAB has the ability to transmit or receive 

CAN messages through the AutoCAN hardware on the 

bus, and also disturb the specific CAN identifiers through 

the CANspider hardware on the CAN bus. In this 

situation the AutoCAN and CANspider can be 

understood as communication interfaces while MATLAB 

is the controller. 

C. Co-Simulation-and-Test Method 

The Co-simulation is composed of the network 

simulation in AutoCAN and control algorithm simulation 

in MATLAB/Simulink. The main control logic of the co-

simulation resides in the M-script of MATLAB. The 

behavior of the virtual node in the AutoCAN simulation 

environment is influenced by the M-script. 

The test is also carried out by the M-script in the 

MATLAB, which includes the signal modification and 

error injection of the CAN network. 

III. THE IMPLEMENTATION OF THE SIMULATION-AND-

TEST SYSTEM 

A. The Creation of Automation Servers 

To create the automation objects and establish the 

communication, the MATLAB script file (also known as 

M-File) is adopted because it is the most effective method 

for executing a series of MATLAB instructions without 

typing all of the commands from the keyboard. To create 
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the COM server, the following MATLAB function is 

used: 

h = actxserver(‘progid’); 

The function creates a local OLE Automation server, 

where progid is the programmatic identifier of an OLE-

compliant COM server, and h is the handle of the server's 

default interface. Since the programmatic identifiers of 

AutoCAN and CANspider have been already registered 

in the system after the software installation and can be 

found in the software manual, the following statements 

create the server objects: 

srvAutoCANMeasurement = 

actxserver(‘AutoCAN.Measurement’); // Creates the 

Measurement Object of AutoCAN 

srvAutoCANSimulation = 

actxserver(‘AutoCAN.Simulation’); // Creates the 

Simulation Object of AutoCAN 

srvCANspider = 

actxserver(‘CANspider.CANDisturbance’); // Creates the 

Disturbance Object of CANspider 

There are multiple interfaces in AutoCAN, including 

“Measurement”, “Simulation”, “Hardware” and so on. 

Each interface has a subset of relevant functions. To use a 

function under the specific interface, the corresponding 

automation object should first be created. 

TABLE I: FUNCTIONS DEFINED BY IMEASUREMENT INTERFACE OF 

AUTOCAN 

Function Prototypes Descriptions 

int32 TX(handle, int32, int32, 

int32, int32, int32, int64_T) 
Transmits CAN messages 

[int32, int64_T, 

Variant(Pointer)] 
GetTrace(handle) 

Receives CAN messages 

void ClearData(handle, int32) Clears the data display 

bool 

ConnectAutoCAN(handle, 

bool) 

Connects AutoCAN hardware 

TABLE II: FUNCTIONS DEFINED BY IDISTURBANCE INTERFACE OF 

CANSPIDER 

Function Prototypes Descriptions 

int32 
CANspider_Connect_Hardw

are(handle) 

Connects the CANspider 
hardware 

[int32, char, uint32_T, 

uint32_T] 
CANspider_Get_Disturbance

_Counter(handle) 

Gets the real-time disturbances 
counters 

int32 

CANspider_Config_Digital_

Trigger_Source_SOF(handle) 

Configures the start of frame 
trigger in digital disturbance 

int32 

CANspider_Start_Disturbanc
e(handle, int32, string) 

Executes the analog or digital 

disturbance 

 

After the creation of the server objects, the hardware of 

AutoCAN and CANspider can be accessed using the 

interface functions of the server objects.  

To acquire the list of the supported interfaces, the 

interfaces function is used to return a list of all the 

available interfaces such as “srvAutoCAN.interfaces;”.  

To get the list of all the supported functions of the 

specific server object interface, the following command is 

applied: 

invoke(srvAutoCAN); 

After the execution of the invoke function, the 

available function is listed by MATLAB. Table I and 

Table II shows some important functions published by 

AutoCAN automation server and CANspider automation 

server. 

