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Abstract—Two effective attacks, namely de-synchronization 
attack and impersonation attack, against Ha et al. ’s LCSS 
RFID authentication protocol, Song and Mitchell’s protocol 
are identified. The former attack can break the 
synchronization between the RFID reader and the tag in a 
single protocol run so that they can not authenticate each 
other in any following protocol run. The latter can 
impersonate a legal tag to spoof the RFID reader by 
extracting the ID of a specific tag during the authentication 
process. An impersonation attack against Chen et al.’s RFID 
authentication scheme is also identified. By sending 
malicious queries to the tag and collecting the response 
messages emitted by the tag, the attack allows an adversary 
to extract the secret information from the tag and further to 
impersonate the legal tag. 
 
Index Terms—RFID, de-synchronization attack, 
Impersonation 

I. INTRODUCTION  

RFID (Radio Frequency Identification) technology is 
fast gaining popularity and attracting interest from both 
the industry and academic institutes. This technology has 
been applied to many applications such as object tracking 
and monitoring, supply-chain management [1].  

An RFID system consists of three parts: RFID tags, an 
RFID reader, and back-end database. Security 
requirements for RFID authentication protocol include 
authentication, untraceability and availability. 

Authentication: Authentication is the process whereby 
one party is assured of the identity of a second party 
involved in a protocol, and that the second has actually 
participated. Spoofing is an attack on authentication.  

Untraceability: Untraceability is the most important 
security requirement for user privacy [2]. Untraceability 
is the property that adversary can not trace tag by using 
interactions with tag. This concept means ID anonymity 
and indistinguishability. 

Availability: Authentication should be available all the 
time between reader and tags. Authentication protocol 
should provide the data recovery against the data loss or 

falsification such as DoS, message hijacking, power 
interruption, etc. during the authentication processes. 
Especially, the de-synchronization attack by utilizing a 
man-in-the-middle attack must be prevented. 

In [3], Rhee et al. proposed a challenge-response 
authentication protocol based on a hash function. 
However, the computational load on the back-end 
database is heavy when authenticating a tag. Another 
disadvantage of Rhee et al.’s protocols is that the 
protocols do not satisfy forward security. The RFID 
mutual authentication scheme presented by Lee et al. [4] 
introduces forward security based on synchronized secret 
information. However, Lee et al.’s protocol also requires 
many computational operations in the back-end database 
when finding a specific tag’s ID. In [5], Ha et al. 
proposed a low-cost and strong-security (LCSS) 
authentication protocol for an RFID system. The main 
contribution of Ha et al.’s protocol is low computation in 
back-end database. In the case of de-synchronization 
between the back-end database and a tag, the protocol is 
able to recover the synchronization. As the correct ID can 
be found based on just comparing the transmitted hash 
message and the hashed values in the database, the 
computational load on the back-end system is efficient 
compared with Rhee and Lee et al.’s protocols. 

Numerous authentication protocols for RFID systems 
were proposed in an attempt to provide privacy and 
security. Many of these attempts fail to enforce 
anonymity and offer only weak authentication and some 
fail under denial of service [6][7]. To secure RFID 
systems, various lightweight RFID schemes have been 
designed, where mostly hash functions and random 
number generators are involved. In [8], Song and 
Mitchell proposed a scheme that significantly reduces the 
necessary storage and computation in a tag by 
comparison with previous hash-based schemes. The ultra-
lightweight schemes only involve simple bit-wise 
operations on tags [9-10]. However, de-synchronization 
attack, full-disclosure attack and tracing attack against 
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such schemes have been reported [11-12]. In [13], Chou 
et al. presented a simple scheme based on quadratic 
residue assumption. This scheme is much cheaper than 
the implementation of a hash function. Hsiang 
demonstrated that Chou et al.’s scheme is vulnerable to 
the masquerading attack and the parallel session attack 
[14]. Recently, Chen et al. proposed a new efficient 
scheme based on quadratic residues and claimed that the 
new scheme not only achieves the mutual authentication 
between the server and the tag but also can satisfy all the 
security requirements needed in an RFID system [15].  

