
Cryptanalysis of Some RFID Authentication
Protocols

Tianjie Cao, Peng Shen
School of Computer, China University of Mining and Technology

Sanhuannanlu, Xuzhou, Jiangsu, 221116, China
National Mobile Communications Research Laboratory, Southeast University

Sipailou No.2, Nanjing, Jiangsu, 210096, China
Email: tjcao@cumt.edu.cn, pshencscumt@gmail.com

Elisa Bertino

Purdue University, West Lafayette, IN 47907
Email: bertino@cs.purdue.edu

Abstract—Two effective attacks, namely de-synchronization
attack and impersonation attack, against Ha et al. ’s LCSS
RFID authentication protocol, Song and Mitchell’s protocol
are identified. The former attack can break the
synchronization between the RFID reader and the tag in a
single protocol run so that they can not authenticate each
other in any following protocol run. The latter can
impersonate a legal tag to spoof the RFID reader by
extracting the ID of a specific tag during the authentication
process. An impersonation attack against Chen et al.’s RFID
authentication scheme is also identified. By sending
malicious queries to the tag and collecting the response
messages emitted by the tag, the attack allows an adversary
to extract the secret information from the tag and further to
impersonate the legal tag.

Index Terms—RFID, de-synchronization attack,
Impersonation

I. INTRODUCTION

RFID (Radio Frequency Identification) technology is
fast gaining popularity and attracting interest from both
the industry and academic institutes. This technology has
been applied to many applications such as object tracking
and monitoring, supply-chain management [1].

An RFID system consists of three parts: RFID tags, an
RFID reader, and back-end database. Security
requirements for RFID authentication protocol include
authentication, untraceability and availability.

Authentication: Authentication is the process whereby
one party is assured of the identity of a second party
involved in a protocol, and that the second has actually
participated. Spoofing is an attack on authentication.

Untraceability: Untraceability is the most important
security requirement for user privacy [2]. Untraceability
is the property that adversary can not trace tag by using
interactions with tag. This concept means ID anonymity
and indistinguishability.

Availability: Authentication should be available all the
time between reader and tags. Authentication protocol
should provide the data recovery against the data loss or

falsification such as DoS, message hijacking, power
interruption, etc. during the authentication processes.
Especially, the de-synchronization attack by utilizing a
man-in-the-middle attack must be prevented.

In [3], Rhee et al. proposed a challenge-response
authentication protocol based on a hash function.
However, the computational load on the back-end
database is heavy when authenticating a tag. Another
disadvantage of Rhee et al.’s protocols is that the
protocols do not satisfy forward security. The RFID
mutual authentication scheme presented by Lee et al. [4]
introduces forward security based on synchronized secret
information. However, Lee et al.’s protocol also requires
many computational operations in the back-end database
when finding a specific tag’s ID. In [5], Ha et al.
proposed a low-cost and strong-security (LCSS)
authentication protocol for an RFID system. The main
contribution of Ha et al.’s protocol is low computation in
back-end database. In the case of de-synchronization
between the back-end database and a tag, the protocol is
able to recover the synchronization. As the correct ID can
be found based on just comparing the transmitted hash
message and the hashed values in the database, the
computational load on the back-end system is efficient
compared with Rhee and Lee et al.’s protocols.

Numerous authentication protocols for RFID systems
were proposed in an attempt to provide privacy and
security. Many of these attempts fail to enforce
anonymity and offer only weak authentication and some
fail under denial of service [6][7]. To secure RFID
systems, various lightweight RFID schemes have been
designed, where mostly hash functions and random
number generators are involved. In [8], Song and
Mitchell proposed a scheme that significantly reduces the
necessary storage and computation in a tag by
comparison with previous hash-based schemes. The ultra-
lightweight schemes only involve simple bit-wise
operations on tags [9-10]. However, de-synchronization
attack, full-disclosure attack and tracing attack against

20 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

such schemes have been reported [11-12]. In [13], Chou
et al. presented a simple scheme based on quadratic
residue assumption. This scheme is much cheaper than
the implementation of a hash function. Hsiang
demonstrated that Chou et al.’s scheme is vulnerable to
the masquerading attack and the parallel session attack
[14]. Recently, Chen et al. proposed a new efficient
scheme based on quadratic residues and claimed that the
new scheme not only achieves the mutual authentication
between the server and the tag but also can satisfy all the
security requirements needed in an RFID system [15].

