
– SimANet –  
A Large Scalable, Distributed Simulation 

Framework for Ambient Networks  
 

 
Matthias Vodel 

Chemnitz University of Technology / Dept. Computer Science, Chemnitz, Germany 
Email: vodel@cs.tu-chemnitz.de 

 
Matthias Sauppe and Mirko Caspar and Wolfram Hardt 

Chemnitz University of Technology / Dept. Computer Science, Chemnitz, Germany 
Email: {saum | mica | hardt }@cs.tu-chemnitz.de 

 
  
 

Abstract— In this paper, we present a new simulation 
platform for complex, radio standard spanning mobile Ad 
Hoc networks. SimANet - Simulation Platform for Ambient 
Networks - allows the coexistence of multiple radio modules 
with different communication technologies and protocol 
stacks within one node, which can be used concurrently. By 
the usage of efficient data structures like Randomised Skip 
Quadtrees, SimANet allows the analysis and evaluation of 
large scale, heterogeneous network topologies in both static 
and dynamic simulation scenarios based on different 
movement models. The software design enables a modular 
extension with additional models for power consumption, 
communication complexity or barrier simulation. 
Furthermore, an integrated MPI library provides the 
possibility to run distributed test cycles on parallel 
computing systems. Thereby, special sliding time window 
algorithms avoid the typical disadvantage of a slow network 
interconnection structure and allow a dynamic load 
balancing on the available hardware resources during the 
runtime. With the main focus on the evaluation of abstract 
multi-interface, multi-standard communication concepts, we 
compare the functionality and the complexity of SimANet 
with well-known simulation tools like ns2-MIRACLE, ns2-
NW-Node, OMNet++ and TeNS. Simulation results for 
different application scenarios estimate features like 
versatility, practicality or usability in large scale network 
topologies with up to 105 nodes.  
  
Index Terms — simulation framework, parallelisation, 
wireless communication standards, mobile Ad Hoc net-
works, multi-standard, multi-interface, ambient networking 
  

I.  INTRODUCTION 

The number of wireless communication technologies is 
steadily rising. Due to different application areas of 
wireless communication networks within the private and 
industrial sector, a multiplicity of radio standards has 
been developed [1]. Thereby, each communication 
standard has specific, application optimised 
characteristics concerning power consumption, data 
transfer rate, frequency band or transmission range. Due 
to physical and functional differences within the protocol 
stacks of the several communication standards, an 

interoperability between these technologies is not 
possible. 

Looking forward to the next generation of mobile 
technologies, one essential ability will be the integration 
of different wireless communication standards. To avoid 
the incompatibilities between available technologies, 
different research approaches, like Software Defined 
Radio (SDR) [2], Cognitive Radio [3] or Ambient 
Network [4] (see Figure 1), provide interesting solutions. 
In [5], another concept for the radio standard spanning 
communication in mobile Ad Hoc Networks is 
introduced, which offers the possibility to connect 
standardised radio modules on a hardware near layer. 
Regarding to these current research projects, mobile Ad 
Hoc networks enable large-scale network topologies in a 
completely new dimension.  
 

 
 
Figure 1.  Ambient networking: Integration of several wireless IEEE 

802.x communication standards - Next generation wireless 
networks use a heterogeneous, multi-standard infrastructure 
for an optimised communication 

To handle the complex development of future 
communication technologies, powerful simulation tools 
are used to analyse the network behaviour in realistic 
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application scenarios. Thereby, the most currently 
available simulation frameworks for mobile Ad Hoc and 
sensor networks deal with one single radio standard and 
focus small- or medium-scaled networks [6][7].  

To evaluate the performance and the advantages of 
multi-interface, multi-standard concepts, capable 
simulation platforms are necessary.  

II.  RELATED WORK 

During the last decade, a lot of powerful simulation 
tools for wired and wireless network topologies have 
been developed. With the focus on the requirements of 
modern devices like mobile phones, laptops or PDAs, 
simulation scenarios with a heterogeneous, dynamic node 
infrastructure are essential. An efficient analysis of the 
simulation results reduces the development costs and 
accordingly the time-to-market of new technologies.  