B. Access to the Functions in the Automation Server 

With the automation objects created in MATLAB, all 

the supported functions can be executed in the following 

manner “Object.Method”, for example: 

status = srvCANspider.CANspider_Connect_Hardware; 

Where the “srvCANspider” is the automation server 

object and “CANspider_Connect_Hardware” is its 

method. After the function call, the variable “Status” can 

be used to determine whether this function is successfully 

executed during the simulation or test process. All the 

methods of AutoCAN and CANspider can be accessed in 

this way.  

There is a difference between AutoCAN automation 

server and CANspider automation server. The AutoCAN 

automation server is out-of-process COM server, which 

means the whole AutoCAN GUI interface will show up 

after the automation server object is created, thus the 

measurement data and simulation process can be 

monitored while the server object is being controlled. The 

CANspider automation server is in-process COM server, 

the software GUI interface will not show up during the 

function call to the automation server object. So the client 

application has to call the automation server’s function 

CANspider_Get_Disturbance_Counter in real-time to get 

the results returned from disturbance execution. 

Using M-script to interact with the automation server 

is simple and straightforward. The following M-script 

demonstrates the usage of AutoCAN automation server, 

which brings up the AutoCAN GUI, sends a frame on 

channel 1, and then close AutoCAN: 

function AutoCAN_TX 

he = actxserver('AutoCAN.Measurement'); 

he.WaitUntilAutoCANIsUp 

status = he.TX(1, 258, 1, 1, 8, hex2dec('FFAA55')); 

if 1 == status 

  disp('Message 0x102 is transmitted'); 

else 

  disp('Message 0x102 transmit failed'); 

end 

he.delete; 

disp('autocan closed'); 

C. Interactions with the MATLAB GUI 

To achieve better control over the co-simulation-and-

test process, it is convenient to create GUI (Graphical 
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User Interface) in MATLAB. Each GUI interface has its 

own handles data structure, the GUI components inside 

can be accessed by this data structure. 

Fig. 3 shows the CANspider disturbance module 

implemented in MATLAB GUI, which is able to 

configure the CANspider hardware during the simulation, 

to disturb specific ECUs. 

 

Figure 3.  CANspider disturbance module implemented in Matlab. 

Take a button component named “Connect 

CANspider” in GUI as an example, which is used to 

connect the CANspider hardware, the command can be 

added into its call-back function in the following manner: 

set(handles.ConnectCANspider, ‘Enable’, ‘off’); 

When this button is pressed, the corresponding call-

back function is executed. The Enable property of this 

component can be on, off or inactive, while this 

command sets the Enable property to off, to prevent this 

button from being pressed twice after the successful 

connection to the CANspider hardware. 

Based on the MATLAB GUI, the system is built with 

Simulink. To ensure the communication between 

Simulink and MATLAB GUI, the following Simulink 

operation functions are used:  

 Sim – starts the simulation 

 Simset– sets the parameters of the 

simulationsimget – gets the parameters of the 

simulation 

 evalin – to access the variables in the workspace in 

the M file 

 assignin – to copy the variable values from the M 

file to the workspace 

The internal data transmission between MATLAB GUI 

and Simulink mainly includes two parts, one is the signal 

input and the other is the output of the simulation result. 

To input signal from MATLAB GUI into the Simulink 

environment, the signal value can first be stored into a 

local variable, and then transferred into the workspace 

using the command assignin with a new variable name; 

the “From Workspace” module of the Simulink is able to 

retrieve the signal value by the variable name specified in 

the workspace. The simulation results returned by the 

simulation of the Simulink model can also be retrieved in 

the same manner using evalin function. Fig. 4 shows the 

main control interface of the system built with MATLAB 

GUI, from which the Simulink model can be invoked and 

executed. 

 

Figure 4.  The main control interface built with MATLAB GUI. 