In this paper, we analyze the security vulnerabilities of
the LCSS protocol [5] and the Song-Mitchell protocol
[8]. In [5] and [8], the authors presented some security
analysis and claimed that their protocol is secure against
de-synchronization attack and spoofing attack. In the
following sections, we will show that the claims
unfortunately don’t hold. We also identify an
impersonation attack against Chen et al.’s RFID
authentication protocol [15]. By sending malicious
queries to the tag and collecting the response messages
emitted by the tag, our attack allows an adversary to
extract the secret information from the tag and further to
impersonate the legal tag.

II. CRYPTANALYSIS OF THE LCSS PROTOCOL

A. Review of the LCSS protocol
Fig. 1 shows the process of the proposed protocol, and

the following is a detailed description of each step:
1. The R broadcasts to the tags with a Query and a

random number RR as a challenge.
2. The T generates a random number RT and computes

P differently according to the state of SYNC. If SYNC is 0,
then P=H(ID), otherwise P=H(ID||RT||RR). And then sets
SYNC as 1. The T transmits P and RT to the R as a
response to Query.

3. The R forwards the P and RT message received from
the T together with RR generated by itself in step 1 to the
DB.

Figure 1 The LCSS protocol

4. As soon as the DB receives the message from the R,
it searches for the specific tag via the received P. Firstly,
the DB finds whether there is a record’s HID value
equivalent to the received P. If so, the DB regards the
record’s ID value as the identity of the T, which is
requesting authentication. This is the general case when
the previous session is terminated normally.

When the DB cannot find any record’s HID value
equivalent to P in the first search, the value of
H(ID||RT||RR) will be computed for all the ID in the
database, with which compares the P.

However, if the DB cannot find the exact ID of the tag
in the two above cases, it will compute the value of
H(PID||RT||RR) for all the PID in the database then
compares it with the P.

 If the DB is still unable to find the tag’s ID in all the
three above cases, it halts the search for the ID and orders
the R to query again.

The R will be authenticated successfully as a legal one,
as soon as the DB does find the ID or PID in one of the
three searching cases. Then the DB updates ID with the
value of H(PID||RR) and computes HI = H(ID) for the
next session. Finally, computes Q= H(PID||RT) and
transmits it to the R.

5. The R forwards the message Q to the T.
6. The T verifies the correctness of Q by checking

whether it is equivalent to the value of H(ID||RT). If so,
the T updates its ID with the value of H(ID||RR), then sets
the SYNC state as 0.

B. Desynchronization Attack
Fig. 2 depicts the message transmission of the de-

synchronization attack. The detailed steps are as follows:
1. The attacker can eavesdrop in the insecure channel.

When the reader R broadcasts a Query with a random
number RR to the tags, the attacker can obtain RR, changes
it to RA. Then, sends the Query with RA to the targeted tag.

2. We can suppose that the system is working normally
now, that is, the SYNC state of the targeted tag T is 0, the
T computes P=H(ID) and transmits it to the R with
random number RT.

3. The R forwards the message received from the T to
the DB together with the random number RR generated by
itself.

4. The DB receives the P=H(ID), it does find a
record’s HID equivalent to P, then assigns the value of ID
to PID. After performing these computations
Q=H(PID||RT)=H(ID||RT), ID=H(PID||RR)=H(ID||RR)
and PID=H(ID), the DB transmits the Q to the R.

5. The R directly forwards the Q received from the DB
to the T.

6. As the T receives the Q equivalent to the value of
H(ID||RT), the ID in the tag will be updated with the
value of H(ID||RA), SYNC state changes into 0. We can
note that the ID’s value in the T is not equivalent to that
in the DB. It seems like that the system has successfully
completed a protocol run, actually, it is already trapped
into de-synchronization permanently.