Classical simulation tools like GloMoSim - (Global 
Mobile Information Systems Simulation Library) [8] or 
SSFNet - (Scalable Simulation Framework) [9] are 
command-line-based. Accordingly, the realisation of 
specific application scenarios and the user interaction is 
difficult. For GloMoSim multiple, platform independent 
extensions for the visualisation of the simulation results 
exist. Furthermore, the simulator includes different 
movement models to support dynamic network 
topologies. In contrast to GloMoSim, SSFNet focuses on 
static application scenarios. An important feature of 
SSFNet is the possibility to parallelise the simulation. 
This speedup enables the analysis of a large scale 
network behaviour. Both toolkits are limited to a single 
communication interface per node.  

Other simulation tools, for example NCTUns - 
(National Chiao Tung University Network Simulator) 
[10] or the OMNeT++ framework [6], provide a well 
arranged graphical user interface. NCTUns is an 
integrated network and traffic simulation platform with a 
flexible simulation engine and very specific purposes for 
the inter-vehicle communication. The popular OMNeT++ 
framework provides detailed models for IEEE 802.11, 
Ethernet, Fiber Distributed Data Interface (FDDI) and 
Token Ring on the MAC protocol layer. Additional 
extensions like Castalia [11] and other dedicated mobility 
framework enhance the versatility. But neither NCTUns 
nor OMNeT++ provide the functionality for multiple 
radio interfaces or protocol stacks. 

In the context of parallelisation, OMNet++ provides 
basic features on the basis of MPI. The conversion of a 
given project to a distributed hardware environment 
requires a lot of modifications. Different research 
approaches, i.e. in [12], try to provide comfortable 
solutions. However, the features for a parallel simulation 
in OMNet++ are limited to a conservative, blocking event 
synchronisation. This clashes with the communication 
dominant aspects of network simulation tools. 

The most famous simulation framework is the Network 
Simulator (ns) - version 2 [13], which includes multiple 
realistic simulation models to analyse the behaviour of a 
given network topology. The original version focuses on 

classical, static application scenarios within small and 
medium scale networks [14]. 

To avoid these limitations, several extensions of ns2 
improve the functionality. In the research field for mobile 
Ad Hoc and sensor networks, we consider three capable 
projects. TeNS - The Enhanced Network Simulator [15] is 
an extended version of ns2, which enables a multiple 
interface support for mobile nodes. TeNS only supports 
the IEEE 802.11 MAC layer protocol for all interfaces. 
Simulations with TeNS are limited by the usage of a 
single radio technology. Application scenarios of 
multiple, concurrently working communication standards 
are not possible.  

An addition to the support of multiple wireless 
interfaces, the Module-based Wireless Node project (MW-
Node) [16] also allows coexistence of different 
communication technologies and routing protocols within 
one node. MW-Node maps one radio interface to one 
routing protocol and accordingly it handles each interface 
as a dedicated communication unit. There is no 
possibility to use an multi-standard, multi-interface 
routing protocol (e.g. EBCR [17]), which takes intelligent 
decisions about the choice of the optimal radio interface. 

ns2-MIRACLE [14] allows the coexistence of multiple 
communication modules within each layer of the protocol 
stack. The primary disadvantages of MIRACLE correlate 
with the fundamental characteristics of ns2. The usage is 
very complex and time-consuming. Furthermore, ns2 is 
not able to simulate large network topologies with more 
than 100 nodes efficiently [14].  

 
 

 
 

Figure 2.  Screenshot of SimANet - Simulation Platform for Ambient 
Networks 
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PDNS - Parallel/Distributed NS [18] provides an 
extension for ns2 to enable simulations in a parallel 
computing environment. Similar to OMNet++, PDNS 
uses a conservative (blocking based) approach for the 
synchronisation and accordingly the possible speedup is 
suboptimal. Furthermore, the integration in such a 
complex framework like ns2 constrains PDNS to several 
conceptional limitations. 