D. System Modeling of Algorithm and CAN network 

The realization of the system modeling can be divided 

into three parts: the control algorithm model in 

MATLAB/Simulink, the network model in AutoCAN and 

the communication between AutoCAN and 

MATLAB/Simulink. 

To achieve hardware-in-the-loop simulation, a 

Simulink model has to be adjusted to satisfy the COM 

interface. The adjustments include the conversion of 

signal input-output components and environment variable 

input-output components into the “From Workspace” 

and “Display” modules, the input and output behaviors 

are controlled by the M script, so as to realize the 

connection between AutoCAN and MATLAB/Simulink.  

Fig. 5 shows an example of the control algorithm 

model of automotive ABS sub system, in which the 

elliptical annotations represent the input and output 

modules that are adjusted for the COM communication.  

The CAN network model is realized in AutoCAN, as 

shown in Fig. 6, which includes the simulated nodes such 

as “ABS”, “Meter” and a tester node. 
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Figure 5.  The control algorithm model of automotive ABS system. 

 

Figure 6.  The realization of the network model in AutoCAN. 

CAN bus databases are imported into this network for 

the symbol based CAN signal display and analysis. Each 

virtual node in the network has been interconnected with 

the corresponding AC simulation scripts so as to control 

the data exchange over the CAN network. 

The communication between AutoCAN and 

MATLAB/Simulink is implemented using M scripts by 

the following methods:  

(1) MATLAB/Simulink read/write the internal 

variables in the virtual node, which uses the function 

GetSimVarValue published by the interface ISimulation 

of AutoCAN. 

[k, d] = srvAutoCANSim.GetSimVarValue(‘ABS’, 

‘simBrakeActive’); 

The input parameter “ABS” specifies the database 

name of the current simulation system, while the 

parameter “simBrakeActive” is the internal simulation 

variable in the AC runtime environment of AutoCAN. 

The return value k represents whether the function 

successfully executed, and the value d represents the real-

time value of the simulation variable “simBrakeActive” 

in AutoCAN.  

(2) MATLAB/Simulink sends CAN messages through 

AutoCAN, which is achieved with the TX function 

published by the interface IMeasurement of AutoCAN. 

retn = srvAutoCAN.TX(1, hex2dec(‘50’), 

STD_FRAME, DATA_FRAME, 2, output_speed);  

The first input parameter “1” represents the usage of 

channel 1 of AutoCAN hardware; and the second 

parameter is the identifier of the message being 

transmitted; the third parameter “STD_FRAME” 

represents standard frame type; and the fourth parameter 

“DATA_FRAME” means data frame type; and the fifth 

parameter “2” restricts the data length of the current 

frame to two data bytes; and the last parameter 

“output_speed” stores the corresponding data bytes being 

transferred.  

The return value retn represents whether the message 

is sent successfully.  

The system is started when the corresponding M script 

is executed in the MATLAB environment. AutoCAN 

automation server and CANspider automation server are 

created when the M script initializes, the AutoCAN main 

interface shows up afterwards. The Simulink model is 

then loaded and the pre-defined simulation stages are 

carried out by the script. The control algorithm reads the 

signal, write variables and send frames, which realize the 

data exchange on the real CAN network among the 

virtual CAN nodes. 

E. System Co-simulation Implementation  

The CAN system is simulated in the AutoCAN 

environment, while the control algorithm is simulated in 

MATLAB/Simulink environment.  

The CAN system simulation is symbol based, which 

uses a CAN communication database as mention above. 

The message transmission and reception of each network 

node is defined in the communication matrix of the 
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database. The transmission model of a CAN message 

object is usually divided into two kinds: cyclic and 

spontaneous. 