Now the value of ID in the DB is IDDB=H(ID||RR), the
value of ID in the T is another value IDT= H(ID||RA).
When the T transmits P=H(IDT) to the R, which will be

Database Reader Tag

Database field
[ID][HID][PID

]

Tag field
[ID][SYNC]

Query, RR If (SYNC=0) P=H(ID)
 else P=H(ID||RT||RR)
SYNC=1

P, RT P, RT, RR

Q Q

If (P=HID) PID=ID
else if (P=H(ID||RT||RR))
 PID=ID
else if (P=H(PID||RT||RR))
 PID=PID
 else halt
Q=H(PID||RT)
ID=H(PID||RR)
HID=H(ID)

If (Q=H(ID||RT))
 ID=H(ID||RR)
 SYNC=0

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 21

© 2008 ACADEMY PUBLISHER

forwards to the DB. After the DB searching all the
database records in all the three cases, it will not be able
find a proper match for the P received from the R.
Consequently, the authentication of the legal tag, in
which the ID is updated under the above presented de-
synchronization attack, will be halted. In the next
protocol run, the tag will respond with P=H(IDT||RT||RR)
and RT. DB will still not be able find a proper match for
the P in all the three cases.

Figure 2 De-synchronization attack

C. Impersonation attack
The detailed attack includes two stages:
Stage 1. Supposing the system is working normally

right now. An adversary sends a malicious query to a
targeted tag with a Query and a random number RA, then
collects the response messages P=H(ID) and RT emitted
by the tag.

Stage 2 is described as follows:
1. The attacker eavesdrops in the insecure channel,

collecting the broadcasting Query message. Obviously,
the random number RR generated by the R can be
obtained by the attacker. Therefore, the attacker is
capable to impersonate the tag T transmit the message
including P=H(ID) and the random number RR as a
response to the R.

2. The R forwards the message containing P=H(ID)
and RR to the DB together with the random number RR
generated by itself. Of course, the two random numbers
are same.

3. The DB searches a record in the database to match
the P=H(ID) received from the R. And then updates PID
with the value of ID. After performing these
computations Q=H(PID||RR)=H(ID||RR),
ID=H(PID||RR)=H(ID||RR) and PID=H(ID), the DB
transmits the Q to the R. We note that the new ID and the
Q are equivalent to each other.

4. The R directly forwards the Q received from the DB
to the T. So the attacker is capable to obtain the message
Q, namely the new ID of the T.

From what mentioned above, we can see that the
attacker is able to own the new ID in the T. So the
attacker is capable to disguise as a legitimate tag to spoof
the R and update the ID during the next session. Fig. 3
depicts the message transmission of the spoofing attack.

Figure 3 Impersonation attack

In the case of the de-synchronization attack, where

random number RR in protocol step 1 is replaced with RA
due to an malicious attacker, the database can not detect
this attack in protocol step 4 because of lack integrity
check on RR. In the case of the spoofing attack, where
random number RT in protocol step 2 is replaced with RR,
the database can not detect this attack in protocol step 4
because of lack authentication on the tag in the case of
SYNC=0.

We can add message authentication code
M=H(RT||ID||RR) in protocol step 2 to protect the system
from de-synchronization attack and spoofing attack. If the
attacker replaces RT with RA in step 2, the DB will detect
this attack by check the validity of the value M. If the
attacker replaces RT with RR in step 2, the attacker will
unable to generate M= H(RR||ID||RR) to respond to
Query. Illustration of the message transmission of the
improved protocol is depicted as Fig. 4.

Figure 4 The improved LCSS protocol

Database Reader Tag

Database field
[ID][HID][PID

]

Tag field
[ID][SYNC]

Query, RR If (SYNC=0) P=H(ID)
 else P=H(ID||RT||RR)
M=H(RT||ID||RR)
SYNC=1

P, RT,M P, RT, RR,M

Q Q

If (P=HID) PID=ID
else if (P=H(ID||RT||RR))
 PID=ID
else if (P=H(PID||RT||RR))
 PID=PID
 else halt
if M=H(RT||PID||RR)
{Q=H(PID||RT)
ID=H(PID||RR)
HID=H(ID)}
else halt

