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Abstract—When noise model is already known, maximum 

likelihood estimator (MLE) is asymptotically the most optimum 

one. However, the truth is just the opposite that, noise is 

unknown in burst communication systems. Aiming that, this 

paper utilizes the transmitted symbols of burst communications 

which are eliminated firstly in common methods and proposes a 

data-aided (DA) frequency estimation algorithm based on least 

squares support vector classification (LS-SVC). By researching 

on statistical learning theory (SLT), we construct a structural 

risk minimization (SRM) function with respect to frequency, 

and convert the estimation problem into deriving the extremum 

value of a classification function. Consequently, support vector 

classification (SVC)’s good learning and generalization capabil-

ities are completely explored and employed. Experimental 

results show that the proposed algorithm is close to MLE in the 

case of Gaussian noise, and also exhits good performance in 

non-Gaussian condition.  
 
Index Terms—frequency estimation, least squares support 

vector classification (LS-SVC), unknown  noise,   gaussian 

distribution,  -stable distribution, support vector classification 

(SVC), structural risk minimization (SRM) 

 

 

I. INTRODUCTION 

Frequency estimation of sinusoidal signal with noise is 

a classical problem in signal processing, which has 

started from 1970s [1]-[8]. And we usually suppose that 

the noise models are Gaussian distribution ones. However, 

as a matter of fact, the assumption of that is impractical in 

many scenes. Resultly, frequency estimation algorithms 

in the condition of non-Gaussian noise are addressed [9]-

[13]. Even though with that being the case, their 

distributions are always known, such as  -stable and 

pulse ones. Differently, frequency estimation under the 

assumption of unknown noise distribution is discussed in 

this paper. At this moment, the traditional methods based 

on a priori knowledge are invalid. And we utilize the 

machine learning method to obtain model information as 

much as possible. 

The relationships between inputs and outputs are 

assumed already known in artificial neural network 

(ANN), only with unknown parameters. Hence, over-
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matching and local minimum problems always exist. 

Distinctly, statistical learning theory (SLT) which is 

specialized in the research of small sample condition, 

tries to get inner connections only by independent and 

identically distributed (i.i.d.) data samples [14]. As its 

concrete implement, support vector classification (SVC) 

exhibits good performances in generalizing, high-

dimensional processing and nonlinear processing. Where 

least squares support vector classification (LS-SVC) has 

the improvements: inequality constraints are substituted 

by equality ones; a squared loss function is taken for the 

error variable. 

The rest of this paper is organized as follows. Section 

II briefly introduces the basic theory of SLT and LS-SVC. 

Frequency estimation algorithm based on LS-SVC is 

proposed in Section III, and the proper choices of LS-

SVC’s parameters are also discussed, taking binary phase 

shift keying (BPSK) signal for example. Then in Section 

IV, simulations and experiments verifies the feasibility 

and validity of the proposed algorithm. At last, 

conclusions of the paper are given in Section V. 

II. SLT AND LS-SVC 

A. SLT 

Aiming at binary classification, the joint probability 

density function (PDF) of set   , 1, ,i iS y i N x   is 

unknown, which is denoted as  ,P yx , where n

i x  

is n  dimension characteristic vector,  1,1iy    is 

category label. Now, we try to select a optimizing one 

from the response set of learning machine  ,f x w  to 

minimize the expected risk, i.e.: 

      , , ,R L y f dP y w x w x                   (1) 

where   , ,L y f x w  is the loss function used to show 

the difference between response of training machine 

y  and learning machine  ,f x w . According to binary 

classification, it is denoted as 

  
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where w is the argument of  ,f x w . And, the different 

type of learning problem has the different   , ,L y f x w  

which can undoubtly impact the its learning performance. 