The cyclic message is automatically sent by the 

corresponding virtual node and is scheduled by the 

simulation kernel on the CAN bus with a pre-defined 

interval, such as 10 milliseconds. Each message has its 

own transmission interval. If a node is active on the CAN 

bus, all its cyclic messages will be scheduled for the 

transmission. The data of the cyclic message can be 

continuously changed during each transmission, which is 

controlled by the corresponding virtual node. If some data 

need to be updated, the node has to modify the signal 

value in the message; it does not need to transmit the 

message immediately since this message is already 

scheduled and will be automatically sent in the upcoming 

communication cycle. To modify a specific signal’s value, 

the function “set_signal” in the AutoCAN built-in AC 

language is used, take a signal called “PedalPos” as 

example: 

set_signal(MSG_STATE, SGN_PEDAL_POS, val); 

The first input parameter “MSG_STATE” is the 

message object which contains the signal “PedalPos”; the 

second input parameter “SGN_PEDAL” is the signal 

object to be modified, and the last parameter “val” is the 

destination value for the signal to be set. 

Furthermore, the cyclic message is typically used to 

determine whether a specific node is active on the CAN 

bus during the simulation and test process. 

Unlike cyclic transmission model, spontaneous 

message will not be automatically transmitted by the 

simulation kernel; the transmission of such kind of 

message is determined by the virtual node’s internal 

algorithm. Events are typically triggered using such 

transmission model. 

In summary, the CAN system simulation is based on 

the signal value refresh in cyclic messages and event 

trigger in spontaneous messages. When the CAN bus 

simulation is started in AutoCAN, all nodes will 

participate in the communication with their cyclic and 

spontaneous messages.  

The control algorithm simulation is managed by 

MATLAB/Simulink, which is different from the CAN 

system simulation; however, there is a virtual CAN node 

associated with the control algorithm in the AutoCAN 

simulation environment, which provides a means to 

manipulate the cyclic and spontaneous messages for the 

control algorithm. During the execution of the control 

algorithm, when the algorithm needs to change a signal 

value in the cyclic message, the corresponding COM 

interface function in the AutoCAN automation server 

should be called. 

The typical signal modification process is implemented 

as follows: 

 Create a simulation variable in AutoCAN 

 Invoke automation function “SetSimVarValue” to set 

the value of this variable from M-script in MATLAB 

 Implement a “simulation-variable-change” call-back 

function in AC language in AutoCAN to handle the 

event when the value of this variable is changed 

 In this call-back function, set the corresponding signal 

value with the AC function “set_signal” 

There is no automation function like “SetSignalValue” 

in AutoCAN because the implementation of COM 

interface requires minimum coupling between different 

modules, there are only two functions available for data 

exchange: “GetSimVarValue” and “SetSimVarValue”, 

which make the migration of application interface much 

easier. 

The steps to create the co-simulation are as follows: 

 Create a CAN database including all the virtual 

nodes’ communication matrixes 

 Implement a network topology in the AutoCAN 

simulation module 

 Make AC script for each simulated node, so as to 

control the node’s behavior during the simulation 

 Implement call-backs to serve the requests from 

automation clients 

 Implement automation requests in the M-script of 

MATLAB 

 Run the simulation in AutoCAN and MATLAB 

F. CAN Bus Disturbance during the Simulation  

To guarantee the reliability and fault recovery ability 

of the control algorithm in the specified ECU, node test 

as well as network test should be performed. CANspider 

is used to disturb the message transmission on the 

network, and bring the specific ECU into bus off state.  

A specific CAN disturbance can be performed with the 

help of MATLAB GUI in Fig. 3. The disturbance occurs 

when the “Start Digital Disturbance” button is pressed on 

the GUI. 

However, to simulate the interferences in the vehicle 

environment, a timer is implemented in the M script to 

configure the CANspider hardware so as to bring the 

ABS node into off-line state at specific time intervals. 