If (Q=H(ID||RT))
 ID=H(ID||RR)
 SYNC=0

Reader Attacker Tag

Query, RA

P, RT

Query, RR

P, RR

Q

Reader Attacker Tag

Query, RA

P, RT

Q Q

Query, RR

P, RT

22 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

III. CRYPTANALYSIS OF SONG AND MITCHELL’S PROTOCOL

A. Review of Song and Mitchell’s Protocol
We use the following notation in Song and Mitchell’s

authentication scheme.
h: A hash function, h: {0, 1}l→ {0, 1}l.
fk: A keyed hash function, fk: {0, 1}l×{0, 1}l →{0, 1}l
N: The number of tags
l: The bit-length of a tag identifier
Ti: The i-th tag (1 ≤ i ≤ N)
Di: The detailed information associated with tag Ti
ui: A string of l bits assigned to Ti
ti: Ti’s identifier of l bits, which equals h(ui)
xnew: The new (refreshed) value of x
xold: The most recent value of x
r: A random string of l bits
ε: Error message
⊕: XOR operator
||:Concatenation operator
←: Substitution operator
x>>k: Right circular shift operator, which rotates all

bits of x to the right by k bits.
x<<k: Left circular shift operator, which rotates all bits

of x to the left by k bits.
∈R: The random choice operator.
An initiator (e.g. the tag manufacturer) assigns a string

ui of l bits to each tag Ti, computes ti = h(ui), and stores ti
in the tag. The initiator stores the entries [(ui, ti)new, (ui,
ti)old, Di] for every tag that it manages. The first pair is for

the newly assigned values of ui and ti, the second pair is
for the previously assigned values, and Di is for the tag
information (e.g., price, date, etc.). Initially (ui, ti)new is
assigned the initial values of ui and ti, and (ui, ti)old is set
to null.

Song and Mitchell’s authentication scheme is
summarized in Fig. 5.

1. A reader generates a random bit-string r1∈R{0,1}l
and sends it to Ti.

2. The tag Ti generates a random bit-string r2∈R{0,1}l,
and computes M1=ti⊕r2 and M2=fti(r1⊕r2). Ti then sends
M1 and M2 to the reader.

3. The reader transmits M1, M2 and r1 to the server.
4. The server chooses ti from amongst the values ti(new)

or ti(old) stored in the database and puts r2← M1⊕ti. If
M2=fti(r1⊕r2), then the server has identified Ti. Otherwise,
it chooses another ti. If no match is found, the server
sends ε and stops the session. The server computes
M3=ui⊕(r2>>l/2) and sends it with Di to the reader. At
last, the server updates ui(old) and ti(old) to ui and ti, and sets
ui(new)←(ui<<l/4)⊕(ti>>l/4)⊕r1⊕r2 and ti(new)←h(ui(new)).

5. The reader forwards M3 to Ti.
6. Ti computes ui← M3⊕(r2>>l/2) and checks that

h(ui)= ti. If the check succeeds, the tag has authenticated
the server, and sets ti← h((ui<<l/4)⊕(ti >>l/4) ⊕ r1⊕r2).
If the check fails, the tag keeps the current value of ti
unchanged.

We note M3⊕(M1>>l/2)= ui⊕(ti >>l/2).

Figure 5 Song and Mitchell’s Protocol

B. Impersonation Attack
In [8], the authors claimed that their scheme is robust

to tag impersonation attack based on the idea that the
adversary cannot compute a valid response (M1, M2)
without knowledge of ti. However, if the adversary
attacks the system by the following way, the protocol will
show its vulnerability to the impersonation attack
although the adversary does not know ti. The detailed
attack includes two stages:

Collection stage: Supposing the system is working
normally right now. An adversary sends a malicious
query to a targeted tag with a random number r1, then
collects the response messages M1 and M2 emitted by the
tag, where r2∈R{0,1}l, M1=ti⊕r2 and M2=fti(r1⊕r2). In the
impersonation stage, the adversary will replay M2.

Impersonation stage: After collecting the response
messages M1 and M2, the adversary can modify the data,
and then replay the messages to masquerade as the legal
tag.

Server Reader Tag

[(ui,ti)new, (ui,ti)old,Di] [ti]

r1∈R{0,1}l

M1, M2

r1 r2∈R{0,1}l
M1=ti⊕r2
M2=fti(r1⊕r2) M1, M2, r1

Search for a value ti for which
 r2← M1⊕ti and M2=fti(r1⊕r2)
M3=ui⊕(r2>>l/2) Di, M3 M3

ui(old)← ui
ti(old)← ti
ui(new)← (ui<<l/4)⊕(ti >>l/4) ⊕ r1⊕r2
ti(new)←h(ui(new))

ui← M3⊕(r2>>l/2)
check h(ui)= ti
ti← h((ui<<l/4)⊕(ti >>l/4) ⊕ r1⊕r2)

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 23

© 2008 ACADEMY PUBLISHER

1. A reader generates a random bit-string r1’ ∈R{0,1}l
and broadcasts it. The adversary eavesdrops in the
insecure channel, collecting the broadcasting message.
Obviously, the random number r1’ can be obtained by the
adversary.

