
Parameter Estimation and Prediction of the Chirp and 

Stochastic Pulse Position Modulation Combined Signal 
 

Wei Zhang, Ying Xiong, Pei Wang, and Bin Tang  
University of Electronic Science and Technology of China, Chengdu, 611731, China 

Email: 370150232@qq.com ; xiongy@uestc.edu.cn; wangpei1128@foxmail.com; bint@uestc.edu.cn  

 

 
Abstract—Recent work has proposed a certainty trend (CT) 

elimination technique employed for the auto-regressive/auto-

regressive and moving-average (AR/ARMA) model pulse 

position prediction. In this paper, we investigate the intra pulse 

parameter estimation and pulse position prediction of the chirp 

and stochastic pulse position modulation (CSPPM) combined 

signal. The quick dechirp method is adopted to the initial 

frequency and chirp rate estimation. To get a stationary data 

series satisfying the premise condition of the AR/ARMA model 

prediction, a least square fitting (LSF) scheme to remove the CT 

term contained in pulse position sequence is presented. 

Compared with the classic logarithmic difference conversion 

(LDC) smooth method, AR/ARMA prediction performance via 

LSF has a significant improvement, about 70% to 96% for AR 

prediction and 42% to 99% for ARMA prediction. 
 
Index Terms—AR/ARMA model, prediction, stochastic pulse 

position modulation signal, least square fitting (LSF) 

 

 

I. INTRODUCTION 

Recently, the complex signal such as the chirp and 

stochastic pulse position modulation (CSPPM) combined 

signal is receiving more and more attention [1]-[3]. M. 

Kaveh and G.R. Cooper introduced the notion of the 

stochastic pulse position modulation (SPPM) signal in [4] 

and show that the removal of the velocity ambiguity 

requires the random delays instead of lowering the 

average repetition rate significantly. It is noted that 

CSPPM combined signal has a super low probability of 

intercept and anti-jamming performance by deriving its 

ambiguous function. Unfortunately, the surveillance of 

this non-cooperative signal is a challenge problem for 

radar reconnaissance [5], [6]. Recent years, researchers 

concentrated on the analysis of the SPPM signal’s 

generation [7], distance measurement methods [8] and 

properties [9]. Few literatures reported the pulse position 

prediction for the further signal sorting and tracking.  

The purpose of this paper is to predict the combined 

signal’s pulse occurrence time dependent on the live 

pulse position sequence, which can be treated as a 

discrete stationary random process in the presence of 

arbitrary time jitter. Inspired by that the stochastic time 
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series can be predictable by auto-regressive/auto-

regressive and moving-average (AR/ARMA) structure 

method [10], [11], we adopt them for the SPPM signal 

surveillance. As it is well known, the stationary sequence 

for the input of the AR/ARMA structure is of the essence. 

The classic solutions to the stationary transformation 

problem rely on the difference method and the 

logarithmic difference conversion (LDC) method [12]. 

However, they can not handle the certainty trend (CT) 

contained in the data sequence and be sensitive to timing 

jitters. Here, we propose a least square fitting (LSF) 

scheme deriving a stationary conversion to estimate the 

AR/ARMA model parameters. In contrast to LDC 

method, this allows a polynomial fitting of the pulse 

position sequence to eliminate the CT term and obtain a 

relatively stationary sequence. In addition, the initial 

frequency and chirp rate estimation is based on the 

traditional quick dechirp scheme. The experiment 

simulations illustrate the presented LSF scheme achieves 

a superior mean magnitude of relative error (MMRE) and 

the effect of intra pulse parameter estimation. 