In this paper, we analyze the security vulnerabilities of 
the LCSS protocol [5] and the Song-Mitchell protocol 
[8]. In [5] and [8], the authors presented some security 
analysis and claimed that their protocol is secure against 
de-synchronization attack and spoofing attack. In the 
following sections, we will show that the claims 
unfortunately don’t hold. We also identify an 
impersonation attack against Chen et al.’s RFID 
authentication protocol [15]. By sending malicious 
queries to the tag and collecting the response messages 
emitted by the tag, our attack allows an adversary to 
extract the secret information from the tag and further to 
impersonate the legal tag. 

II. CRYPTANALYSIS OF THE LCSS PROTOCOL 

A. Review of the LCSS protocol 
Fig. 1 shows the process of the proposed protocol, and 

the following is a detailed description of each step: 
1. The R broadcasts to the tags with a Query and a 

random number RR as a challenge. 
2. The T generates a random number RT and computes 

P differently according to the state of SYNC. If SYNC is 0, 
then P=H(ID), otherwise P=H(ID||RT||RR). And then sets 
SYNC as 1. The T transmits P and RT to the R as a 
response to Query. 

3. The R forwards the P and RT message received from 
the T together with RR generated by itself in step 1 to the 
DB. 

 
Figure 1 The LCSS protocol 

 

4. As soon as the DB receives the message from the R, 
it searches for the specific tag via the received P. Firstly, 
the DB finds whether there is a record’s HID value 
equivalent to the received P. If so, the DB regards the 
record’s ID value as the identity of the T, which is 
requesting authentication. This is the general case when 
the previous session is terminated normally. 

When the DB cannot find any record’s HID value 
equivalent to P in the first search, the value of 
H(ID||RT||RR) will be computed for all the ID in the 
database, with which compares the P.  

However, if the DB cannot find the exact ID of the tag 
in the two above cases, it will compute the value of 
H(PID||RT||RR) for all the PID in the database then 
compares it with the P.  

 If the DB is still unable to find the tag’s ID in all the 
three above cases, it halts the search for the ID and orders 
the R to query again.  

The R will be authenticated successfully as a legal one, 
as soon as the DB does find the ID or PID in one of the 
three searching cases. Then the DB updates ID with the 
value of H(PID||RR) and computes HI = H(ID) for the 
next session. Finally, computes Q= H(PID||RT) and 
transmits it to the R. 

5. The R forwards the message Q to the T.  
6. The T verifies the correctness of Q by checking 

whether it is equivalent to the value of H(ID||RT). If so, 
the T updates its ID with the value of H(ID||RR), then sets 
the SYNC state as 0. 

B. Desynchronization Attack 
Fig. 2 depicts the message transmission of the de-

synchronization attack. The detailed steps are as follows: 
1. The attacker can eavesdrop in the insecure channel. 

When the reader R broadcasts a Query with a random 
number RR to the tags, the attacker can obtain RR, changes 
it to RA. Then, sends the Query with RA to the targeted tag. 

2. We can suppose that the system is working normally 
now, that is, the SYNC state of the targeted tag T is 0, the 
T computes P=H(ID) and transmits it to the R with 
random number RT.  

3. The R forwards the message received from the T to 
the DB together with the random number RR generated by 
itself. 

4. The DB receives the P=H(ID), it does find a 
record’s HID equivalent to P, then assigns the value of ID 
to PID. After performing these computations 
Q=H(PID||RT)=H(ID||RT), ID=H(PID||RR)=H(ID||RR) 
and PID=H(ID), the DB transmits the Q to the R. 

5. The R directly forwards the Q received from the DB 
to the T. 

6. As the T receives the Q equivalent to the value of 
H(ID||RT), the ID in the tag will be updated with the 
value of H(ID||RA), SYNC state changes into 0. We can 
note that the ID’s value in the T is not equivalent to that 
in the DB. It seems like that the system has successfully 
completed a protocol run, actually, it is already trapped 
into de-synchronization permanently.  