2. The adversary computes M1’= M1⊕ r1’⊕r1, M2’= M2
and impersonate the tag transmit the message M1’, M2’ as
a response to the reader.

3. The reader transmits M1’, M2’ and r1’ to the server.
4. The server chooses ti from amongst the values ti(new)

or ti(old) stored in the database and recovers r2’ from M1’
using r2’← M1’⊕ti. If M2’=fti(r1’⊕r2’), then the server has
identified Ti. Otherwise, it chooses another ti. The server

computes M3’=ui⊕(r2’>>l/2) and sends it with Di’ to the
reader. At last, the server updates ui(old) and ti(old) to ui and
ti, and sets ui(new)←(ui<<l/4)⊕(ti>>l/4)⊕r1⊕r2 and
ti(new)←h(ui(new)).

5. The reader forwards M3’ to the adversary.
In the step 4, we prove that the server will authenticate

the tag. We have
fti(r1’⊕r2’)= fti(M1’⊕ M1 ⊕r1⊕r2’)= fti(M1’⊕ ti⊕r2 ⊕r1⊕

M1’⊕ti)= fti(r1⊕ r2) = M2= M2’
Fig. 6 depicts the impersonation attack.

Figure 6 Impersonation attack

C. De-synchronization Attack
To provide privacy protection, most RFID

authentication schemes update tag’s secret information
after a successful protocol run. This update is performed
in the back-end database as well as in the tag. So
synchronization of secret information between the
database and the tag is crucial for subsequent
authentications. Some kinds of protocol malfunctions

might leave the both sides in a un-synchronization state.
The de-synchronization attack, to be introduced below, is
a malicious action by an attacker which intentionally
causes the database and a tag out of synchronization. Fig.
7 depicts the message transmission of the de-
synchronization attack.

The detailed steps are as follows:

Figure 7 De-synchronization attack

 Adversary Tag

r1’∈R{0,1}
l

M1’, M2’

r1’

M3’

 [ti]

r2’∈R{0,1}l
M1’=ti⊕r2’
M2’=fti(r1’⊕r2’)

ui← M3’⊕(r2’>>l/2)
check h(ui)= ti
ti← h((ui<<l/4)⊕(ti >>l/4) ⊕ r1’⊕r2’)

M3’← M3⊕((M1⊕ M1’)>>l/2)

Server Reader Adversary

[(ui,ti)new, (ui,ti)old,Di]

r1’∈R{0,1}
l

M1’, M2’

r1’
M1’= M1⊕ r1’⊕r1
M2’= M2 M1’, M2’, r1’

Search for a value ti for which
 r2’← M1’⊕ti and M2’=fti(r1’⊕r2’)
M3’=ui⊕(r2’>>l/2) Di’, M3’ M3’

ui(old)← ui
ti(old)← ti
ui(new)← (ui<<l/4)⊕(ti >>l/4) ⊕ r1’⊕r2’
ti(new)←h(ui(new))

24 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

1. Supposing the system is working normally right
now. The server stores the entries [(ui, ti)new, (ui, ti)old, Di]
for every tag and the tag stores the value of ti. We have
ti=ti(new)=h(ui(new)). Based the tag impersonation attack
described in section 2.2, the adversary first impersonates
the tag to spoof the server and record M1 and M3. We
note M3⊕(M1>>l/2)= ui(new)⊕(ti(new) >>l/2). After
authenticating the adversary, the server updates its
secrets.

2. Now the adversary disguises as a legitimate reader
to spoof the tag and update the tag’s secret. The adversary
generates a random bit-string r1’∈R{0,1}l and sends it to
Ti.

3. The tag Ti generates a random bit-string r2’∈R{0,1}l,
and computes M1’=ti⊕r2’ and M2’=fti(r1’⊕r2’). Ti then
sends M1’ and M2’ to the reader.

