
A Co-Simulation-and-Test Method for CAN Bus System

Chu Liu and Feng Luo
Clean Energy Automotive Engineering Center, School of Automotive Study, Tongji University, Shanghai 201804,

China

Email: liuchu1985@126.com; luo_feng@tongji.edu.cn

Abstract—Simulation and test are important for the

development and validation of automotive ECU (Electronic

Control Unit). However, problems arise in the combination of

today’s automotive control algorithm development and function

test. There are lots of professional tools for simulation and test,

but lack of interfacing capability between them, especially in

the simulation and test of today’s automotive network. The

approach of COM (Component Object Model) technology is

used to solve this problem, and a complete co-simulation-and-

test system is introduced in this article, which is made up of

CAN (Controller Area Network) Bus Simulation Environment –

AutoCAN, and CAN Bus Disturbance Generator – CANspider

and MATLAB. AutoCAN and CANspider have great

advantages in simulation and test of automotive CAN bus, while

MATLAB has superior performance in modeling. The

integration of these tools makes it possible to realize the internal

communication between them, and combine their respective

advantages and increase the efficiency of engineering

application. Experiments are performed to prove the

effectiveness of the platform for developing and testing the

automotive network system based on automotive CAN Bus. 

Index Terms—AutoCAN, CANspider, MATLAB, COM, Co-

simulation-and-test

I. INTRODUCTION

With the rapid development of automotive electronic

technology, the communication network on-board is

becoming more and more complicated, including the

development of the control algorithm as well as the

validation of the functionality and reliability.

MATLAB is a high level programming language and

interactive environment developed by MathWorks. It is

used for algorithms development, data visualization and

analysis, numerical computing and interfacing with

programs written in other languages to share the resource.

MATLAB/Simulink plays an important role in the system

level modeling and validation of the automotive product

[1], however, without specific toolboxes provided by the

tool vendor, it has limited ability to access the automotive

CAN Bus and perform real-time simulation and

validation.

IHR’s AutoCAN is a powerful tool for automotive

CAN bus design, simulation and test, which is able to

Manuscript received August 16, 2013; revised October 29, 2013.
This work was supported by National High-tech R&D Program of

China (863 Program) under Grant No. 2011AA11A214.
Corresponding author email: liuchu1985@126.com

doi:10.12720/jcm.8.10.681-689

simulation a whole CAN network, create communication

among virtual nodes and real nodes on the CAN bus.

Various measurement windows make signal displayed

and monitored much easier, and its built-in AC Language

provides unlimited possibilities for simulation and test.

Using its unique AC programming language, the behavior

of virtual CAN node can be controlled with ease,

however, the ability of its AC language is limited in

developing algorithms in the increasingly complex CAN

bus system.

IHR’s CANspider is a CAN Disturbance Generator, it

provides a high-performance CAN test environment,

which can be used not only for testing the given CAN

nodes, but also the specific CAN network system. With

CANspider the user can intentionally and reproducibly

disturb the CAN bus. With CANspider, the fault recovery

ability of the automotive ECU can be fully tested.

CANspider can be easily interfaced with other

applications.

In order to reduce the complexity, the method of co-

simulation-and-test of CAN Bus with AutoCAN,

CANspider and MATLAB is necessary [2], so as to

combine with their respective advantages and increase the

efficiency of engineering applications. Thus MATLAB

can also participate in the communication on CAN bus,

and make the data on CAN and in MATLAB associated

and synchronous, while simulating disturbances that may

occur during the actual working process, and evaluate the

real-time performance and reliability of the system by test.

 Nowadays, there are some relevant applications in the

field of CAN bus system on-board, such as Dual Clutch

Transmission (DCT) control system and Electronic

Throttle Control System (ETCS), by using of CANoe and

MATLAB/Simulink [3]-[4]. It can be seen that the

integration of CAN bus simulation tool and modeling tool

makes the simulation-and-test platform much more

efficient and complete, contributing to the development

of automotive CAN bus system.