To provide reliable simulation results for a first order 
validation of new multi-standard communication 
concepts before moving to implementation on a specific 
hardware platform, an easy to use, modular simulation 
platform is necessary. Consequently, the primary 
objectives are versatility and practicality.  

III. SIMANET 

 
Figure 3.  Runtime-efficient object localisation in a two-dimensional 

area with an complexity of O(log n) (in expectation and 
w.h.p.): exemplary the representation of an optimised 
Compressed Quadtree data structure with seven objects: 
inner tree nodes (grey rectangles), localised objects (grey 
circles) and empty squares (white circles) 

 
Figure 4.  Randomised Skip Quadtree data structure including three 

double linked, compressed quadtrees. The link pointers of 
the several squares are represented by the dark grey arrows. 
The nodes will be copied from Q0 to Q1 and from Q1 to Q2 
with a probability of 0.5. Accordingly, in each quadtree 
representation, the number of nodes and the quadtree 
complexity is decreasing (represented by the light grey 
quadtree structure and the deleted, light grey nodes). 

With the focus on a scalable framework for 
heterogeneous, mobile Ad Hoc networks, we designed 
SimANet - Simulation Platform for Ambient Networking 
(Figure 2). Similar to related simulation tools like ns2-
MIRACLE or ns2-MW-Node, SimANet is able to handle 
multiple communication interfaces and different radio 
standards within one network node concurrently. Based 
on these capabilities, we are able to run behaviour 
simulations of radio standard spanning routing concepts 

and complex topology optimisation algorithms for large 
scale network topologies.  

A.  Features 
SimANet was designed to be as modular as possible to 

enable a simple and fast extension with additional models 
for power consumption, movement, communication 
complexity or barrier simulation. Due to the strict 
separation of simulator frontend and backend, different 
operational modes are possible. A default GUI mode 
provides multiple features for the interaction with the 
node topology and supports miscellaneous options for the 
import and export of data. For systems without a 
dedicated graphic mode, SimANet provides a powerful 
command line mode including a multifunctional scripting 
language, which enables an automation of miscellaneous 
simulation workflows. Additionally, a special 
environment enables application scenarios on parallel 
computing systems. 
 
Find(p): 
// Find the smallest square that covers  
// the area of the point p by walking  
// through the trees from right to left 
InterestingSqare tempIS := rightmostTree 
 
while tempIS != null 
 tempIS :=  
     FindInterestingSquare(tempIS, p) 
  

// save current pointer and jump to 
// the next left hand tree(Qk -> Qk-1) 
lastIS := tempIS 
tempIS := tempIS.left 

 
// check whether point is really linked  
// in the found interesting square 
if pointDirectlyLinked(lastIS, p) 
 Quadrant q := getQuadrant(lastIS, p) 
 return lastIS.quadrants[q] 
else 
 return <p not found> 
   

// returns the smallest square  
// that covers the area of p 
FindInterestingSquare(IS, p): 
Quadrant q := getQuadrant(IS, p) 
 
// calculated quadrant empty? 
if IS.quadrants[q] is empty 
 return IS 
 
// no further recursion possible? 
if IS.quadrants[q] is single point 
 return IS 
 
// recursion 
recSquare := FindInterestingSquare 
                     (IS.quadrants[q], p) 
if recSquare is not empty or single point 
 return recSquare 
else 
 return IS  

 
Source Code Listing 1: Localisation process based on the Skip  
 Quadtree data structure. (Pseudocode) 
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B.  Design 
The basic simulation engine has to manage all 

networking nodes within the working area, including 
neighbourhood localisation, communication and 
movement. Especially the localisation of nodes during a 
range search has to be done thousands of times in each 
simulation step. Therefore, an optimised runtime for an 
average and worst case localisation process is a primary 
objective of the central simulation engine. The used data 
structure has a significant influence on the performance 
regarding memory and operating speed.  

For SimANet, the Skip Quadtree [19] was chosen. It is 
an improvement of the common compressed geometric 
quadtree (Figure 3), whose worst case depth is O(n) [19], 
whereas n represents the number of network nodes. Thus, 
node localisations and range searches, which are needed 
to find neighbour nodes, would be inefficient. 