4. The adversary sends M3’← M3⊕((M1⊕ M1’)>>l/2)
to the tag.

5. Ti computes ui← M3’⊕(r2’>>l/2) and checks that
h(ui)= ti. If the check succeeds, the tag has authenticated
the server, and sets ti← h((ui<<l/4)⊕(ti >>l/4) ⊕ r1’⊕r2’).

We prove that in step 5 the tag will accept M3’.
ui= M3’⊕(r2’>>l/2)
 = M3⊕((M1⊕ M1’)>>l/2) ⊕(r2’>>l/2)
 = M3⊕(M1>>l/2) ⊕ (M1’>>l/2) ⊕(r2’>>l/2)

 =ui(new)⊕(ti(new)>>l/2)⊕(ti(new)⊕r2’>>l/2)⊕(r2’>>l/2)
 = ui(new)
After the tag updates its secret information ti using two

random bit-strings r1’ and r2’, the RFID system will be
involved in DoS state and can not provide availability.

IV. CRYPTANALYSIS OF CHEN ET AL.’S PROTOCOL

A. Review of Chen et al.’s Protocol
There are two phases in Chen et al’s scheme: an

initialization phase and an authentication phase.
In the initialization phase, the server generates two

large primes p and q, and computes n = pq. It also
chooses a one-way hash function, h(), and a pseudo-
random number generator, PRNG(). The value of n and
h(), PRNG() are both made public. The server chooses a
random number r ∈ Zn and writes TID, h(TID) and r into
tag’s memory, where TID may include EPC codes
depending on the user’s specification. Meanwhile, the
server saves <h(TID), TID, r, rold> into its database,
where rold = r at the beginning.

The authentication phase of Chen et al’s scheme is
described as follows. It is also illustrated in Fig. 8.

Figure 8 Chen et al’s protocol

Step 1. The reader chooses a random challenge s ∈ Zn

and broadcasts a hello message together with s to the tag.
Step 2. After receiving the hello message and

challenge s, the tag reads TID, h(TID) and r from its
memory and computes x = h(TID) ⊕ r ⊕ s, X = x2 mod n,

and R = r2 mod n. The tag responses <X, R, h(x), h(r)> to
the reader.

Step 3. After receiving tag’s response <X, R, h(x),
h(r)>, the reader forwards this response together with s to
the server.

Server Reader Tag
p, q, n, h, PRNG n, h, PRNG

Database fields
[h(TID)][TID] [r] [rold]

Tag fields
[h(TID)][TID] [r]

hello, s
x = h(TID) ⊕ r ⊕ s
X = x2 mod n
R = r2 mod n X, R, h(x), h(r)

1. Solves X = x2 mod n and R = r2 mod n , getting
(x1, x2, x3, x4) and (r1, r2, r3, r4)

2. Compares h(xi) ?= h(x) and h(ri) ?= h(r), to
determine x and r

3. Computes h(TID)=x ⊕ r ⊕ s.
4. Seeks TID record using h(TID) then compares

received r?=r or rold else abort.
5. If so, prepare ACK message xack = TID ⊕ r.
6. Updates rold as r and r as PRNG(r).

Chooses s

h(xack)

X, R, h(x), h(r), s

h(xack)
1. Checkes h(xack)?=

h(TID ⊕ r), if not
abort.

2. Updates r as
PRNG(r).

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 25

© 2008 ACADEMY PUBLISHER

Step 4. After receiving <X, R, h(x), h(r), s>, the server
solves X = x2 mod n and R = r2 mod n by using Chinese
Remainder Theorem, obtaining four roots (x1, x2, x3, x4)
and (r1, r2, r3, r4) respectively. It then compares h(xi) with
h(x) and h(ri) with h(r), for i = 1 to 4, to determine the
unique values of x and r. The server then computes x ⊕ r
⊕ s, obtaining h(TID). Having obtained h(TID), the
server uses it as a searching key to find the tag record in
its database. If it is not found, the server will abort the
session; otherwise, it verifies whether the solved r is
equal to the value of r or rold stored in the found record. If
it is, the server will compute xack = TID ⊕ r and then
sends the acknowledgement message h(xack) to the tag

through the reader. Simultaneously, the server updates the
tag’s record by replacing rold with r, and r with PRNG(r).

Step 5. After receiving the server/reader’s h(xack), the
tag verifies whether h(TID ⊕ r) is equal to the received
h(xack). If so, the tag updates r with PRNG(r).