It is proved that if   is a random number during the 

range  0,1 , the inequation is satisfied as follows, 

with probability 1   [14]: 

 

  
emp

emp

( ) ( )

ln 2 1 ln( 4)
        ( )

R R h N

h N h
R

N



 

 
 

w w

w
       (2) 

where   emp
1

1
( ) , ,

N

i i
i

R L y f x
N 

 w w  is empirical risk 

function,  h N  is confidence limit and determines 

its generalization capability, h  is Vapnik-Chernonekis 

(VC) dimension and denotes its complexity. 

As emp ( )R w  is directly proportional to h ,  h N  

is inversely proportional to h, structural risk minimiz-

etion (SRM) rule is presented to minimizing  R w . It 

has divided   ,S f x w  into a series of subset: 

1 2 ... ... ;k iS S S S S S                      (3) 

where their VC dimension is arranged by: 

1 2 ... ...kh h h                                (4) 

In each subset, the rule tries to find the function 
having the smallest empirical risk. At the same time, 
it considers the compromise between empirical risk 
and confidence limit, and ultimately derive the 
smallest expected risk, which is depicted in Fig. 1. 

nS
SRM

S
1S

1h
SRM

h
nh

empirical risk
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expected risk 

 
Figure 1.  Structure risk minimization 

B. LS-SVC 

Supposed that, S can be divided by a hyperplane 

( ( )) 0b  w x  without errors, where ( )  is an inner 

product operation and ( )   is a nonlinear mapping 

from low to high dimension characteristic space. 

The hyperplane can be normalized, and the 

boundary samples are satisfied by: 

  
  

1      if  1

1   if  1

i i

i i

b y

b y





   

     

w x

w x
                   (5) 

Maximizing the margin between two sorts which 

equals 2 w  and getting the optimal hyperplane: 

  

21
min   ( , )

2
s.t.   1 0, 1, ,i i

J b

y b i N


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         (6) 

By introuducing error variables ie  and LS method, (6) 

is converted into: 

 

  

2 2

1

1
min   ,

2 2

s.t.  1 , 1, ,

N

i
i

i i i

C
J b e

y b e i N


 
   

 
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          (7) 

Minimizing the first item of ( , )J bw  means that the 

margin of (5) now is the largest, and minimizing the 

second one means that both of the boundaries now are 

in the center of their sort as much as possible. Penalty 

factor C  is a positive constant and can control the 

penalty degree of fitting errors. It means that, SRM is 

introduced into LS-SVC to make compromise in 

confidence limit and empirical risk. 

Equation (7) is a strict convex quadratic program-
ming (QP) problem in optimization theory. Using 

Lagrange multiplier method, where i  is Lagrange mult-

iplier: 

1

( )
N

i i i
i

y 


w x                                (8) 

1

0
N

i i
i

y


                                     (9) 

i iCe                                      (10) 

Combining (7), (8), (9) and (10), and replacing 

 ( ) ( )i j x x  with kernel function ( , )i jK x x : 

T

T

0
0

1
b

C

 
    
        

  

Y

=
α EY PQP I

                   (11) 

where      
T TT

1 1, , , 1, ,1 , , ,N Ny y   α E Y , 

P  is a diagonal matrix whose main diagonal elements 

are 1, , Ny y , Q  is named as kernel function matrix. 

Beacause we select radius basis function (RBF) in this 

study, so the  ,i j th element of Q  is: 

 
2

2
, exp

i j

ij i jK
h

  
  
 
 

x x
Q x x              (12) 

Ultimately, the discriminant function is obtained as 

  
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III. FREQUENCY ESTIMATION ALGORITHM BASED ON 

LS-SVC 

A. Signal Model 

The sinusoidal signal polluted by noise is modeled as 

 0 02
, 0, , 1sj f nT

n n nr a Ae w n N
 

             (14) 

where na  is an independent symbol, M  is the modulat-

ion order; 0 00, [ 0.5,0.5), [ , )A f         are ampli-

tude, deterministic but unknown frequency and initial 

phase, respectively; ST  is the sample period, N  is the 

sample size; nw  is an independent complex noise with 

zero-mean and unknown PDF. For the sake of simplicity, 

we firstly set 1sT   and take binary phase shift keying 

(BPSK) signal for example. 