 

 
 

Figure 5.  Distributed simulation scenario with six computing nodes: 
dependent on the current node distribution, the simulation 
engine is able to reallocate the borders of the several sectors 
during the runtime. This allows an optimised usage of the 
available hardware resources and reduces the network load 
within the cluster. Thereby, the reallocation process is 
critical to avoid polygons like in the case 2a. A structured 
algorithm realises the cases 2b and 3. 

The Skip Quadtree solves this problem by managing 
several compressed quadtrees in a double linked list, 
represented by Q0  ... Qk-1. Each tree has a corresponding 
point set, S0 ... Sk-1. S0 is equal to the initial input set and 
includes all point in the simulation area. The additional 
quadtrees represent subsets of the input set S0. Si+1 is 
derived from Si. Thereby, each point from Si will be 
inserted into the set Si+1 with a predefined probability 
(default value 0.5). The value k represents the number of 
created quadtrees, normally log n. Congruent inner nodes 
in adjacent trees are double linked. Figure 4 shows an 
exemplary skip quadtree. 

The localisation process of a chosen object starts with 
a search within the rightmost tree. If the object isn't 
found, the algorithm steps back to the smallest square that 
covers the area of the object (i.e. the last visited inner 
node) and uses its link to the equal-sized and -positioned 
square in the left neighbour tree. After that the algorithm 
repeats this procedure starting from there. The processes 
for inserting and deleting an object are similar. Source 
code listing 1 represents the localisation process in 
pseudocode. 

Interestingly, the number of searching steps per tree is 
constant w.h.p., as proven in [19]. Accordingly, the total 
number of steps per query is O(log n). 

Another feature of the Skip Quadtree, which is very 
important in relation to the SimANet platform, is the 
ability to answer queries for a range search within a 
defined radius around a chosen node in O(log n). Further 
detailed information regarding these algorithms are 
presented in [19]. 

C.  Parallelisation 
As already mentioned, one goal of SimANet is the 

ability to handle huge simulation scenarios. To improve 
the simulation speed and the maximum number of 
simultaneous nodes, the simulator backend was designed 
to support a parallel computing environment using MPI 
(Message Passing Interface). Thereby, an efficient 
parallelisation seemed to be difficult, because the 
simulation of networks is communication dominant. In 
SimANet, we use a geometric partitioning algorithm, 
where each processor is simulating its own area in shape 
of a rectangle. Simulated nodes near the edges of these 
sectors are critical, because the transmission ranges of the 
radio modules cross the borders. Accordingly, the 
simulation speed slows down significantly. Another 
problem concerns the time synchronisation of the 
distributed simulator instances. The possibility to ensure 
isochronous simulation times would produce a heavy 
network and CPU overhead. Consequently, we wouldn't 
be able to create optimised simulation scenarios with an 
adequate speedup in a parallel computing environment. 

The idea of simulating into the future and going back 
in time if necessary (as proposed in [20]) turned out to be 
inadequate due to the amount of simulated network traffic 
at the sector borders. The states of the simulator instances 
are changing too fast to achieve a sufficient speedup. 

In order to minimise network communication and 
synchronisation overhead, several approaches were 
implemented. The most important one is a model of 
tolerated time inaccuracy, using a sliding time window 
per node. Typically, sliding window algorithms are used 
for the flow control during a data transmission within a 
distributed communication network. Thereby, the 
algorithms allow a continuous data flow between an 
asynchronous transmitter and receiver. We adopt this 
concept for the simulation of multiple network nodes in a 
distributed computing environment. 

The key idea is to allow a specified maximum drift 
between the times of neighbour computing nodes, defined 
as td. To exploit the physical network topology, each CPU 
has to communicate with its directly attainable 
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neighbourhood. Thereby, the several computing units 
exchange their current time stamps to calculate an upper 
limit of the simulation time, forming a sliding time 
window. If this limit is reached, the simulation has to be 
suspended. In an optimal case, this will never happen, 
because new requests are sent to the neighbour CPUs 
after simulating the half of the current time window, 
which will enhance the time window.  