In this paper, the method of creating communication

between different applications via COM technology on

Windows is introduced [5]. A test system is built based

on this method [6]-[8], which tests the algorithm of the

ABS (Anti-lock Brake System) system in the MATLAB,

simulates the whole CAN network communication in

AutoCAN. Unlike other co-simulation-and-test solutions,

CAN bus disturbance is also injected in the network by

controlling the CANspider, so as to test the fault

tolerance and fault recovery capabilities of a specific

control algorithm. A stand-alone test engine is built to

©2013 Engineering and Technology Publishing 681

Journal of Communications Vol. 8, No. 10, October 2013

execute a list of test cases. This gives the developer and

test engineer access to all the test tools in one test bench

simultaneously. With the help of the interfacing

technology [9], complex simulation and test problems can

be solved with high efficiency.

II. RESEARCH METHOD

A. System Structure Definition

The system is mainly composed of four parts:

AutoCAN, CANspider, MATLAB and the interfaces

between MATLAB and the real CAN bus as shown in

Fig. 1.

The AutoCAN hardware is connected through a USB

cable from PC (Personal Computer) to the real CAN bus,

CANspider can be connected to the CAN bus in the same

way, however, it is usually connected in series in the

CAN network, so as to achieve programmable break and

short circuit on the CAN bus.

MATLAB is a stand-alone software platform, which

connects to the CAN bus through the interfaces provided

by AutoCAN and CANspider.

During the simulation process of the system, all

messages transmitted on the CAN bus by virtual or real

CAN nodes can be monitored by MATLAB, or disturbed

by MATLAB applications through the interfaces

provided. The validation and test of the ECU can be

better achieved based on the system setup.

Figure 1. The definition of the system structure.

AutoCAN

Node 1 Node 2 Node N

CANspider

...

AutoCAN/MATLAB
COM Interface

CANspider/MATLAB
COM Interface

Model of
Control

Algorithm

MATLAB/Simulink

Figure 2. The interfacing principle of the system.

B. Interfacing Principle of the System

Fig. 2 illustrates the interfacing principle among

multiple tools of the co-simulation-and-test system.

The seamless integration of AutoCAN, CANspider and

MATLAB is based on OLE (Object Linking and

Embedding) Automation that allows one application (the

client or controller) to control objects exported by another

application (the server). The automation client is able to

access the objects, properties and methods in the

automation server, which complements each other’s

advantages. The core element of automation is

Component Object Model (COM), which defines a group

of APIs (Application Programming Interfaces) and binary

standard to enable the component objects, from different

platforms and in different languages, to communicate

with each other well [10]. Since the COM technology is

widely used in the automation all over the world, and

MATLAB has COM support, it is necessary that this

interfacing technique is studied.

The communication between the automation server

and client is on the basis of client request and server

response. Specific functions as well as the interface for

accessing these functions are defined in the automation

server. Upon receiving the request submitted by the

automation client, the corresponding events are triggered

and processed in the automation server, the results are

finally sent back to the client. In Fig. 2, AutoCAN and

CANspider act as automation servers, while

MATLAB/Simulink acts as an automation client. After

the communication is established between the client and

servers, MATLAB has the ability to transmit or receive

CAN messages through the AutoCAN hardware on the

bus, and also disturb the specific CAN identifiers through

the CANspider hardware on the CAN bus. In this

situation the AutoCAN and CANspider can be

understood as communication interfaces while MATLAB

is the controller.

C. Co-Simulation-and-Test Method

The Co-simulation is composed of the network

simulation in AutoCAN and control algorithm simulation

in MATLAB/Simulink. The main control logic of the co-

simulation resides in the M-script of MATLAB. The

behavior of the virtual node in the AutoCAN simulation

environment is influenced by the M-script.

The test is also carried out by the M-script in the

MATLAB, which includes the signal modification and

error injection of the CAN network.