As a common non-Gaussian distribution,  -stable one 

only has unified characteristic function
 
[15]: 

      exp 1 sgn ,t j t t j t w t


              (15) 

where  

 
 

 

tan / 2 if  1
,

2 / ln if  1
w t

t

 


 

  
 

 
, 

where  0,2   is characteristic exponent and descri-

bes the thickness of tails, when 2  , it is Gaussian 

distribution; when 1, 0   , it is Cauchy distribut-

ion.  1,1    is skewness parameter, when 0  , it 

is symmetrical about   and called S S  for short. 

 0,    is scale parameter and similar with the 

variance of Gaussian distribution.  ,    are 

shift parameter, when 1 2  ,   is the mean value; 

when 0 1  ,   is the intermediate value. We set 

1.5, 0, 1, 0        in this study, and plot the 

distribution of 1000 real samples in Fig. 2. 

 
Figure 2.  Real  -stable distribution with 1.5, 0, 1        

Contemporarily, no limited second-order moment is 

existing in fractional low-order  -stable distribution. 

Accordingly, its variance and power are both meaningless, 

and the gain of signal-to-noise ratio (GSNR) is defined as 
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C S
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  
   

 

where 

1

0
0

1
exp ln

N

i
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


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  

 
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and 1.78gC   is a positive constant. 

 
(a) 0.09f   

 
(b) 0.1f   

Figure 3.  Constellations of '

nr  without noise 

 
(a) 0.09f   
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(b) 0.1f   

 
(c) 0.13f   

Figure 4.  Constellations of '

nr  when noise is Gaussian distribution 

(SNR is 6dB) 

 
(a) 0.09f   

 
(b) 0.1f   

 
(c) 0.13f   

Figure 5.  Constellations of '

nr  when noise is  -stable distribution 

(GSNR is 6dB) 

B. Frequency Estimation Algorithm Based on LS-SVC 

We construct 
 2j fn

nb e
  

  after setting a frequen-

cy  0.5,0.5f    and phase  ,    . Letting 

 

     0 0

2'

2 2
   

j fn

n n n n

j f f n j fn

n n

r r b r e

Aa e w e

 

    

 

      

 

 
           (16) 

(16) means, the influence of deterministic frequen-

cy f  and initial phase   are removed from received 

signal. We divide '
nr  into two sorts by 1na    or na  

1  , i.e., we construct the training set   ,nS f x  

       '

11, , , Nor Re , Nor Imn n ny n N f r f
     

x

  '

1 1,n n nr f y a 
  

, where     Nor ,Re , Im    are norm-

alized, taking real and image part operators, respecti-

vely. We make use of LS-SVC and derive the SRM 

function with respect to f : 

   
,

min , ,
b

T f J f b   w
w                      (17) 

Integrating (7) and (8), (17) is converted into: 

       

   

T T

T

1

2
1

       
2

T f f f f

f f
C





α PQ P α

α α

               (18) 

where  fα  is the solution of (11). 

Searching the hole interval of f , and getting the 

estimation value of frequency: 

 
 

0.5,0.5

ˆ arg min ( )
f

f T f
 

                          (19) 

At first, we consider the unnoisy condition, now 

   0 02' j f f n

n nr Aa e
       . Setting 0 00.1, 0, 1,f A    

32, 0.5N    , the constellations of '

nr  with differ-

ent f  are illustrated in Fig. 3. We can see that only if 
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0f f , '

nr  are two discrete points; otherelse, '

nr  is 

different with n . As a result, even if both two sorts 

are completely separable and the second item of (18) 

is equal to 0 with the different f ,  0.1T  is still the 

minimized value because of the first one. At the same 

time, je   means the clockwise rotation of a fixed 

angle   in constellation. Therefore, the value of   

will not have an impact on the proposed algorithm. 