Now the value of ID in the DB is IDDB=H(ID||RR), the 
value of ID in the T is another value IDT= H(ID||RA). 
When the T transmits P=H(IDT) to the R, which will be 

Database                          Reader                         Tag        

Database field 
[ID][HID][PID

]

Tag field 
[ID][SYNC] 

Query, RR If (SYNC=0) P=H(ID) 
 else  P=H(ID||RT||RR) 
SYNC=1 
 

P, RT P, RT, RR 

Q Q 

If (P=HID) PID=ID  
else if (P=H(ID||RT||RR)) 
       PID=ID 
else if (P=H(PID||RT||RR)) 
       PID=PID 
       else halt 
Q=H(PID||RT) 
ID=H(PID||RR) 
HID=H(ID) 

If (Q=H(ID||RT))  
 ID=H(ID||RR) 
  SYNC=0 
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forwards to the DB. After the DB searching all the 
database records in all the three cases, it will not be able 
find a proper match for the P received from the R. 
Consequently, the authentication of the legal tag, in 
which the ID is updated under the above presented de-
synchronization attack, will be halted. In the next 
protocol run, the tag will respond with P=H(IDT||RT||RR) 
and RT. DB will still not be able find a proper match for 
the P in all the three cases. 

 
Figure 2 De-synchronization attack 

 

C. Impersonation attack 
The detailed attack includes two stages: 
Stage 1. Supposing the system is working normally 

right now. An adversary sends a malicious query to a 
targeted tag with a Query and a random number RA, then 
collects the response messages P=H(ID) and  RT emitted 
by the tag. 

Stage 2 is described as follows: 
1. The attacker eavesdrops in the insecure channel, 

collecting the broadcasting Query message. Obviously, 
the random number RR generated by the R can be 
obtained by the attacker. Therefore, the attacker is 
capable to impersonate the tag T transmit the message 
including P=H(ID) and the random number RR as a 
response to the R. 

2. The R forwards the message containing P=H(ID) 
and RR to the DB together with the random number RR 
generated by itself. Of course, the two random numbers 
are same. 

3. The DB searches a record in the database to match 
the P=H(ID) received from the R. And then updates PID 
with the value of ID. After performing these 
computations Q=H(PID||RR)=H(ID||RR), 
ID=H(PID||RR)=H(ID||RR) and PID=H(ID), the DB 
transmits the Q to the R. We note that the new ID and the 
Q are equivalent to each other. 

4. The R directly forwards the Q received from the DB 
to the T. So the attacker is capable to obtain the message 
Q, namely the new ID of the T. 

From what mentioned above, we can see that the 
attacker is able to own the new ID in the T. So the 
attacker is capable to disguise as a legitimate tag to spoof 
the R and update the ID during the next session. Fig. 3 
depicts the message transmission of the spoofing attack. 

 
Figure 3 Impersonation attack 

 
In the case of the de-synchronization attack, where 

random number RR in protocol step 1 is replaced with  RA 
due to an malicious attacker, the database can not detect 
this attack in protocol step 4 because of lack integrity 
check on RR. In the case of the spoofing attack, where 
random number RT in protocol step 2 is replaced with RR, 
the database can not detect this attack in protocol step 4 
because of lack authentication on the tag in the case of 
SYNC=0.  

We can add message authentication code 
M=H(RT||ID||RR) in protocol step 2 to protect the system 
from de-synchronization attack and spoofing attack. If the 
attacker replaces RT with RA in step 2, the DB will detect 
this attack by check the validity of the value M. If the 
attacker replaces RT with RR in step 2, the attacker will 
unable to generate M= H(RR||ID||RR)  to respond to 
Query. Illustration of the message transmission of the 
improved protocol is depicted as Fig. 4. 