Other network nodes are not influenced during the ABS 

bus off. The following functions published by the 

IDisturbance interface are used to configure the 

CANspider, which configures the disturbance settings 

and starts the disturbance: 
retn = CANspider_Disturb_Specific_ID(ID_ABS, 32, 

TIMEOUT_5S); 

retn = CANspider_Start_Disturbance(ANALOG_DISABLED, 

DIGITAL_ENABLED); 

The function “CANspider_Disturb_Specific_ID” first 

configures the trigger source and disturbance type of the 

CANspider hardware, to make the CANspider hardware 

trigger only when the identifier of the ABS node appears 

on the bus. In this way the ABS node is disturbed while 

other CAN nodes continue to exchange the signals. The 

disturbance type is limited disturbance with counter 

equals 32, which allows only one bus off occur for a 

specific CAN node. There is also a timeout value in the 
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input parameters, which prevents the system from waiting 

endlessly when no frames occur on the bus. 

After the successful configuration of the trigger source 

and disturbance type, the CANspider hardware is started 

by the “CANspider_Start_Disturbance” function, the 

input parameter “ANALOG_DISABLED” means no 

analog disturbance is applied, while 

“DIGITAL_ENABLED” indicates that the current 

disturbance type is digital disturbance. 

Fig. 7 shows that the frame transmitted by the ABS is 

being disturbed by CANspider. The disturbance position 

is at the beginning of the Data Length field. A recessive 

bit is forced into dominant level, which results in the 

termination of the current frame transmission and error 

frame sent by the ABS node. After 32 times of successive 

disturbance, the ABS node enters bus off state. 

When the disturbance is active, the messages being 

transmitted by the ABS are continuously disturbed and 

cannot be received by other network nodes. Error frames 

appear in the AutoCAN measurement windows, and the 

vehicle speed signal is lost. The control algorithm is 

estimated to tolerate this kind of error, enter error mode 

and try to recovery after the removal of the disturbance. 

With this test method, the stability and robustness of the 

ECU control algorithm can be fully tested.  

 

Figure 7.  The message transmission of ABS is disturbed by 
CANspider during the simulation. 

G. Automated Test Engine Implementation  

In order to test all aspects of a control algorithm or 

multiple control algorithms in a reproducible manner, the 

test execution should be automated, a test engine is 

developed for the co-simulation-and-test system [11] [12]. 

The test engine is implemented as a plugin of 

AutoCAN in a DLL (dynamic link library) file, since 

AutoCAN has a plugin manager and is able to load 

external program as its own plugin, which makes 

automation more efficient. 

An AutoCAN plugin is able to access the internal 

objects and functions of AutoCAN, such as message 

transmission and reception; and is also able to interact 

with other applications on Windows platform. To 

implement different test cases in order to test specific 

function points of an algorithm, the corresponding 

simulation environment should be different; this can be 

achieved by the implementation of test case selector, 

which selects the appropriate simulation configuration M-

script file in MATLAB, and run the co-simulation based 

on the selected configuration. 

To make MATLAB run a specific M-script file, the 

windows shell command can be used in the following 

manner [13]: 

“MATLAB_binary_path\matlab.exe” -r 

configuration.m -logfile log_file_path 

The file name of the shell command points to the path 

of the MATLAB executable “matlab.exe”; the “-r” means 

to run the M-script specified in the following parameter; 

the “configuration.m” specifies the M-script location on 

the disk, which can be changed in different test cases; and 

the “-logfile” parameter make MATLAB generate log file 

of the command execution in MATLAB environment; 

and the final parameter specifies the location of the 

destination log file. When the co-simulation-and-test is 

completed, the MATLAB application can be closed in the 

by invoking Windows API function - “CloseWindow”. 

The flowchart of the test engine is illustrated in Fig. 8. 

The test engine first loads a list of test cases when it is 

started, and executes each test case one after another until 

all test cases are executed.  

During the execution of automated testing, a specific 

test case is first selected by the test case selector, the 

runtime information is extracted from the test case, and 

MATLAB is invoked and the simulation is started based 

on the information from the test case.  

 
Figure 8.  The flowchart of the test engine. 