The experimental simulations in Part IV are consiste-

nt with this conclusion, so 0   is set in this study. 

Then, we take the noisy condition into account. 

Setting 0  , SNR or GSNR 6dB , others are as in 

Fig. 3, Fig. 4 and Fig. 5 illustrate the constellations of 
'

nr  with different f  while noises are independent 

complex Gaussian distribution and  -stable distribution, 

respectively, where Gaussian distribution has zero-mean 

and variance 2 , the parameter setting of  -stable 

distribution is the same as Fig. 2. From them, we know 

that whether the noise distribution is,  0.1T  keeps 

the minimized one. 

C. Parameter Settings of LS-SVC 

From (11): 

 

1

T T

1

T T

1

1

C
b

C





 
 

 


 
 

 

Y PQP I E

Y PQP I Y

                    (20) 
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T T
1

T

1

T T

1

1

1

C

C

C







  
  

            
   

  

YY PQP I

α PQP I I E

Y PQP I Y

    (21) 

When C  decreases rapidly, T 1 1

C C
 PQP I I , then (21) 

and (19) are simplified as 

 
T T

T
f C C

N

   
      

   

YY YY
α I E I E

Y Y
         (22) 

 
   T

0.5,0.5

1ˆ arg min
2f

f f f
C 

 
  

 
α α                 (23) 

From (22) and (23), we can know that f̂  with 

different 0f f  are same and very small, for the reason 

of the equal ( )fα  with different 0f f . As a result, the 

proposed algorithm fails. Summarizingly, we must select 

C  as large as possible. However, too large C  will lead 

that T T1

C
 PQP I PQP , then (21) and (19) are simplif-

ied as 

    
  

  

1
T T

1
T

1
T T

f
f f

f







 
  
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 

YY PQ P
α PQ P I E

Y PQ P Y

    (24) 

     T T

[ 0.5,0.5]

1ˆ arg min
2

f f f f


 
  

 
α PQ P α          (25) 

As (24) and (25) shown, now C  barely influences 

( )fα  and f̂  which is only determined by  fQ . Acco-

rdingly, the estimation accuracy of the proposed algorith-

thm decreases. Everything is as in Fig. 5 other than 

setting the width of RBF 1h  , and the number of Monte 

Carlo experiments is 1000, Fig. 6 illustrates the mean 

square error (MSE) curves of the proposed algorithm 

with that C  are 0.1, 1, 1000 and 10000, resectively. Fig. 

6 is consistent with all above analyses, and we select 

1000C   in this study. 

 
Figure 6.  Impact of C  on MSE 

 

Figure 7.  Impact of h  on MSE 

According to (12), the main diagonal elements of Q  

keep 1 all the time. When h  decreases, other elements 

gradually approach to 0, thus Q I . On the contrary, 

when h  increases, these elements are gradually close to 1, 

thus Q  is approximately an all-one matrix. During the 

both conditions, ( )fα  and f̂  keep the same with 

different 0f f  all the time. In the sequel, the estimation 

accuracy of the proposed algorithm decreases. Everything 
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is as in Fig. 6 other than 1000C  , Fig. 7 illustrates the 

MSE curves of the proposed algorithm with that h  are 

0.1, 1, 10 and 100, resectively. Fig. 7 is consistent with 

all above analyses, and we select 1h   in this study. 

IV. SIMULATIONS AND EXPERIMENTS 

Firstly, the impact of N  on the estimation performan-

ce is considered. Everything is as in Fig. 6 except that 

1000C  , Fig. 8 illustrates the MSE curves of the 

proposed algorithm with that N  is 8, 16, 32 and 64, 

resectively. It is shown, MSE performance is improved as 

N  increases. 