 
Figure 4 The improved LCSS protocol 

Database                          Reader                         Tag        

Database field 
[ID][HID][PID

]

Tag field 
[ID][SYNC] 

Query, RR If (SYNC=0) P=H(ID) 
 else  P=H(ID||RT||RR) 
M=H(RT||ID||RR) 
SYNC=1 
 

P, RT,M P, RT, RR,M

Q Q 

If (P=HID) PID=ID  
else if (P=H(ID||RT||RR)) 
       PID=ID 
else if (P=H(PID||RT||RR)) 
       PID=PID 
       else halt 
if M=H(RT||PID||RR) 
{Q=H(PID||RT) 
ID=H(PID||RR) 
HID=H(ID)} 
else halt  

If (Q=H(ID||RT))  
 ID=H(ID||RR) 
  SYNC=0 

Reader                          Attacker                         Tag        

Query, RA 

P, RT 

Query, RR 

P, RR

Q 

Reader                          Attacker                         Tag        

Query, RA 

P, RT 

Q Q 

Query, RR 

P, RT 
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III. CRYPTANALYSIS OF SONG AND MITCHELL’S PROTOCOL 

A. Review of Song and Mitchell’s Protocol 
We use the following notation in Song and Mitchell’s 

authentication scheme. 
h: A hash function, h: {0, 1}l→ {0, 1}l. 
fk: A keyed hash function, fk: {0, 1}l×{0, 1}l →{0, 1}l 
N: The number of tags 
l: The bit-length of a tag identifier 
Ti: The i-th tag (1 ≤ i ≤ N) 
Di: The detailed information associated with tag Ti 
ui: A string of l bits assigned to Ti 
ti: Ti’s identifier of l bits, which equals h(ui) 
xnew: The new (refreshed) value of x 
xold: The most recent value of x 
r: A random string of l bits 
ε: Error message 
⊕: XOR operator 
||:Concatenation operator 
←: Substitution operator 
x>>k: Right circular shift operator, which rotates all 

bits of x to the right by k bits. 
x<<k: Left circular shift operator, which rotates all bits 

of x to the left by k bits. 
∈R: The random choice operator. 
An initiator (e.g. the tag manufacturer) assigns a string 

ui of l bits to each tag Ti, computes ti = h(ui), and stores ti 
in the tag. The initiator stores the entries [(ui, ti)new, (ui, 
ti)old, Di] for every tag that it manages. The first pair is for 

the newly assigned values of ui and ti, the second pair is 
for the previously assigned values, and Di is for the tag 
information (e.g., price, date, etc.). Initially (ui, ti)new is 
assigned the initial values of ui and ti, and (ui, ti)old is set 
to null.  

Song and Mitchell’s authentication scheme is 
summarized in Fig. 5. 

1. A reader generates a random bit-string r1∈R{0,1}l 
and sends it to Ti. 

2. The tag Ti generates a random bit-string r2∈R{0,1}l, 
and computes M1=ti⊕r2 and M2=fti(r1⊕r2). Ti then sends 
M1 and M2 to the reader. 

3. The reader transmits M1, M2 and r1 to the server. 
4. The server chooses ti from amongst the values ti(new) 

or ti(old)  stored in the database and  puts r2← M1⊕ti. If 
M2=fti(r1⊕r2), then the server has identified Ti. Otherwise, 
it chooses another ti. If no match is found, the server 
sends ε and stops the session. The server computes 
M3=ui⊕(r2>>l/2) and sends it with Di to the reader. At 
last, the server updates ui(old) and ti(old) to ui and ti, and sets 
ui(new)←(ui<<l/4)⊕(ti>>l/4)⊕r1⊕r2 and ti(new)←h(ui(new)). 

5. The reader forwards M3 to Ti. 
6. Ti computes ui← M3⊕(r2>>l/2)  and checks that 

h(ui)= ti. If the check succeeds, the tag has authenticated 
the server, and sets ti← h((ui<<l/4)⊕( ti >>l/4) ⊕ r1⊕r2). 
If the check fails, the tag keeps the current value of ti 
unchanged. 