 
Init:  long timeLimit            := td 
       list listResponseTimes    := <empty> 
     int  countResponsesNeeded := 0 
 

       TIME_HALF := td / 2 
       TIME_UP   := td 
          
If TIME_HALF is reached: 
  countResponsesNeeded := #neighbour CPUs 
  listResponseTimes.clear() 
  for each neighbour CPU p do 
     Network.Send(p, TIME_REQUEST,  
             currentTime() + td) 

 
If TIME_UP is reached: 
  // if not all necessary time responses  
  // have been received, pause simulation 
  if countResponsesNeeded != 0 
     pauseSimulation() 
 
// neighbour CPU asks for current time 
If incoming "TIME_REQUEST" Message: 
if timeLimit >= msg.requestedTime 

    // send time response immediately 
    Network.Send(msg.source, TIME_RESPONSE, 

          currentTime() + td) 
  else 
    // delay time response 
    Create delayed Transmit Event when the  
    Condition is reached 
 
// time response received from a neighbour 
If incoming "TIME_RESPONSE" Message: 
  countResponsesNeeded := 
                    countResponsesNeeded -1 
  listResponseTimes.add(msg.time) 
   
  if countResponsesNeeded = 0 
    // all queried neighbour processor  
    // have responded -->  
    // update the own time limit 
    timeLimit =  
             listResponseTimes.getMinimum() 
     
  // update triggers for time events 
  TIME_HALF := currentTime() + (timeLimit  

                 - currentTime()) / 2 
    TIME_UP   := timeLimit 
 

    listResponseTimes.clear() 
    if simulation is paused 
       continueSimulation() 
 
 
Source Code Listing 2: Adapted sliding time window algorithm,  which 

enables a continuous simulation process in a 
distributed computing environment. 
(Pseudocode) 

 
The higher the value of td, the higher the inaccuracy, 

but also the higher the parallelisation efficiency. By now, 
an optimal td has to be determined manually for each 
simulation scenario. Further work has to be done on 
dynamic, optimal control of td. The pseudocode 
representation of the dynamic sliding time window 
process is shown in source code listing 2. 

 
while(true) 
// equalisation within one row 
if right neighbor rn exists 
  l1 = getLoad() 
  l2 = rn.getLoad() 
  if abs(1 - l1/l2) > THRESHOLD_X 
 x1 = getMiddlePosition().x 
 x2 = rn.getMiddlePosition().x 
 dx = x2 - x1 

 moveRightBorder(x1 + dx * l2  / 
                      (l1 + l2)) 
 commitBordersGlobally() 
 
// equalisation among rows - only row  
// masters (one per row) may execute this 
if rowmaster 
  if bottom neighbor bn exists 
 l1 = row.getLoad() 
 l2 = bn.row.getLoad() 
 if abs(1 - l1/l2)> THRESHOLD_Y 
 y1 = getMiddlePosition().y 
 y2 = rn.getMiddlePosition().y 
 dy = y2 - y1 
 moveBottomBorder(y1 + dy * l2  / 
      (l1 + l2)) 
 commitBordersGlobally() 
 
// execute the whole loop regularly 
sleep for tsleep milliseconds 

 
Source Code Listing 3:  Dynamic reallocation algorithm for distributed 

simulations in a parallel computing environ-
ment. (Pseudocode) 

 
Another improvement regarding parallelisation is a 

dynamical resize and reallocation of the simulation areas 
to the available hardware resources depending on the 
computing load. This has to be done in a structured way 
in order to keep the topology simple and the topology 
management overhead low. Resizing a single rectangle in 
both dimensions in a grid is complex and results in 
arbitrary shapes of the former neighbour rectangles (see 
Figure 5 – case 2a). 