B. Impersonation Attack
An important observation of Chen et al.’s scheme is

that if the adversary could compute the secret value
h(TID)⊕r then the adversary could impersonate the legal
tag. By utilizing responses from a tag, an adversary may
try to get knowledge of the tag. Fig. 9 depicts the
message transmission of the impersonation attack.

Figure 9 Impersonation attack

The detail impersonation attack is described as

follows.
Step 1. Supposing the system is working normally

right now. The adversary chooses a random challenge s1
∈ Zn and sends a hello message together with s1 to the
tag. The tag responds the message < X1, R, h(x1), h(r)>.
The adversary records this message. We have:

x1 = h(TID) ⊕ r ⊕ s1 (1)
X1 = (x1)2 mod n (2)
 Step 2. The adversary computes s2= s1⊕I, where

I=[000…001] (set the least significant bit as 1). The
adversary sends a hello message together with s2 to the
tag. The tag responds the message < X2, R, h(x2), h(r)>.
The adversary records this message. We have:

x2 = h(TID) ⊕ r ⊕ s2 (3)
X2 = (x2)2 mod n (4)

 Step 3. The adversary sends a random number s3,
and records the responding message < X3, R, h(x3), h(r)>.
We have

X3 = (h(TID) ⊕ r ⊕ s3)2 mod n (5)
Step 4. After obtaining X1 and X2, the adversary can

recover two candidate secrets of h(TID)⊕r, and then can
check the validity through the equation (5).

From equation (1), (2), (3) and (4), we have
X2 = (x2)2 mod n= (h(TID) ⊕ r ⊕ s2)2 mod n= (h(TID)

⊕ r ⊕ s1⊕I)2 mod n = (x1⊕I)2 mod n
If the least significant bit of x1 is 0 then X2 = (x1+1)2

mod n = X1+ 2x1+1 mod n. We can obtain x1= (X2-X1-
1)(n+1)/2 mod n. Let k1 denote the first candidate of
h(TID) ⊕r, we have k1= (X2-X1-1)(n+1)/2 mod n ⊕ s1.

If the least significant bit of x1 is 1 then X2 = (x1-1)2
mod n = X1- 2x1+1 mod n. We can obtain x1= (X1-

 Adversary Tag
n, h, PRNG n, h, PRNG

Tag fields
[h(TID)][TID] [r]

hello, s1
x1 = h(TID) ⊕ r ⊕ s1
X1 = (x1)2 mod n
R = r2 mod n X1, R, h(x1), h(r)

Chooses s1

hello, s2
x2 = h(TID) ⊕ r ⊕ s2
X2 = (x2)2 mod n
R = r2 mod n X2, R, h(x2), h(r)

Computes s2= s1⊕ I

Computes k1= (X2-X1-1)(n+1)/2 mod n ⊕ s1
Computes k2= (X1-X2+1)(n+1)/2 mod n ⊕ s1

hello, s3
x3 = h(TID) ⊕ r ⊕ s3
X3 = (x3)2 mod n
R = r2 mod n X3, R, h(x3), h(r)

Chooses s3

If X3 = (k1⊕ s3)2 mod n then h(TID) ⊕ r = k1 else h(TID) ⊕ r = k2
Impersonates the tag using the disclosed value h(TID) ⊕ r and the
recorded values R, h(r).

26 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

X2+1)(n+1)/2 mod n. Let k2 denote the second candidate
of h(TID)⊕r, we have k2= (X1-X2+1)(n+1)/2 mod n ⊕ s1.

We denote the value of h(TID)⊕r by k. Now we
determine which one of two candidates is the value of
h(TID)⊕r through the equation (5). If X3 = (k1⊕ s3)2 mod
n then k = k1 else k = k2.

Step 5. Once the adversary obtains the value of h(TID)
⊕ r, he can impersonate the tag using h(TID) ⊕ r and the
recorded values R, h(r). When the reader chooses a
random challenge s ∈ Zn and broadcasts a hello message
together with s. The adversary computes x = k ⊕ s, X = x2
mod n. The adversary responses to the reader with <X, R,
h(x), h(r)> and will be authenticated by the reader.