We note M3⊕(M1>>l/2)= ui⊕( ti >>l/2). 
 

 
Figure 5 Song and Mitchell’s Protocol 

 

B. Impersonation Attack 
In [8], the authors claimed that their scheme is robust 

to tag impersonation attack based on the idea that the 
adversary cannot compute a valid response (M1, M2) 
without knowledge of ti. However, if the adversary 
attacks the system by the following way, the protocol will 
show its vulnerability to the impersonation attack 
although the adversary does not know ti. The detailed 
attack includes two stages: 

Collection stage: Supposing the system is working 
normally right now. An adversary sends a malicious 
query to a targeted tag with a random number r1, then 
collects the response messages M1 and M2 emitted by the 
tag, where r2∈R{0,1}l, M1=ti⊕r2 and M2=fti(r1⊕r2). In the 
impersonation stage, the adversary will replay M2. 

Impersonation stage: After collecting the response 
messages M1 and M2, the adversary can modify the data, 
and then replay the messages to masquerade as the legal 
tag. 

Server                Reader                       Tag                                                  

[(ui,ti)new, (ui,ti)old,Di]  [ti] 

r1∈R{0,1}l

M1, M2 

r1 r2∈R{0,1}l 
M1=ti⊕r2 
M2=fti(r1⊕r2) M1, M2, r1 

Search for a value ti for which 
 r2← M1⊕ti and M2=fti(r1⊕r2) 
M3=ui⊕(r2>>l/2) Di, M3 M3 

ui(old)← ui 
ti(old)← ti 
ui(new)← (ui<<l/4)⊕( ti >>l/4) ⊕ r1⊕r2 
ti(new)←h(ui(new)) 

ui← M3⊕(r2>>l/2) 
check h(ui)= ti 
ti← h((ui<<l/4)⊕( ti >>l/4) ⊕ r1⊕r2) 
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1. A reader generates a random bit-string r1’ ∈R{0,1}l 
and broadcasts it. The adversary eavesdrops in the 
insecure channel, collecting the broadcasting message. 
Obviously, the random number r1’ can be obtained by the 
adversary.  

2. The adversary computes M1’= M1⊕ r1’⊕r1, M2’= M2 
and impersonate the tag transmit the message M1’, M2’ as 
a response to the reader. 

3. The reader transmits M1’, M2’ and r1’ to the server. 
4. The server chooses ti from amongst the values ti(new) 

or ti(old)  stored in the database and  recovers r2’ from M1’ 
using r2’← M1’⊕ti. If M2’=fti(r1’⊕r2’), then the server has 
identified Ti. Otherwise, it chooses another ti. The server 

computes M3’=ui⊕(r2’>>l/2) and sends it with Di’ to the 
reader. At last, the server updates ui(old) and ti(old) to ui and 
ti, and sets ui(new)←(ui<<l/4)⊕(ti>>l/4)⊕r1⊕r2 and 
ti(new)←h(ui(new)). 

5. The reader forwards M3’ to the adversary. 
In the step 4, we prove that the server will authenticate 

the tag. We have 
fti(r1’⊕r2’)= fti(M1’⊕ M1 ⊕r1⊕r2’)= fti(M1’⊕ ti⊕r2 ⊕r1⊕ 

M1’⊕ti)= fti(r1⊕ r2) = M2= M2’ 
Fig. 6 depicts the impersonation attack.

 
Figure 6 Impersonation attack 

 

C. De-synchronization Attack 
To provide privacy protection, most RFID 

authentication schemes update tag’s secret information 
after a successful protocol run. This update is performed 
in the back-end database as well as in the tag. So 
synchronization of secret information between the 
database and the tag is crucial for subsequent 
authentications. Some kinds of protocol malfunctions 

might leave the both sides in a un-synchronization state. 
The de-synchronization attack, to be introduced below, is 
a malicious action by an attacker which intentionally 
causes the database and a tag out of synchronization. Fig. 
7 depicts the message transmission of the de-
synchronization attack. 