Next, the impact of   on the estimation performance 

is considered. Everything is as in Fig. 6 except that 

1000C  , Fig. 9 illustrates the MSE curves of the 

proposed algorithm with that   are 0.75 0.25 0  、 、、 

0.5 , respectively. It is shown, MSE performances of 

different   are almost the same. 

 
Figure 8.  Impact of N  on MSE 

 

Figure 9.  Impact of   on MSE 

Then, the mean performance is worked out. Under the 

assumption of Gaussian noise, maximum likelihood 

estimator (MLE) realized by fast Fourier transform (FFT) 

[1]
 
is the best one because of its MSE can reach Cramer-

Rao lower bound (CRLB). The proposed algorithm also 

searches extremum during frequency range, so it is comp-

ared with FDP, the number of FFT points is 32768. We 

integrate coarse and fine search in this study, whose steps 

are 0.005 and 1 5e , respectively. The concrete searchin-

g method is Gauss-Newton. Everything is as in Fig. 4 and 

Fig. 5 except that 1000, 1C h  , and the number of 

Monte Carlo experiments is 1000, the mean of both two 

algorithms with different 0f  are plotted in Fig. 10 and 

Fig. 11. Distinctly, when noise is  -stable distribution, 

the unbiased performance of the proposed algorithm is 

better than MLE one’s in the condition of low SNR, and 

they are almost the same under other conditions. 

 
(a) SNR is -4dB 

 
(b) SNR is 0dB 

Figure 10.  Mean when noise is Gaussian distribution 

 
(a) GSNR is -4dB 
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(b) GSNR is 0dB 

Figure 11.  Mean when noise is  -stable distribution 

Last, the estimation performance is taken into account. 

Everything is as in Fig. 10 and Fig. 11 except that f   

0.1, the MSE curves of both two algorithms are plotted 

in Fig. 12 and Fig. 13, respectively. 

 
Figure 12.  MSE when noise is Gaussian distribution 

 
Figure 13.  MSE when noise is  -stable distribution 

As shown in Fig. 12 and Fig. 13, when noise is 

Gaussian distribution, the MSE curves of the proposed 

algorithm is observed to lie very close to that of MLE in 

the condition of known distribution model. When noise is 

 -stable distribution, MLE is ineffective as noise model 

is unknown. Nevertheless, the proposed algorithm still 

keep its estimation accuracy, even though that threshold 

effects are existing in it. 

V. CONCLUSIONS 

To some extent, SVC which is based on SLT can solve 

the problems about curse of dimensionality and over-

learning. This paper converts estimation problem into 

classification one during the searching part, and takes use 

of LS-SVC to estimate frequency with unknown nois-e 

distribution. Also, from views of qualitative analyses and 

experiment results, we discuss the choice of LS-SVC’s 

parameters. At last, we verify the feasibility and validity 

through simulations. In this paper, BPSK is taken for 

example. If signal type is QPSK, 8PSK or other 

modulation mode, binary classification is extended to 

multiclass problem in LS-SVC by the same way. At the 

same time, emphasized that, this paper takes Gaussian 

distribution and  -stable distribution as two cases of 

unknown noise model, but the proposed algorithm is not 

only orient to these two cases. 

Classical algorithms of frequency estimation primarily 

try to change received signals into single-tone ones. On 

the contrary, the proposed algorithm completely consider-

s effect of symbol information and directly estimates the 

frequency. Hence, aiming at single-tone signals, we can 

estimate frequency by means of adding known symbol 

sequence to received signals. It is a novel and converse 

thought, and will be valuable. 

Resolving convex QP problem having inequality 

constraints will bring large computational load and time 

consuming to SVC. Although LS-SVC is presented, the 

proposed algorithm will search minimum value during 

whole range, unavoidably. As a result, there will be a 

tradeoff between estimation accuracy and computational 

complexity. At the same time, we only obtain the proper 

range of LS-SVC’s parameters. And as a next step, how 

to select them exactly is an important research point. 
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