III. THE IMPLEMENTATION OF THE SIMULATION-AND-

TEST SYSTEM

A. The Creation of Automation Servers

To create the automation objects and establish the

communication, the MATLAB script file (also known as

M-File) is adopted because it is the most effective method

for executing a series of MATLAB instructions without

typing all of the commands from the keyboard. To create

©2013 Engineering and Technology Publishing 682

Journal of Communications Vol. 8, No. 10, October 2013

the COM server, the following MATLAB function is

used:

h = actxserver(‘progid’);

The function creates a local OLE Automation server,

where progid is the programmatic identifier of an OLE-

compliant COM server, and h is the handle of the server's

default interface. Since the programmatic identifiers of

AutoCAN and CANspider have been already registered

in the system after the software installation and can be

found in the software manual, the following statements

create the server objects:

srvAutoCANMeasurement =

actxserver(‘AutoCAN.Measurement’); // Creates the

Measurement Object of AutoCAN

srvAutoCANSimulation =

actxserver(‘AutoCAN.Simulation’); // Creates the

Simulation Object of AutoCAN

srvCANspider =

actxserver(‘CANspider.CANDisturbance’); // Creates the

Disturbance Object of CANspider

There are multiple interfaces in AutoCAN, including

“Measurement”, “Simulation”, “Hardware” and so on.

Each interface has a subset of relevant functions. To use a

function under the specific interface, the corresponding

automation object should first be created.

TABLE I: FUNCTIONS DEFINED BY IMEASUREMENT INTERFACE OF

AUTOCAN

Function Prototypes Descriptions

int32 TX(handle, int32, int32,

int32, int32, int32, int64_T)
Transmits CAN messages

[int32, int64_T,

Variant(Pointer)]
GetTrace(handle)

Receives CAN messages

void ClearData(handle, int32) Clears the data display

bool

ConnectAutoCAN(handle,

bool)

Connects AutoCAN hardware

TABLE II: FUNCTIONS DEFINED BY IDISTURBANCE INTERFACE OF

CANSPIDER

Function Prototypes Descriptions

int32
CANspider_Connect_Hardw

are(handle)

Connects the CANspider
hardware

[int32, char, uint32_T,

uint32_T]
CANspider_Get_Disturbance

_Counter(handle)

Gets the real-time disturbances
counters

int32

CANspider_Config_Digital_

Trigger_Source_SOF(handle)

Configures the start of frame
trigger in digital disturbance

int32

CANspider_Start_Disturbanc
e(handle, int32, string)

Executes the analog or digital

disturbance

After the creation of the server objects, the hardware of

AutoCAN and CANspider can be accessed using the

interface functions of the server objects.

To acquire the list of the supported interfaces, the

interfaces function is used to return a list of all the

available interfaces such as “srvAutoCAN.interfaces;”.

To get the list of all the supported functions of the

specific server object interface, the following command is

applied:

invoke(srvAutoCAN);

After the execution of the invoke function, the

available function is listed by MATLAB. Table I and

Table II shows some important functions published by

AutoCAN automation server and CANspider automation

server.

B. Access to the Functions in the Automation Server

With the automation objects created in MATLAB, all

the supported functions can be executed in the following

manner “Object.Method”, for example:

status = srvCANspider.CANspider_Connect_Hardware;

Where the “srvCANspider” is the automation server

object and “CANspider_Connect_Hardware” is its

method. After the function call, the variable “Status” can

be used to determine whether this function is successfully

executed during the simulation or test process. All the

methods of AutoCAN and CANspider can be accessed in

this way.

There is a difference between AutoCAN automation

server and CANspider automation server. The AutoCAN

automation server is out-of-process COM server, which

means the whole AutoCAN GUI interface will show up

after the automation server object is created, thus the

measurement data and simulation process can be

monitored while the server object is being controlled. The

CANspider automation server is in-process COM server,

the software GUI interface will not show up during the

function call to the automation server object. So the client

application has to call the automation server’s function

CANspider_Get_Disturbance_Counter in real-time to get

the results returned from disturbance execution.

Using M-script to interact with the automation server

is simple and straightforward. The following M-script

demonstrates the usage of AutoCAN automation server,

which brings up the AutoCAN GUI, sends a frame on

channel 1, and then close AutoCAN:

function AutoCAN_TX

he = actxserver('AutoCAN.Measurement');

he.WaitUntilAutoCANIsUp

status = he.TX(1, 258, 1, 1, 8, hex2dec('FFAA55'));

if 1 == status

 disp('Message 0x102 is transmitted');

else

 disp('Message 0x102 transmit failed');

end

he.delete;

disp('autocan closed');

C. Interactions with the MATLAB GUI

To achieve better control over the co-simulation-and-

test process, it is convenient to create GUI (Graphical

©2013 Engineering and Technology Publishing 683

Journal of Communications Vol. 8, No. 10, October 2013

User Interface) in MATLAB. Each GUI interface has its

own handles data structure, the GUI components inside

can be accessed by this data structure.