The detailed steps are as follows: 

 
Figure 7 De-synchronization attack 

 Adversary                                       Tag                                     

r1’∈R{0,1}
l

M1’, M2’ 

r1’ 

M3’ 

 [ti] 

r2’∈R{0,1}l 
M1’=ti⊕r2’ 
M2’=fti(r1’⊕r2’) 

ui← M3’⊕(r2’>>l/2) 
check h(ui)= ti 
ti← h((ui<<l/4)⊕( ti >>l/4) ⊕ r1’⊕r2’) 

M3’← M3⊕( (M1⊕ M1’)>>l/2) 

Server                       Reader                 Adversary                                   

[(ui,ti)new, (ui,ti)old,Di] 

r1’∈R{0,1}
l

M1’, M2’ 

r1’ 
M1’= M1⊕ r1’⊕r1 
M2’= M2 M1’, M2’, r1’

Search for a value ti for which 
 r2’← M1’⊕ti and M2’=fti(r1’⊕r2’) 
M3’=ui⊕(r2’>>l/2) Di’, M3’ M3’ 

ui(old)← ui 
ti(old)← ti 
ui(new)← (ui<<l/4)⊕( ti >>l/4) ⊕ r1’⊕r2’ 
ti(new)←h(ui(new)) 
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1. Supposing the system is working normally right 
now. The server stores the entries [(ui, ti)new, (ui, ti)old, Di] 
for every tag and the tag stores the value of ti. We have 
ti=ti(new)=h(ui(new)). Based the tag impersonation attack 
described in section 2.2, the adversary first impersonates 
the tag to spoof the server and record   M1 and M3. We 
note M3⊕(M1>>l/2)= ui(new)⊕(ti(new) >>l/2). After 
authenticating the adversary, the server updates its 
secrets. 

2. Now the adversary disguises as a legitimate reader 
to spoof the tag and update the tag’s secret. The adversary 
generates a random bit-string r1’∈R{0,1}l and sends it to 
Ti. 

3. The tag Ti generates a random bit-string r2’∈R{0,1}l, 
and computes M1’=ti⊕r2’ and M2’=fti(r1’⊕r2’). Ti then 
sends M1’ and M2’ to the reader. 

4. The adversary sends M3’← M3⊕( (M1⊕ M1’)>>l/2) 
to the tag. 

5. Ti computes ui← M3’⊕(r2’>>l/2)  and checks that 
h(ui)= ti. If the check succeeds, the tag has authenticated 
the server, and sets ti← h((ui<<l/4)⊕( ti >>l/4) ⊕ r1’⊕r2’). 

We prove that in step 5 the tag will accept M3’.  
ui= M3’⊕(r2’>>l/2) 
   = M3⊕( (M1⊕ M1’)>>l/2) ⊕(r2’>>l/2) 
   = M3⊕(M1>>l/2) ⊕ (M1’>>l/2) ⊕(r2’>>l/2) 

   =ui(new)⊕(ti(new)>>l/2)⊕(ti(new)⊕r2’>>l/2)⊕(r2’>>l/2) 
   = ui(new) 
After the tag updates its secret information ti using two 

random bit-strings r1’ and r2’, the RFID system will be 
involved in DoS state and can not provide availability.  

IV. CRYPTANALYSIS OF CHEN ET AL.’S PROTOCOL 

A. Review of Chen et al.’s Protocol 
There are two phases in Chen et al’s scheme: an 

initialization phase and an authentication phase.  
In the initialization phase, the server generates two 

large primes p and q, and computes n = pq. It also 
chooses a one-way hash function, h(), and a pseudo-
random number generator, PRNG(). The value of n and 
h(),  PRNG() are both made public. The server chooses a 
random number r ∈ Zn and writes TID, h(TID) and r into 
tag’s memory, where TID may include EPC codes 
depending on the user’s specification. Meanwhile, the 
server saves <h(TID), TID, r, rold> into its database, 
where rold = r at the beginning. 