II. SIGNAL MODEL 

The CSPPM radar signal can be expressed as 
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is the subpulse with the pulse width Tp and restricted to 

the signal interval T. N the pulse number, A the signal 

amplitude, 0f  the initial frequency, k  the chirp rate, 0  

the initial phase. The sequence { }n  obeys a discrete-

time random process indicating the pulse position 

modulation (PPM). Assuming it as the sequence of 

independent identically distributed (i.i.d) uniform random 

variables, the corresponding probability density function 

is modeled as 
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Note that, in general, { }n is nonstationary time series 

and has nonzero-mean. 
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Suppose the signal ( )s t  is contaminated with a 

stationary, independent, zero mean Gaussian white noise 

( )w t  to form the received ( )r t . The observed pulse 

position of interest is expressed as 

( ) (( 1) ) ,    1,...,pos n s nx n n T f n N           (3) 

where 
sf  is the sample frequency, 

n the detection error 

sequence due to the noise. In the surveillance, the pulse 

position sequence { ( )}posx n  is stochastic and 

monotonically increases. The intra pulse part is a chirp 
signal that is handled with a classic dechirp method. 

III. THE PREDICTION SCHEME BASED ON AR AND 

ARMA MODEL 

A. Overview 

In general, the short pulse position sequence has no 

apparent pattern in vague circumstance, and it is difficult 

to find a proper curve to fit it, but there is some links 

between the present value and its preceding values. 

Therefore, we can employ AR and ARMA models, 

achieving a great flexibility in the fitting of data series, to 

approximate and simulate it.  

B. ARMA and AR Model 

The general ARMA(p,q) process is defined as follows 
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where { ( )}v n  is a white i.i.d Gaussian sequence with 

distribution 2(0, )vN  . p  the order of AR progress, q the 

order of moving average (MA) progress, ia and jb  the 

model parameters. In this framework, ARMA model will 
turn to AR model specifically when 0q  , which can be 

expressed as 
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Suppose we are given a stationary pulse position data 

sequence after the LSF conversion, { ( ), ( 1),...,x n x n  

( 1)}x n p  , and it is desired to predict the next time 

position ( 1)x n . Our objective of the pulse position 

prediction is then to estimate the AR and ARMA 

parameters from the information contained in the 

relationship of (4) and (5). The AR signal architecture 

satisfies the highly structured Yule-Walk equations 
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where ( ) { ( ) ( )}xr k E x n x n k   is the k th autocovariance 

lag and { }E  is the expectation operator. In fact, ( )xr k is 

estimated by the N points observed data records. For the 

AR parameter estimation, they can be obtained by solving 

the set of YW equation and the efficient scheme dealing 

these recursively is Levinson-Durbin algorithm [13]. 

Moreover, for the ARMA parameter estimation, it has 

been shown the estimates can be separated as AR and MA 

model parameters estimation [10]. The major difficulty in 

AR coefficients accurate evaluation is that the larger lag 

k  we employ and the worse autocovariance estimate 

( )xr k  we will get. It is due to the limited amount of the 

position information available from the observed data 

series. Then, the modified YW equations could be 

extended to the overdetermined equations toward 

improving performance and can be written as 
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Note that, the equation number M  is larger than p , 

the unknowns number. We can obtain 1 2, , ..., pa a a  in (7) 

by employing the recursive least square algorithm which 

is detailed in the previous section and obtain 1 2, ,..., qb b b  

via MA method [14]. 

IV. ANALYSIS OF THE DATA SERIES PREPROCESSING 

The forecasting characteristics of radar pulse position 

are influential in the use of the appropriate methods. The 

premise condition of applying the AR and ARMA model 

prediction is that the data sequence must be stationary. 

Some nonstationary time series may manifest in common 

variation trend, however, they have no direct relevance 

relationship with each other and the output of the 

regressive filter has no meaning. The major schemes 

converting the nonstationary data into stationary ones fall 

into two categories: difference conversion and LDC. 

Unfortunately, they could not achieve an ideal 

performance as the preprocessing for the AR/ARMA 

model prediction. Here, we present a LSF scheme in part 

4.2. 

A. LDC Scheme  

Let { ( )}posx n  be the original sequence, the logarithm 

series log{ ( )}x n  can be generated as log ( )x n   

1010log ( ( ))posx n . The LDC sequence is defined as 

follows: 

log log log( 1) ( 1) ( ),    1,2,..., 1dx n x n x n n N        (8) 

To return the sequence to the original environment, the 

inverse LDC (ILDC) will be introduced. Therefore, LDC 

and ILDC is a pair of inverse data series operators. The 

ILDC process is given by 
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This LDC preprocessing method is suggested to deal 

with the data with stochastic trend. Unfortunately, it is 

not suitable for the nonstationary data with a CT term as 

detailed in Part B. 