Fig. 3 shows the CANspider disturbance module

implemented in MATLAB GUI, which is able to

configure the CANspider hardware during the simulation,

to disturb specific ECUs.

Figure 3. CANspider disturbance module implemented in Matlab.

Take a button component named “Connect

CANspider” in GUI as an example, which is used to

connect the CANspider hardware, the command can be

added into its call-back function in the following manner:

set(handles.ConnectCANspider, ‘Enable’, ‘off’);

When this button is pressed, the corresponding call-

back function is executed. The Enable property of this

component can be on, off or inactive, while this

command sets the Enable property to off, to prevent this

button from being pressed twice after the successful

connection to the CANspider hardware.

Based on the MATLAB GUI, the system is built with

Simulink. To ensure the communication between

Simulink and MATLAB GUI, the following Simulink

operation functions are used:

 Sim – starts the simulation

 Simset– sets the parameters of the

simulationsimget – gets the parameters of the

simulation

 evalin – to access the variables in the workspace in

the M file

 assignin – to copy the variable values from the M

file to the workspace

The internal data transmission between MATLAB GUI

and Simulink mainly includes two parts, one is the signal

input and the other is the output of the simulation result.

To input signal from MATLAB GUI into the Simulink

environment, the signal value can first be stored into a

local variable, and then transferred into the workspace

using the command assignin with a new variable name;

the “From Workspace” module of the Simulink is able to

retrieve the signal value by the variable name specified in

the workspace. The simulation results returned by the

simulation of the Simulink model can also be retrieved in

the same manner using evalin function. Fig. 4 shows the

main control interface of the system built with MATLAB

GUI, from which the Simulink model can be invoked and

executed.

Figure 4. The main control interface built with MATLAB GUI.

D. System Modeling of Algorithm and CAN network

The realization of the system modeling can be divided

into three parts: the control algorithm model in

MATLAB/Simulink, the network model in AutoCAN and

the communication between AutoCAN and

MATLAB/Simulink.

To achieve hardware-in-the-loop simulation, a

Simulink model has to be adjusted to satisfy the COM

interface. The adjustments include the conversion of

signal input-output components and environment variable

input-output components into the “From Workspace”

and “Display” modules, the input and output behaviors

are controlled by the M script, so as to realize the

connection between AutoCAN and MATLAB/Simulink.

Fig. 5 shows an example of the control algorithm

model of automotive ABS sub system, in which the

elliptical annotations represent the input and output

modules that are adjusted for the COM communication.

The CAN network model is realized in AutoCAN, as

shown in Fig. 6, which includes the simulated nodes such

as “ABS”, “Meter” and a tester node.

©2013 Engineering and Technology Publishing 684

Journal of Communications Vol. 8, No. 10, October 2013

Figure 5. The control algorithm model of automotive ABS system.

Figure 6. The realization of the network model in AutoCAN.

CAN bus databases are imported into this network for

the symbol based CAN signal display and analysis. Each

virtual node in the network has been interconnected with

the corresponding AC simulation scripts so as to control

the data exchange over the CAN network.

The communication between AutoCAN and

MATLAB/Simulink is implemented using M scripts by

the following methods:

(1) MATLAB/Simulink read/write the internal

variables in the virtual node, which uses the function

GetSimVarValue published by the interface ISimulation

of AutoCAN.

[k, d] = srvAutoCANSim.GetSimVarValue(‘ABS’,

‘simBrakeActive’);

The input parameter “ABS” specifies the database

name of the current simulation system, while the

parameter “simBrakeActive” is the internal simulation

variable in the AC runtime environment of AutoCAN.

The return value k represents whether the function

successfully executed, and the value d represents the real-

time value of the simulation variable “simBrakeActive”

in AutoCAN.