©2013 Engineering and Technology Publishing 687

Journal of Communications Vol. 8, No. 10, October 2013



 

Figure 9.  The test result curves. 

The simulation in AutoCAN is then started by the M-

script through the automation function 

“LoadConfiguration” and “StartSimulation”. 

The test engine is then paused and waits for the end of 

the co-simulation by monitoring a simulation variable in 

the AutoCAN environment, which is flagged when the 

MATLAB simulation ends. The MATLAB application is 

automatically closed by the test engine when the test case 

ends. The test results stored in the simulation variables 

are then retrieved by the test engine and compared with 

the expected value. 

The test result is rated “FAIL” if there is one failure in 

the result check, otherwise, the test result is “PASS”. The 

test data is logged into the log files and a test report is 

generated based on the log files. 

IV. RESULT AND DISCUSSION 

An ABS system control algorithm implemented in 

MATLAB/Simulink is tested in the Co-Simulation-and-

Test system. The test steps are carried out in the M-script 

of MATLAB in the following order: 

 Configure the CANspider digital disturbance module 

 Run CAN bus simulation in AutoCAN 

 Run control algorithm in Simulink 

 Apply disturbances in the acceleration stage of the 

vehicle 

 Compare the test results with the acceptance criteria 

The test result is shown in four curves in Fig. 9. 

In the result figure, vR is rear-wheel speed, vF is front-

wheel speed, xF is braking distance and lambda is slip 

rate. Each curve is divided into four sections, which 

represent four stages in the simulation.  

Stage 1 and stage 3 are acceleration processes, which 

are disturbed during the operation, meanwhile, the vF and 

vR fall into horizontal lines, for no messages can be 

received during the disturbance on the CAN bus. The 

speed and associated timestamp retrieved through the M 

script from AutoCAN trace window have the latest value 

before the disturbance and stay unchanged until the 

disturbance ends. The speed and timestamp signals are 

available again after the disturbance. The xF and lambda 

are not influenced in the stage 1 because they are not 

changed during the acceleration; they are either not 

influenced in stage 3 because they are simulation 

variables in the AutoCAN simulation model and are not 

influenced by the error in the real CAN bus. The 

disturbance only makes an impact on the CAN bus 

communication, the real operation in the actuators are not 

influenced, which means the vehicle continues to brake, 

thus the xF and lambda vary according to their original 

trend.  

Test results show that the communication is also 

applicable between the CANspider and MATLAB so as 

to fulfill the test on the CAN bus system. The system 

under simulation is proved to be capable of recovering 

from bus failures, which meets the CAN bus performance 

characteristics.  

V. CONCLUSIONS 

The CAN bus co-simulation-and-test platform built 

based on AutoCAN, CANspider and MATLAB is able to 

simulate the input signals as the ones in actual automotive 

network system, and process them according to the 

control algorithm described by model in 

MATLAB/Simulink. The simulation data can be 

observed in real time. By means of COM technology, 

which enables one software to access the other one 

through interfaces, the resource of different software can 

be shared without code re-implementation. Compared 

with other solutions, the structure of the whole system is 

more flexible, the advantages of all the tools in the 

system, such as the modeling ability of MATLAB and the 

CAN bus simulation ability of AutoCAN and the CAN 

bus error inject capability of CANspider are combined, 

resulting in the programming efficiency enhanced and the 

development costs reduced.  

To ease the simulation and test process, the MATLAB 

GUI is introduced, which interacts with the Simulink 

model and M scripts to accomplish the control over the 

data communication and CAN frame disturbances.  

An automated test engine is implemented to execute a 

list of test cases for the specific algorithm, which 

automatically invoke MATLAB application based on 

different test configurations, runs co-simulation, and 

finally close MATLAB application and generate test 

reports. With the help of the test engine, the defect of the 

algorithm can be detected and reproduced. 