B. LSF Scheme 

Assume that the stochastic process of one order AR is 

expressed as 

-1t t tY t Y u                            (10) 

where  ,   are the AR model coefficient, t the time 

trend,  the trend coefficient, tu the Gauss white noise 

process. If 0  , 0   , tY will exhibit a regular and 

monotonous shape following the negative or nonnegative 

term  . This kind of trend is called as CT. From (3), we 

known that the pulse position sequence of interest is a 
monotonic increasing procedure and contains the CT term, 

i.e., sTf  .  

By invoking the difference conversion method suitable 

for eliminate the stochastic trend, the result can be given 

as 

-1 -1 -2 -1- ( - ) -t t t t t tY Y Y Y Y u u          (11) 

It is obvious that the CT term is not removed by this 

scheme. Here, we present a LSF method that dislodges 

the inherent trend and avoids the spurious regression 

through introducing time polynomial as trend variable, 

which is exploited to remove the   term. The procedure 

of the preliminary LSF includes the following steps. 

Construct a mth degree fitting function 1( ) mg t p t  
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m mp t p t p     , 1m N , where N1 is the 

number of a live project sequence. 

Minimize the sum of squares of the data 

deviation{ ( ) }tg t Y , 
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Solve (13) called as normal equations to obtain 

( 1)m  coefficients. Then, the modified sequence is 

( ) ( ) ( )lsf posx n x n g n  . 

The corresponding inverse LSF (ILSF) is defined 

as ( ) ( ) ( )pos lsfx n x n g n  .The LSF transformation can 

reduce the monotonous fluctuations in the sequences and 

have good stability. Especially in the case of radar pulse 

arrival position records, we would expect the LSF method 

to achieve a better forecasting than the LDC method. This 

is confirmed by our following simulation results. 

C. Prediction Progress 

The observed pulse position data are the records that 

are detected by the radar reconnaissance system. The 

investigation of the pulse position sequence used over the 

duration of once observation reveals that the general 

projects comprise less than 20 data. The next arrival 

position needs to be predicted with a finite sequence. 

From a radar reconnaissance system view, we consider 

the real time observation data as a sequence set or a local 

sequence, 1{ (1), (2),..., ( )}pos pos posx x x N , 
1( 20)N  . Then, 

LSF scheme is acted on in terms of removing trend, 

leading to the production 1{ (1), (2),..., ( )}lsf lsf lsfx x x N . The 

aforementioned AR and ARMA model use these data 

series to predict the value of stage
1 1N  , i.e., 1

ˆ ( 1)lsfx N  . 

After ILSF conversion, it turns to 1
ˆ ( 1)posx N  . At the next 

moment, the local sequence will 

be 1{ (2), (3),..., ( +1)}pos pos posx x x N , then do LSF 

transformation again to get the slide prediction 

value 1
ˆ ( 2)posx N  . 

Function: GetPrediction, obtain the prediction values from a set 

of global sequence.The global number N=40,the local 

number N1 =20.

Input:      a set of global sequence

Output:   (N-N1) prediction values

1) for each k from 20 to (40-1)

2)     

3)  

4)   

5)   

6)

                                          

7)

  

8) end for 

 _ { ( -19), ( -18), ..., ( )}
pos pos pos

X local x k x k x k

( _ )lsfX polyfit X local

_ ( 1) _ ( )lsf ar lsfx k AR pre X 

_ ( 1) _ ( )lsf arma lsfx k ARMA pre X 

_( 1)= _ ( ( 1))ar lsf arx k inverse polyfit x k 

_( 1)= _ ( ( 1))arma lsf armax k inverse polyfit x k  

( 1) - ( 1)
1( 1) | |

( 1)

ar pos
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x k x k
MMRE k

x k

 
 



( 1) - ( 1)
2( 1) | |

( 1)

arma pos

pos

x k x k
MMRE k

x k

 
 



 

Figure 1.  Prediction procedure 

For ease of description, we denote the LSF 

transformation as ( )lsf posx polyfit x , the AR and ARMA 

forecasting procedure by a function called as _AR pre  

and _ARMA pre . The procedure for obtaining the 

optimum estimates is summarized in Fig. 1. 