(2) MATLAB/Simulink sends CAN messages through

AutoCAN, which is achieved with the TX function

published by the interface IMeasurement of AutoCAN.

retn = srvAutoCAN.TX(1, hex2dec(‘50’),

STD_FRAME, DATA_FRAME, 2, output_speed);

The first input parameter “1” represents the usage of

channel 1 of AutoCAN hardware; and the second

parameter is the identifier of the message being

transmitted; the third parameter “STD_FRAME”

represents standard frame type; and the fourth parameter

“DATA_FRAME” means data frame type; and the fifth

parameter “2” restricts the data length of the current

frame to two data bytes; and the last parameter

“output_speed” stores the corresponding data bytes being

transferred.

The return value retn represents whether the message

is sent successfully.

The system is started when the corresponding M script

is executed in the MATLAB environment. AutoCAN

automation server and CANspider automation server are

created when the M script initializes, the AutoCAN main

interface shows up afterwards. The Simulink model is

then loaded and the pre-defined simulation stages are

carried out by the script. The control algorithm reads the

signal, write variables and send frames, which realize the

data exchange on the real CAN network among the

virtual CAN nodes.

E. System Co-simulation Implementation

The CAN system is simulated in the AutoCAN

environment, while the control algorithm is simulated in

MATLAB/Simulink environment.

The CAN system simulation is symbol based, which

uses a CAN communication database as mention above.

The message transmission and reception of each network

node is defined in the communication matrix of the

©2013 Engineering and Technology Publishing 685

Journal of Communications Vol. 8, No. 10, October 2013

database. The transmission model of a CAN message

object is usually divided into two kinds: cyclic and

spontaneous.

The cyclic message is automatically sent by the

corresponding virtual node and is scheduled by the

simulation kernel on the CAN bus with a pre-defined

interval, such as 10 milliseconds. Each message has its

own transmission interval. If a node is active on the CAN

bus, all its cyclic messages will be scheduled for the

transmission. The data of the cyclic message can be

continuously changed during each transmission, which is

controlled by the corresponding virtual node. If some data

need to be updated, the node has to modify the signal

value in the message; it does not need to transmit the

message immediately since this message is already

scheduled and will be automatically sent in the upcoming

communication cycle. To modify a specific signal’s value,

the function “set_signal” in the AutoCAN built-in AC

language is used, take a signal called “PedalPos” as

example:

set_signal(MSG_STATE, SGN_PEDAL_POS, val);

The first input parameter “MSG_STATE” is the

message object which contains the signal “PedalPos”; the

second input parameter “SGN_PEDAL” is the signal

object to be modified, and the last parameter “val” is the

destination value for the signal to be set.

Furthermore, the cyclic message is typically used to

determine whether a specific node is active on the CAN

bus during the simulation and test process.

Unlike cyclic transmission model, spontaneous

message will not be automatically transmitted by the

simulation kernel; the transmission of such kind of

message is determined by the virtual node’s internal

algorithm. Events are typically triggered using such

transmission model.

In summary, the CAN system simulation is based on

the signal value refresh in cyclic messages and event

trigger in spontaneous messages. When the CAN bus

simulation is started in AutoCAN, all nodes will

participate in the communication with their cyclic and

spontaneous messages.

The control algorithm simulation is managed by

MATLAB/Simulink, which is different from the CAN

system simulation; however, there is a virtual CAN node

associated with the control algorithm in the AutoCAN

simulation environment, which provides a means to

manipulate the cyclic and spontaneous messages for the

control algorithm. During the execution of the control

algorithm, when the algorithm needs to change a signal

value in the cyclic message, the corresponding COM

interface function in the AutoCAN automation server

should be called.

The typical signal modification process is implemented

as follows:

 Create a simulation variable in AutoCAN

 Invoke automation function “SetSimVarValue” to set

the value of this variable from M-script in MATLAB

 Implement a “simulation-variable-change” call-back

function in AC language in AutoCAN to handle the

event when the value of this variable is changed

 In this call-back function, set the corresponding signal

value with the AC function “set_signal”

There is no automation function like “SetSignalValue”

in AutoCAN because the implementation of COM

interface requires minimum coupling between different

modules, there are only two functions available for data

exchange: “GetSimVarValue” and “SetSimVarValue”,

which make the migration of application interface much

easier.