The co-simulation-and-test is carried out on the basis 

of the actual automotive electronic system. Problems and 

defects of the control algorithm can be detected during 

the co-simulation-and-test period with the help of the 

CANspider. The experiments show the feasibility of the 

simulation and test method. 

Moreover, the function of the system can be extended 

in this way, to achieve complicated algorithm simulation 

and test and hardware-in-the-loop simulation. 

©2013 Engineering and Technology Publishing 688

Journal of Communications Vol. 8, No. 10, October 2013



ACKNOWLEDGMENT 

This work was supported by National High-tech R&D 

Program of China (863 Program) under grant No. 

2011AA11A214. 

REFERENCES  

[1] Q. Alfio and F. Saleri, Scientific Computing with MATLAB 

and Octave, 2nd ed. Springer, 2006. 

[2] J. Z. Ou and V. K. Prasanna, “MATLAB/Simulink based 

hardware/software co-simulation for designing using 

FPGA configured soft processors,” in Proc. 19th IEEE 

International Parallel and Distributed Processing 

Symposium, Denver, 2005. 

[3] J. G. Zhang, Y. L. Lei, H. B. Liu, X. P. Zhang, and Z. J. 

Liu, “Application of CANoe-Matlab co-simulation in 

DCT-CAN bus control,” Automobile Technology, vol. 1, 

no. 9, pp. 7-10, 2010. 

[4] H. Z. Guo, H. Chen, T. H. Song, and X. Zhou, “CAN 

nodes embedded automotive electronic throttle simulation 

system,” Journal of System Simulation, vol. 21, no. 18, pp. 

5716-5719, Sep. 2009. 

[5] D. Box, Essential COM, Addison-Wesley, 1998. 

[6] X. J. Li, G. Ye, Z. W. Li, and S. L. Ma, “Study and 

implementation of spacecraft integration test platform 

based on component technology,” Journal of Computers, 

vol. 6, no. 5, pp. 963-968, May 2011. 

[7] X. L. Bai and H. M. Zhang, “Design of digital filter based 

on VB and Matlab,” in Proc. 2009 9th International 

Conference on Electronic Measurement & Instruments, 

Beijing, 2009, pp. 85-88. 

[8] X. Y. Wang and R. D. Ji, “Design and implementation of 

simulation platform for fuzzy PID based on COM 

technology,” in Proc. 2011 International Conference on 

Control, Automation and Systems Engineering, Singapore, 

2011, pp. 1-3. 

[9] J. Wang, J. Y. Chen, and Y. Zhuang, “Mixed programming 

between MATLAB and other programming languages,” 

Communications in Computer and Information Science vol. 

225, pp. 669-676, 2011. 

[10] D. Chappell, Understanding ActiveX and OLE, Microsoft 

Press, 1996. 

[11] S. Wang, Y. D. Ji, and S. Y. Yang, “A micro-kernel test 

engine for automatic test system,” Journal of Computers, 

vol. 6, no. 1, pp. 3-10, January 2011. 

[12] J. Yang, B. Liang, T. Zhang, J. Y. Song and L. L. Song, 

“Laboratory test system design for star sensor performance 

evaluation,” Journal of Computers, vol. 7, no. 4, pp. 1056-

1063, April 2012. 

[13] C. G. Wang, J. F. He, G. X. Li, and J. W. Han, “An 

automated test system for flight simulator fidelity 

evaluation,” Journal of Computers, vol. 4, no. 11, pp. 

1083-1090, November 2009. 

 

Chu Liu born in Fujian, China in July 1985. 

His area of research is automotive electronic 

network. He received his Master’s degree in 

Bachelor of Engineering from the Tongji 

University in 2011 in Shanghai, China. He is 

a research student in Tongji University in 

Shanghai, China. His research interests include: Automotive 

Network and Intelligent Vehicle. 

 

©2013 Engineering and Technology Publishing 689

Journal of Communications Vol. 8, No. 10, October 2013