V. EXPERIMENTS AND ANALYSIS 

In order to clarify the behavior of the proposed LSF 

preliminary method for AR/ARMA model prediction, 

which has been explored to remove the CT term, the 

prediction performance via the LSF algorithm was 

compared to the performance via the LDC algorithm. 50 

Monte Carlo trials were performed adopting the detected 

pulse position sequence of a chirp & SPPM signal. 

Among them, the global data series 40N   and the local 

data series 1 20N  . For each Monte Carlo trail, the SNR 

was set to 5dB. =100 MHzsf  , 0 =10 MHzf  , 

12=5 10 Hz/sk   , 2 μsT   , 1 μspT   , 0 0 rad   , 

[( 1) ,( )]n pn T nT T    . The arrival position, ( )posx n , 
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of PPM signal pulses can be obtained via many standard 

methods, such as energy detection algorithm [15]. The 

local 20 data series are treated as the training data to 

forecast the next one, and then go on with a slide 

prediction. 
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Figure 2.  AR and ARMA model prediction via LDC scheme. 

According to the data series, AR(13) and ARMA(2,4) 

architectures are chosen on basis of AIC criterion. Fig. 2 

(a) provides an illustrative depiction of the outputs of the 

AR/ARMA filters, of which the input is the LDC 

sequence. It plots the logarithm term estimates, i.e., 

log
ˆ ( )x n . In the absence of a regular pattern, the LSF 

conversion sequence prediction through AR(13)/ 

ARMA(2,4)  by fitting the 6th order fitting polynomial is 

presented in Fig. 3 (a). In contrast to the LDC method, it 

can be found that the observed sequence is stationary 

without CT. Fig. 2 (b) and Fig. 3 (b) portrays the global 

data (from ˆ (21)posx  to x̂ (40)pos ) prediction performance 

via LDC and LSF, respectively. It is evident that the LDC 

method deteriorates when the difference logarithm value 

is not predicted very accurately. On one hand, the 

logarithm operator causes the error expansion; on the 

other hand, the CT term is not eliminated by the LDC 

method. From Fig. 3 (b), the LSF scheme achieves a 

satisfactory result. 
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(a) LSF conversion sequence prediction 

0 2 4 6 8 10 12 14 16 18 20
 

 

true
AR

ARMA

100

110

120

130

140

150

160

170

180

190

200

P
u

ls
e
 a

rr
iv

a
l 

ti
m

e
 p

re
d

ic
ti

o
n

/ 
  
s



pulse sequence  
 (b) The pulse position prediction 

Figure 3.  AR and ARMA model prediction via LSF scheme. 

A comparative study of the forecasting performance is 

provided in Table I and Table II. For ease of observation 

and comment, the last ten prediction values were picked 

out. In this study, we use the residual and mean 

magnitude of relative error (MMRE) as evaluation 

measures. 

The residual and MMRE are defined as follows: 

=1

1
ˆresidual( ) | ( ) ( ) |

S

pos pos
s

n x n x n
S

                 (14) 

  
=1

ˆ( ) ( )1
MMSE= | |

( )

S
pos pos

s pos

x n x n

S x n


                   (15) 

where S is the Monte Carlo trial. AR and ARMA 

architectures forecasting are employed in the experiment 

as shown in Table I and Table II, respectively. It is 

apparent from the comparison the LSF scheme delivers a 

better performance than the LDC method. The superior 

residual and MMSE imply that the LSF method has better 

consistency and stability on different forecasting 

methodologies. We also observe that compared with LDC, 

the LSF’s MMRE improvement is about 70% to 97% for 

AR prediction, and about 42% to 99% for ARMA 

prediction. 