The steps to create the co-simulation are as follows:

 Create a CAN database including all the virtual

nodes’ communication matrixes

 Implement a network topology in the AutoCAN

simulation module

 Make AC script for each simulated node, so as to

control the node’s behavior during the simulation

 Implement call-backs to serve the requests from

automation clients

 Implement automation requests in the M-script of

MATLAB

 Run the simulation in AutoCAN and MATLAB

F. CAN Bus Disturbance during the Simulation

To guarantee the reliability and fault recovery ability

of the control algorithm in the specified ECU, node test

as well as network test should be performed. CANspider

is used to disturb the message transmission on the

network, and bring the specific ECU into bus off state.

A specific CAN disturbance can be performed with the

help of MATLAB GUI in Fig. 3. The disturbance occurs

when the “Start Digital Disturbance” button is pressed on

the GUI.

However, to simulate the interferences in the vehicle

environment, a timer is implemented in the M script to

configure the CANspider hardware so as to bring the

ABS node into off-line state at specific time intervals.

Other network nodes are not influenced during the ABS

bus off. The following functions published by the

IDisturbance interface are used to configure the

CANspider, which configures the disturbance settings

and starts the disturbance:
retn = CANspider_Disturb_Specific_ID(ID_ABS, 32,

TIMEOUT_5S);

retn = CANspider_Start_Disturbance(ANALOG_DISABLED,

DIGITAL_ENABLED);

The function “CANspider_Disturb_Specific_ID” first

configures the trigger source and disturbance type of the

CANspider hardware, to make the CANspider hardware

trigger only when the identifier of the ABS node appears

on the bus. In this way the ABS node is disturbed while

other CAN nodes continue to exchange the signals. The

disturbance type is limited disturbance with counter

equals 32, which allows only one bus off occur for a

specific CAN node. There is also a timeout value in the

©2013 Engineering and Technology Publishing 686

Journal of Communications Vol. 8, No. 10, October 2013

input parameters, which prevents the system from waiting

endlessly when no frames occur on the bus.

After the successful configuration of the trigger source

and disturbance type, the CANspider hardware is started

by the “CANspider_Start_Disturbance” function, the

input parameter “ANALOG_DISABLED” means no

analog disturbance is applied, while

“DIGITAL_ENABLED” indicates that the current

disturbance type is digital disturbance.

Fig. 7 shows that the frame transmitted by the ABS is

being disturbed by CANspider. The disturbance position

is at the beginning of the Data Length field. A recessive

bit is forced into dominant level, which results in the

termination of the current frame transmission and error

frame sent by the ABS node. After 32 times of successive

disturbance, the ABS node enters bus off state.

When the disturbance is active, the messages being

transmitted by the ABS are continuously disturbed and

cannot be received by other network nodes. Error frames

appear in the AutoCAN measurement windows, and the

vehicle speed signal is lost. The control algorithm is

estimated to tolerate this kind of error, enter error mode

and try to recovery after the removal of the disturbance.

With this test method, the stability and robustness of the

ECU control algorithm can be fully tested.

Figure 7. The message transmission of ABS is disturbed by
CANspider during the simulation.

G. Automated Test Engine Implementation

In order to test all aspects of a control algorithm or

multiple control algorithms in a reproducible manner, the

test execution should be automated, a test engine is

developed for the co-simulation-and-test system [11] [12].

The test engine is implemented as a plugin of

AutoCAN in a DLL (dynamic link library) file, since

AutoCAN has a plugin manager and is able to load

external program as its own plugin, which makes

automation more efficient.

An AutoCAN plugin is able to access the internal

objects and functions of AutoCAN, such as message

transmission and reception; and is also able to interact

with other applications on Windows platform. To

implement different test cases in order to test specific

function points of an algorithm, the corresponding

simulation environment should be different; this can be

achieved by the implementation of test case selector,

which selects the appropriate simulation configuration M-

script file in MATLAB, and run the co-simulation based

on the selected configuration.