Figure 5 illustrates an exemplary scenario. The 
resizing processes in the vertical and horizontal 
dimensions are done independently. In a first step, the 
grid of nodes can be treated as rows, stacked onto each 
other (Figure 5 – case 2b). Each row contains several 
rectangles with computing units, located next to each 
other. The load balancing algorithm works as follows: If 
the load difference between two neighbour areas exceeds 
a certain percentage, the border between these sectors is 
moved accordingly. This process is repeated until the 
load is balanced among all sectors in the row. Note that 
the rectangles are resized only in the horizontal direction; 
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the top and bottom edges are not modified. In the second 
step, load balancing is done among the several rows, 
again moving the borders between neighbours, if the load 
difference between the rows is too high (Figure 5 – case 
3). But this time, the borders between the rows are moved 
vertically. The left and right edges of rectangles are not 
changed. Using this approach, the rectangle shape of each 
simulation area is ensured. The source code listing 3 
illustrates the dynamic reallocation process. 

IV.  SIMULATION RESULTS 

For testing the performance of SimANet, all simulation 
scenarios were launched on the Chemnitz High 
Performance Linux Cluster (CHiC), which provides a 
highly parallel computing infrastructure with more than 
500 computing nodes and an InfiniBand network 
interconnection. Furthermore, for the comparison to 
related network simulation tools, several test cycles are 
performed on a conventional desktop PC with 2 GB of 
RAM and a single core Pentium 4 CPU. 

A.  Performance I – Simulation engine 
First simulations measure the performance of three 

known data structures for the object localisation in an n-
dimensional area. As already mentioned, this data 
structures represent the core of each simulation engine. 
We compare the compressed quadtree, the proposed skip 
quadtree and a trivial list implementation with object 
identifier and X/Y coordinates. The test cases include 
three different application scenarios. In each scenario, the 
runtime for 3 million random node localisations was 
measured. Due to the different parameters of the several 
test cases, the simulation results in figure 6 illustrate 
relative values. Thereby, the runtime of the proposed skip 
quadtree represents the 100% reference value. 

 

 
 

Figure 6.  Performance analysis I: three different data structures for the 
object localisation within the simulation engine - Trivial 
object list with identifier and X/Y coordinates; Compressed 
Quadtree; Skip Quadtree. The measurements of the Skip 
Quadtree represent the reference value of the simulation 
time. 

Scenario I measures a worst case scenario for common 
compressed quadtree data structures. Thereby, a small 
scale network topology with only 62 nodes is arranged in 

a line, where the distance from one node to the next one 
doubles each time. Accordingly, the compressed quadtree 
reaches its worst case depth of n. As expected in this 
scenario, the trivial list implementation is significant 
faster than both quadtree data structure, which results 
from the small number of network nodes. The second 
scenario combines the topology of scenario I with 5000 
additional, random distributed nodes. Due to the 
increased number of available nodes, the performance of 
the list implementation is absolutely weak. The 
compressed quadtree needs more than 300% of time in 
comparison to the skip quadtree approach. The scenario 
III represents a random distribution of 500 nodes with a 
defined hotspot, where the node density is very high. In 
this case the difference between compressed quadtree and 
skip quadtree is minimal.  

In conclusion, the skip quadtree approach is better 
within node topologies where the depth of a representing 
compressed quadtree is >O(log n). The trivial list 
implementation is not feasible and inefficient for a large 
number of network nodes. 

B.  Performance II – Parallelisation 
In figure 7 we present some performance 

measurements using parallelisation. Simulation scenarios 
with 1000 to 100000 randomly distributed network nodes 
were run on 1, 2, 4, 8 and 16 processors using the CHiC. 
As expected, only very large scenarios could be 
parallelised efficiently, which results from the 
communication bottleneck between neighbour 
sectors/processors. The results of small simulation 
scenarios, for example 1000 network nodes on two 
processors, offer a moderate speedup of 1.18. Further 
tests on four or more processors produce a speedup even 
below 1. 

 
 

Figure 7.  Performance analysis II: several, distributed simulation 
scenarios on the CHiC. The simulation of 50000 nodes on 
four processors almost reaches the theoretical speedup limit. 
Even larger network sizes provide additional speedup. 
Without using the sliding time window algorithm, the 
parallelisation didn't result in measurable speedup at all. 