V. CONCLUSIONS

In this paper, we have identified two effective attacks,
namely impersonation attack and de-synchronization
attack, against the LCSS protocol and the Song-Mitchell
RFID authentication protocol. We also have identified an
impersonation attack against Chen et al.’s RFID
authentication scheme. These attacks should be
considered in the designing the new RFID authentication
protocol.

ACKNOWLEDGMENT

This work is supported by the Jiangsu Provincial
Natural Science Foundation of China (BK2007035), the
open research fund of National Mobile Communications
Research Laboratory, Southeast University (W200817)
and the Science and Technology Foundation of CUMT
(0D080309).

REFERENCES

[1] D. Lin, H. G. Elmongui, E. Bertino, and B. C. Ooi, “Data
Management in RFID Applications”, International
Conference on Database and Expert Systems Applications,
LNCS 4653, pp. 434-444, 2007.

[2] G. Avoine. “Radio frequency identification: adversary
model and attacks on existing protocols”, Technical Report
LASEC-REPORT-2005-001, EPFL, Lausanne,
Switzerland, September 2005.

[3] K. Rhee, J. Kwak, S. Kim and D. Won, “Challenge-
Response Based on RFID Authentication Protocol for
Distributed Database Environment”, SPC 2005, LNCS
3450, pp. 70-84, 2005.

[4] S. Lee, T. Asano and K. Kim, “RFID Mutual
Authentication Scheme based on Synchronized Secret
Information”, SCIS’06, 2006.

[5] J.C. Ha, S.J. Moon, J. M. G. Nieto and C. Boyd, “Low-
Cost and Strong-Security RFID Authentication Protocol”,
EUC Workshops 2007, LNCS 4809, pp. 795-807, 2007.

[6] H. Lei, T.J. Cao, “RFID Protocol enabling Ownership
Transfer to protect against Traceability and DoS attacks”,
International Symposium on Data, Privacy, & E-
Commerce, pp. 508-510, 2007.

[7] H. Lei, T.J. Cao, “Cryptanalysis of SPA Protocol”,
Security and Privacy in Telecommunications and
Information System, Shanghai China, December 16-19,
2007.

[8] B. Song, C. Mitchell, “RFID authentication protocol for
low-cost tags”, “First ACM Conference on Wireless
Security”, WiSec 2008, pp.40-147, 2008.

[9] P. Peris-Lopez, J. Hernandez-Castro, J. Estevez-Tapiador,
and A. Ribagorda, “LMAP: A Real Lightweight Mutual
Authentication Protocol for Low-Cost RFID Tags”, Second
Workshop RFID Security, July 2006.

[10] H. -Y. Chien, “SASI: A New Ultralightweight RFID
Authentication Protocol Providing Strong Authentication
and Strong Integrity”, IEEE Transactions on Dependable
and Secure Computing, vol. 4, no. 4, 2007, pp. 337-340.

[11] T. Li, G. Wang, “Security Analysis of Two Ultra-
Lightweight RFID Authentication Protocols”, 22nd IFIP
TC-11 Int’l Information Security Conf., May 2007.

[12] T. Cao, E. Bertino, H. Lei, “Security Analysis of the SASI
Protocol”, IEEE Transactions on Dependable and Secure
Computing, 20 May 2008. IEEE Computer Society Digital
Library. IEEE Computer Society, 26 May 2008
http://doi.ieeecomputersociety.org/10.1109/TDSC.2008.32

[13] J.-S. Chou, G.-C. Lee, C.-J. Chan, “A novel mutual
authentication scheme based on quadratic residues”,
Cryptology ePrint Archive, http://eprint.iacr.org/2007/224

[14] H.-C. Hsiang, “Weaknesses of a Novel Mutual
Authentication Scheme Based on Quadratic Residues for
RFID Systems”, 2008 RFID workshop, Feb. 2008

[15] Y. Chen, “A novel mutual authentication scheme based on
quadratic residues”, Computer Network, Vol. 52, no. 12,
pp. 2373-2380, August 2008.

Tianjie Cao is a professor of China University of Mining
and Technology. His research interests are in security protocols
and network security.

Peng Shen is currently working toward the Master degree in
the School of Computer Science and Technology, China
University of Mining and Technology.

Elisa Bertino is a professor of Purdue. Her research interests
are in information security.

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 27

© 2008 ACADEMY PUBLISHER