The authentication phase of Chen et al’s scheme is 
described as follows. It is also illustrated in Fig. 8. 

 
Figure 8 Chen et al’s protocol 

 
Step 1. The reader chooses a random challenge s ∈ Zn 

and broadcasts a hello message together with s to the tag. 
Step 2. After receiving the hello message and 

challenge s, the tag reads TID, h(TID) and r from its 
memory and computes x = h(TID) ⊕ r ⊕ s, X = x2 mod n, 

and R = r2 mod n. The tag responses <X, R, h(x), h(r)> to 
the reader. 

Step 3. After receiving tag’s response <X, R, h(x), 
h(r)>, the reader forwards this response together with s to 
the server. 

Server            Reader                 Tag  
p, q, n, h, PRNG                                                         n, h, PRNG       

Database fields 
[h(TID)][TID] [r] [rold] 

Tag fields 
[h(TID)][TID] [r] 

hello, s
x = h(TID) ⊕ r ⊕ s 
X = x2 mod n 
R = r2 mod n X, R, h(x), h(r)

1. Solves X = x2 mod n and R = r2 mod n , getting
(x1, x2, x3, x4) and (r1, r2, r3, r4) 

2. Compares h(xi) ?= h(x) and h(ri) ?= h(r), to 
determine x and r 

3. Computes h(TID)=x ⊕ r ⊕ s. 
4. Seeks TID record using h(TID) then compares 

received r?=r or rold else abort. 
5. If so, prepare ACK message xack = TID ⊕ r. 
6. Updates rold  as r and r as PRNG(r). 

Chooses s

h(xack) 

X, R, h(x), h(r), s 

h(xack)
1. Checkes h(xack)?= 

h(TID ⊕ r), if not 
abort. 

2. Updates r as 
PRNG(r). 
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Step 4. After receiving <X, R, h(x), h(r), s>, the server 
solves X = x2 mod n and R = r2 mod n by using Chinese 
Remainder Theorem, obtaining four roots (x1, x2, x3, x4) 
and (r1, r2, r3, r4) respectively. It then compares h(xi) with 
h(x) and h(ri) with h(r), for i = 1 to 4, to determine the 
unique values of x and r. The server then computes x ⊕ r 
⊕ s, obtaining h(TID). Having obtained h(TID), the 
server uses it as a searching key to find the tag record in 
its database. If it is not found, the server will abort the 
session; otherwise, it verifies whether the solved r is 
equal to the value of r or rold stored in the found record. If 
it is, the server will compute xack = TID ⊕ r and then 
sends the acknowledgement message h(xack) to the tag 

through the reader. Simultaneously, the server updates the 
tag’s record by replacing rold with r, and r with PRNG(r). 

Step 5. After receiving the server/reader’s h(xack), the 
tag verifies whether h(TID ⊕ r) is equal to the received 
h(xack). If so, the tag updates r with PRNG(r). 

B. Impersonation Attack 
An important observation of Chen et al.’s scheme is 

that if the adversary could compute the secret value 
h(TID)⊕r then the adversary could impersonate the legal 
tag. By utilizing responses from a tag, an adversary may 
try to get knowledge of the tag. Fig. 9 depicts the 
message transmission of the impersonation attack.  