Parallelisation of larger networks performed much 
better. A scenario of 5000 nodes gained a speedup of 3.16 
on four computing nodes; a size of 50000 reached a 
speedup of 3.81 on four computers. Due to the necessary 
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communication effort, the usage of more processors does 
not improve the speedup significantly. 

Considering the communication aspect, we expect 
further improvements by optimising the communication 
library. By now, we use jMPI [21], a native Java MPI 
implementation using TCP. An implementation like 
mpiJava, which uses Java Native Interfaces and UDP, 
promises a significant performance boost. Unfortunately, 
this requires some special adjustments on the computing 
cluster. 

Another bottleneck in a parallel computing 
environment concerns the dumping of simulation 
snapshots into an output file. The current implementation 
uses a master-slave algorithm, where a master computer 
collects serialised data from the slave computing nodes 
and writes it into a file. To avoid this problem, SimANet 
can use the centralised and diskless storage architecture 
of the CHiC. A possible solution manages one single 
dump file, which is located in this storage network. 
Thereby, each computing node is able to append its own 
data into this file. To ensure the simulation continuation 
during the dumping process, the caching of temporary 
data is necessary. 

Neither OMNet++ nor ns2 achieve such a performance 
regarding parallel simulation scenarios. Both frameworks 
only provide conservative, blocking approaches to 
synchronise the several computing nodes. Accordingly, 
this prevents a suitable speedup. 

C.  Memory Usage 

 
 

Figure 8.  Memory usage of ns2 [7], OMNet++ and SimANet, 
dependent on different simulation scenarios (GUI enabled). 
With SimANet less than one kB is needed per simulated 
node. The linear memory increase per node in large scale 
networks results from the efficient neighbourhood 
management. 

SimANet was designed to be as lightweight as 
possible. Each simulated network node uses only about 
0.85 kB of memory in average. This value highly depends 
on the neighbourhood management of each node. In the 
current implementation, each simulated node maintains a 
list of neighbour nodes, which are used for 
communication. Thus, the memory usage per node may 
vary around ±200 bytes, depending on the network 
density. As figure 8 shows, the additional memory used 
by the skip quadtree data structure is minimal, because 

the node payload is stored only once, of course. The GUI, 
implemented in Java Swing, uses 12 to 16 MB of 
memory; the simulator backend (without GUI) needs less 
than 1 MB. This memory-saving architecture enables us 
to simulate large scale Ad Hoc networks also on 
moderate computer hardware.  

In comparison to simulation tools like ns2 or 
OMNet++, which need >>100 MB of memory to 
simulate 1000 nodes, SimANet is substantially more 
efficient. Furthermore, the initialisation time for creating 
a 1000 node simulation scenario with OMnet++ needs 
more than 30 minutes on a Pentium 4 workstation. 

V.  CONCLUSION 

The simulation of realistic network scenarios like in 
[22] verifies the restricted capabilities of OMNet++ 
regarding large scale network topologies. In our opinion, 
the exorbitant memory usage, the huge initialisation time 
and the missing features for a parallelisation make the 
simulation tool not feasible for large scale simulation 
scenarios. As already mentioned in [7] the limitation of 
the ns2 framework is similar to OMNet++. In the original 
version, simulation scenarios with 100+ nodes are not 
feasible. Using the proposed improvements and 
modifications, the limit will be enhanced to 3000 nodes. 
Anyway, this value represents the upper bound of the ns2 
software. At present, the number of available extensions 
and simulation models for ns2 or OMNet++ are definitely 
higher and consequently, these frameworks support more 
specific application scenarios. The conceptional 
disadvantages still remain.  

In contrast to that, the presented SimANet platform 
enables the simulation and visualisation of 10000+ nodes 
on a standardised single CPU computer system. Due to 
the usage of Java, the development of additional, 
application specific extensions is simple and very fast. 
Features for a parallelised operation mode allow an 
additional improvement of the simulation performance. 
Thereby, first simulation results demonstrate an excellent 
speedup. Further comparisons with related simulation 
frameworks like ns2 or OMnet++ verify the advantages 
of SimANet regarding first order validations of new 
communication concepts. 
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