In our experiment, AR and ARMA models having low 

orders are explored due to the limited amount of the live 

observation data sequence.  
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TABLE I MMRE of AR PREDICTION ADOPTING THE LDC AND LSF 

METHOD 

Data 

sequence 

LSF LDC 

LSF’s MMRE 

improvement 

(%) 

residual MMRE residual MMRE MMRE 

(31)posx  5.12 0.0009 36.82 0.0061 86.09 

(32)posx  14.30 0.0023 115.98 0.0185 87.67 

(33)posx  5.50 0.0008 52.34 0.0081 89.48 

(34)posx  23.39 0.0035 78.49 0.0119 70.20 

(35)posx  3.64 0.0005 109.10 0.0160 96.66 

(36)posx  0.51 0.0001 18.72 0.0027 97.27 

(37)posx  10.01 0.0014 129.65 0.0178 92.28 

(38)posx  21.60 0.0029 79.73 0.0107 72.92 

(39)posx  4.58 0.0006 90.61 0.0119 94.95 

(40)posx  2.09 0.0003 42.69 0.0055 95.11 

TABLE II MMRE OF ARMA PREDICTION ADOPTING THE LDC AND 

LSF METHOD 

Data 
sequence 

LSF LDC LSF’s MMRE 

improvement 

(%)  residual MMRE residual MMRE 

(31)posx
 2.08 0.0003 16.12 0.0027 87.08 

(32)posx
 16.31 0.0026 76.64 0.0122 78.72 

(33)posx
 9.14 0.0014 50.84 0.0078 82.02 

(34)posx
 0.38 0.0001 58.35 0.0088 99.36 

(35)posx
 16.09 0.0024 27.74 0.0041 42.01 

(36)posx
 0.49 0.0001 38.02 0.0054 98.70 

(37)posx
 9.33 0.0013 168.74 0.0231 94.47 

(38)posx
 1.30 0.0002 15.85 0.0021 91.81 

(39)posx
 9.47 0.0012 19.98 0.0026 52.59 

(40)posx
 5.31 0.0007 16.15 0.0021 67.10 

 

Considering the real time requirement of radar 

reconnaissance, the number of the model order does not 

change as the local slide data change. It influences the 

prediction performance to a certain extent. However, the 

result via LSF is still satisfactory. In addition, the MMRE 

of AR prediction algorithm is superior to that of ARMA. 

Moreover, the prediction by AR modeling is much 

simpler, and the MA terms can be ignored if we suppose 

the decimation filtering is an ideal lowpass filter [16]. 
The Fig. 4 and Fig. 5 provide an illustrative depiction 

of the intra pulse parameters estimation, using the quick 

dechirp method and cyclic autocorrelation[17] approach 

presented as “Quick D” and “Cyclic A” in the figures, 

respectively. It exhibits that the quick dechirp method 

achieves better estimation accuracy with respect to the 

initial frequency, and the similar performance to the chirp 

rate. It is due to the limited pulse width and underserved 

cyclic statistics for the cyclic autocorrelation approach 

deterioration. Therefore, we adopt the quick dechirp 

method for CSPPM signal. 
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Figure 4.  The chirp rate estimation 
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Figure 5.  The initial frequency estimation 

VI. DISCUSSION AND CONCLUSION 

From the results, the quick dechirp approach is 

employed for parameter estimation. In addition, it is 

apparent that the CSPPM signal’s pulse position 

transformation sequence via the presented LSF scheme 

obeys an AR/ARMA process. The LSF scheme is 

presented in the preliminary process of AR/ARMA 

forecasting approach to obtain a stationary sequence. 

Compared with LDC, its performance shows significant 

improvement for radar pulse position prediction, which is 

due to the CT term elimination. Our LSF approach with 

AR/ARMA achieving a low MMSE plays an important 

role in further radar signal sorting and tracking. We will 

continue to investigate the calculation reduction for better 

radar reconnaissance application. 
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