To make MATLAB run a specific M-script file, the

windows shell command can be used in the following

manner [13]:

“MATLAB_binary_path\matlab.exe” -r

configuration.m -logfile log_file_path

The file name of the shell command points to the path

of the MATLAB executable “matlab.exe”; the “-r” means

to run the M-script specified in the following parameter;

the “configuration.m” specifies the M-script location on

the disk, which can be changed in different test cases; and

the “-logfile” parameter make MATLAB generate log file

of the command execution in MATLAB environment;

and the final parameter specifies the location of the

destination log file. When the co-simulation-and-test is

completed, the MATLAB application can be closed in the

by invoking Windows API function - “CloseWindow”.

The flowchart of the test engine is illustrated in Fig. 8.

The test engine first loads a list of test cases when it is

started, and executes each test case one after another until

all test cases are executed.

During the execution of automated testing, a specific

test case is first selected by the test case selector, the

runtime information is extracted from the test case, and

MATLAB is invoked and the simulation is started based

on the information from the test case.

Figure 8. The flowchart of the test engine.

©2013 Engineering and Technology Publishing 687

Journal of Communications Vol. 8, No. 10, October 2013

Figure 9. The test result curves.

The simulation in AutoCAN is then started by the M-

script through the automation function

“LoadConfiguration” and “StartSimulation”.

The test engine is then paused and waits for the end of

the co-simulation by monitoring a simulation variable in

the AutoCAN environment, which is flagged when the

MATLAB simulation ends. The MATLAB application is

automatically closed by the test engine when the test case

ends. The test results stored in the simulation variables

are then retrieved by the test engine and compared with

the expected value.

The test result is rated “FAIL” if there is one failure in

the result check, otherwise, the test result is “PASS”. The

test data is logged into the log files and a test report is

generated based on the log files.

IV. RESULT AND DISCUSSION

An ABS system control algorithm implemented in

MATLAB/Simulink is tested in the Co-Simulation-and-

Test system. The test steps are carried out in the M-script

of MATLAB in the following order:

 Configure the CANspider digital disturbance module

 Run CAN bus simulation in AutoCAN

 Run control algorithm in Simulink

 Apply disturbances in the acceleration stage of the

vehicle

 Compare the test results with the acceptance criteria

The test result is shown in four curves in Fig. 9.

In the result figure, vR is rear-wheel speed, vF is front-

wheel speed, xF is braking distance and lambda is slip

rate. Each curve is divided into four sections, which

represent four stages in the simulation.

Stage 1 and stage 3 are acceleration processes, which

are disturbed during the operation, meanwhile, the vF and

vR fall into horizontal lines, for no messages can be

received during the disturbance on the CAN bus. The

speed and associated timestamp retrieved through the M

script from AutoCAN trace window have the latest value

before the disturbance and stay unchanged until the

disturbance ends. The speed and timestamp signals are

available again after the disturbance. The xF and lambda

are not influenced in the stage 1 because they are not

changed during the acceleration; they are either not

influenced in stage 3 because they are simulation

variables in the AutoCAN simulation model and are not

influenced by the error in the real CAN bus. The

disturbance only makes an impact on the CAN bus

communication, the real operation in the actuators are not

influenced, which means the vehicle continues to brake,

thus the xF and lambda vary according to their original

trend.

Test results show that the communication is also

applicable between the CANspider and MATLAB so as

to fulfill the test on the CAN bus system. The system

under simulation is proved to be capable of recovering

from bus failures, which meets the CAN bus performance

characteristics.

V. CONCLUSIONS

The CAN bus co-simulation-and-test platform built

based on AutoCAN, CANspider and MATLAB is able to

simulate the input signals as the ones in actual automotive

network system, and process them according to the

control algorithm described by model in

MATLAB/Simulink. The simulation data can be

observed in real time. By means of COM technology,

which enables one software to access the other one

through interfaces, the resource of different software can

be shared without code re-implementation. Compared

with other solutions, the structure of the whole system is

more flexible, the advantages of all the tools in the

system, such as the modeling ability of MATLAB and the

CAN bus simulation ability of AutoCAN and the CAN

bus error inject capability of CANspider are combined,

resulting in the programming efficiency enhanced and the

development costs reduced.