 
Figure 9 Impersonation attack 

 
The detail impersonation attack is described as 

follows. 
Step 1. Supposing the system is working normally 

right now. The adversary chooses a random challenge s1 
∈ Zn and sends a hello message together with s1 to the 
tag. The tag responds the message < X1, R, h(x1), h(r)>. 
The adversary records this message. We have: 

x1 = h(TID) ⊕ r ⊕ s1     (1) 
X1 = (x1)2 mod n    (2) 
    Step 2. The adversary computes s2= s1⊕I, where 

I=[000…001] (set the least significant bit as 1). The 
adversary sends a hello message together with s2 to the 
tag. The tag responds the message < X2, R, h(x2), h(r)>. 
The adversary records this message. We have: 

x2 = h(TID) ⊕ r ⊕ s2    (3) 
X2 = (x2)2 mod n     (4) 

    Step 3. The adversary sends a random number s3, 
and records the responding message < X3, R, h(x3), h(r)>. 
We have 

X3 = (h(TID) ⊕ r ⊕ s3)2 mod n   (5) 
Step 4. After obtaining X1 and X2, the adversary can 

recover two candidate secrets of h(TID)⊕r, and then can 
check the validity through the equation (5). 

From equation (1), (2), (3) and (4), we have 
X2 = (x2)2 mod n= (h(TID) ⊕ r ⊕ s2)2 mod n= (h(TID) 

⊕ r ⊕ s1⊕I)2 mod n = (x1⊕I)2 mod n  
If the least significant bit of x1 is 0 then X2 = (x1+1)2 

mod n = X1+ 2x1+1 mod n. We can obtain x1= (X2-X1-
1)(n+1)/2 mod n. Let k1 denote the first candidate of 
h(TID) ⊕r, we have k1= (X2-X1-1)(n+1)/2 mod n ⊕ s1. 

If the least significant bit of x1 is 1 then X2 = (x1-1)2 
mod n = X1- 2x1+1 mod n. We can obtain x1= (X1-

     Adversary                                Tag  
n, h, PRNG                                                                  n, h, PRNG       

Tag fields 
[h(TID)][TID] [r] 

hello, s1
x1 = h(TID) ⊕ r ⊕ s1 
X1 = (x1)2 mod n 
R = r2 mod n X1, R, h(x1), h(r)

Chooses s1 

hello, s2
x2 = h(TID) ⊕ r ⊕ s2 
X2 = (x2)2 mod n 
R = r2 mod n X2, R, h(x2), h(r)

Computes s2= s1⊕ I 

Computes k1= (X2-X1-1)(n+1)/2 mod n ⊕ s1 
Computes k2= (X1-X2+1)(n+1)/2 mod n ⊕ s1 

hello, s3
x3 = h(TID) ⊕ r ⊕ s3 
X3 = (x3)2 mod n 
R = r2 mod n X3, R, h(x3), h(r)

Chooses s3 

If X3 = (k1⊕ s3)2 mod n then h(TID) ⊕ r = k1 else h(TID) ⊕ r = k2 
Impersonates the tag using the disclosed value h(TID) ⊕ r and the 
recorded values R, h(r). 
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X2+1)(n+1)/2 mod n. Let k2 denote the second candidate 
of h(TID)⊕r, we have k2= (X1-X2+1)(n+1)/2 mod n ⊕ s1. 

We denote the value of h(TID)⊕r by k. Now we 
determine which one of two candidates is the value of 
h(TID)⊕r through the equation (5). If X3 = (k1⊕ s3)2 mod 
n then k = k1 else k = k2.  

Step 5. Once the adversary obtains the value of h(TID) 
⊕ r, he can impersonate the tag using h(TID) ⊕ r and the 
recorded values R, h(r). When the reader chooses a 
random challenge s ∈ Zn and broadcasts a hello message 
together with s. The adversary computes x = k ⊕ s, X = x2 
mod n. The adversary responses to the reader with <X, R, 
h(x), h(r)> and will be authenticated by the reader. 

V. CONCLUSIONS 

In this paper, we have identified two effective attacks, 
namely impersonation attack and de-synchronization 
attack, against the LCSS protocol and the Song-Mitchell 
RFID authentication protocol. We also have identified an 
impersonation attack against Chen et al.’s RFID 
authentication scheme. These attacks should be 
considered in the designing the new RFID authentication 
protocol. 
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