To ease the simulation and test process, the MATLAB

GUI is introduced, which interacts with the Simulink

model and M scripts to accomplish the control over the

data communication and CAN frame disturbances.

An automated test engine is implemented to execute a

list of test cases for the specific algorithm, which

automatically invoke MATLAB application based on

different test configurations, runs co-simulation, and

finally close MATLAB application and generate test

reports. With the help of the test engine, the defect of the

algorithm can be detected and reproduced.

The co-simulation-and-test is carried out on the basis

of the actual automotive electronic system. Problems and

defects of the control algorithm can be detected during

the co-simulation-and-test period with the help of the

CANspider. The experiments show the feasibility of the

simulation and test method.

Moreover, the function of the system can be extended

in this way, to achieve complicated algorithm simulation

and test and hardware-in-the-loop simulation.

©2013 Engineering and Technology Publishing 688

Journal of Communications Vol. 8, No. 10, October 2013

ACKNOWLEDGMENT

This work was supported by National High-tech R&D

Program of China (863 Program) under grant No.

2011AA11A214.

REFERENCES

[1] Q. Alfio and F. Saleri, Scientific Computing with MATLAB

and Octave, 2nd ed. Springer, 2006.

[2] J. Z. Ou and V. K. Prasanna, “MATLAB/Simulink based

hardware/software co-simulation for designing using

FPGA configured soft processors,” in Proc. 19th IEEE

International Parallel and Distributed Processing

Symposium, Denver, 2005.

[3] J. G. Zhang, Y. L. Lei, H. B. Liu, X. P. Zhang, and Z. J.

Liu, “Application of CANoe-Matlab co-simulation in

DCT-CAN bus control,” Automobile Technology, vol. 1,

no. 9, pp. 7-10, 2010.

[4] H. Z. Guo, H. Chen, T. H. Song, and X. Zhou, “CAN

nodes embedded automotive electronic throttle simulation

system,” Journal of System Simulation, vol. 21, no. 18, pp.

5716-5719, Sep. 2009.

[5] D. Box, Essential COM, Addison-Wesley, 1998.

[6] X. J. Li, G. Ye, Z. W. Li, and S. L. Ma, “Study and

implementation of spacecraft integration test platform

based on component technology,” Journal of Computers,

vol. 6, no. 5, pp. 963-968, May 2011.

[7] X. L. Bai and H. M. Zhang, “Design of digital filter based

on VB and Matlab,” in Proc. 2009 9th International

Conference on Electronic Measurement & Instruments,

Beijing, 2009, pp. 85-88.

[8] X. Y. Wang and R. D. Ji, “Design and implementation of

simulation platform for fuzzy PID based on COM

technology,” in Proc. 2011 International Conference on

Control, Automation and Systems Engineering, Singapore,

2011, pp. 1-3.

[9] J. Wang, J. Y. Chen, and Y. Zhuang, “Mixed programming

between MATLAB and other programming languages,”

Communications in Computer and Information Science vol.

225, pp. 669-676, 2011.

[10] D. Chappell, Understanding ActiveX and OLE, Microsoft

Press, 1996.

[11] S. Wang, Y. D. Ji, and S. Y. Yang, “A micro-kernel test

engine for automatic test system,” Journal of Computers,

vol. 6, no. 1, pp. 3-10, January 2011.

[12] J. Yang, B. Liang, T. Zhang, J. Y. Song and L. L. Song,

“Laboratory test system design for star sensor performance

evaluation,” Journal of Computers, vol. 7, no. 4, pp. 1056-

1063, April 2012.

[13] C. G. Wang, J. F. He, G. X. Li, and J. W. Han, “An

automated test system for flight simulator fidelity

evaluation,” Journal of Computers, vol. 4, no. 11, pp.

1083-1090, November 2009.

Chu Liu born in Fujian, China in July 1985.

His area of research is automotive electronic

network. He received his Master’s degree in

Bachelor of Engineering from the Tongji

University in 2011 in Shanghai, China. He is

a research student in Tongji University in

Shanghai, China. His research interests include: Automotive

Network and Intelligent Vehicle.

©2013 Engineering and Technology Publishing 689

Journal of Communications Vol. 8, No. 10, October 2013

