
– SimANet –
A Large Scalable, Distributed Simulation

Framework for Ambient Networks

Matthias Vodel

Chemnitz University of Technology / Dept. Computer Science, Chemnitz, Germany
Email: vodel@cs.tu-chemnitz.de

Matthias Sauppe and Mirko Caspar and Wolfram Hardt

Chemnitz University of Technology / Dept. Computer Science, Chemnitz, Germany
Email: {saum | mica | hardt }@cs.tu-chemnitz.de

Abstract— In this paper, we present a new simulation
platform for complex, radio standard spanning mobile Ad
Hoc networks. SimANet - Simulation Platform for Ambient
Networks - allows the coexistence of multiple radio modules
with different communication technologies and protocol
stacks within one node, which can be used concurrently. By
the usage of efficient data structures like Randomised Skip
Quadtrees, SimANet allows the analysis and evaluation of
large scale, heterogeneous network topologies in both static
and dynamic simulation scenarios based on different
movement models. The software design enables a modular
extension with additional models for power consumption,
communication complexity or barrier simulation.
Furthermore, an integrated MPI library provides the
possibility to run distributed test cycles on parallel
computing systems. Thereby, special sliding time window
algorithms avoid the typical disadvantage of a slow network
interconnection structure and allow a dynamic load
balancing on the available hardware resources during the
runtime. With the main focus on the evaluation of abstract
multi-interface, multi-standard communication concepts, we
compare the functionality and the complexity of SimANet
with well-known simulation tools like ns2-MIRACLE, ns2-
NW-Node, OMNet++ and TeNS. Simulation results for
different application scenarios estimate features like
versatility, practicality or usability in large scale network
topologies with up to 105 nodes.

Index Terms — simulation framework, parallelisation,
wireless communication standards, mobile Ad Hoc net-
works, multi-standard, multi-interface, ambient networking

I. INTRODUCTION

The number of wireless communication technologies is
steadily rising. Due to different application areas of
wireless communication networks within the private and
industrial sector, a multiplicity of radio standards has
been developed [1]. Thereby, each communication
standard has specific, application optimised
characteristics concerning power consumption, data
transfer rate, frequency band or transmission range. Due
to physical and functional differences within the protocol
stacks of the several communication standards, an

interoperability between these technologies is not
possible.

Looking forward to the next generation of mobile
technologies, one essential ability will be the integration
of different wireless communication standards. To avoid
the incompatibilities between available technologies,
different research approaches, like Software Defined
Radio (SDR) [2], Cognitive Radio [3] or Ambient
Network [4] (see Figure 1), provide interesting solutions.
In [5], another concept for the radio standard spanning
communication in mobile Ad Hoc Networks is
introduced, which offers the possibility to connect
standardised radio modules on a hardware near layer.
Regarding to these current research projects, mobile Ad
Hoc networks enable large-scale network topologies in a
completely new dimension.

Figure 1. Ambient networking: Integration of several wireless IEEE

802.x communication standards - Next generation wireless
networks use a heterogeneous, multi-standard infrastructure
for an optimised communication

To handle the complex development of future
communication technologies, powerful simulation tools
are used to analyse the network behaviour in realistic

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 11

© 2008 ACADEMY PUBLISHER

application scenarios. Thereby, the most currently
available simulation frameworks for mobile Ad Hoc and
sensor networks deal with one single radio standard and
focus small- or medium-scaled networks [6][7].

To evaluate the performance and the advantages of
multi-interface, multi-standard concepts, capable
simulation platforms are necessary.

II. RELATED WORK

During the last decade, a lot of powerful simulation
tools for wired and wireless network topologies have
been developed. With the focus on the requirements of
modern devices like mobile phones, laptops or PDAs,
simulation scenarios with a heterogeneous, dynamic node
infrastructure are essential. An efficient analysis of the
simulation results reduces the development costs and
accordingly the time-to-market of new technologies.

Classical simulation tools like GloMoSim - (Global
Mobile Information Systems Simulation Library) [8] or
SSFNet - (Scalable Simulation Framework) [9] are
command-line-based. Accordingly, the realisation of
specific application scenarios and the user interaction is
difficult. For GloMoSim multiple, platform independent
extensions for the visualisation of the simulation results
exist. Furthermore, the simulator includes different
movement models to support dynamic network
topologies. In contrast to GloMoSim, SSFNet focuses on
static application scenarios. An important feature of
SSFNet is the possibility to parallelise the simulation.
This speedup enables the analysis of a large scale
network behaviour. Both toolkits are limited to a single
communication interface per node.

Other simulation tools, for example NCTUns -
(National Chiao Tung University Network Simulator)
[10] or the OMNeT++ framework [6], provide a well
arranged graphical user interface. NCTUns is an
integrated network and traffic simulation platform with a
flexible simulation engine and very specific purposes for
the inter-vehicle communication. The popular OMNeT++
framework provides detailed models for IEEE 802.11,
Ethernet, Fiber Distributed Data Interface (FDDI) and
Token Ring on the MAC protocol layer. Additional
extensions like Castalia [11] and other dedicated mobility
framework enhance the versatility. But neither NCTUns
nor OMNeT++ provide the functionality for multiple
radio interfaces or protocol stacks.

In the context of parallelisation, OMNet++ provides
basic features on the basis of MPI. The conversion of a
given project to a distributed hardware environment
requires a lot of modifications. Different research
approaches, i.e. in [12], try to provide comfortable
solutions. However, the features for a parallel simulation
in OMNet++ are limited to a conservative, blocking event
synchronisation. This clashes with the communication
dominant aspects of network simulation tools.

The most famous simulation framework is the Network
Simulator (ns) - version 2 [13], which includes multiple
realistic simulation models to analyse the behaviour of a
given network topology. The original version focuses on

classical, static application scenarios within small and
medium scale networks [14].

To avoid these limitations, several extensions of ns2
improve the functionality. In the research field for mobile
Ad Hoc and sensor networks, we consider three capable
projects. TeNS - The Enhanced Network Simulator [15] is
an extended version of ns2, which enables a multiple
interface support for mobile nodes. TeNS only supports
the IEEE 802.11 MAC layer protocol for all interfaces.
Simulations with TeNS are limited by the usage of a
single radio technology. Application scenarios of
multiple, concurrently working communication standards
are not possible.

An addition to the support of multiple wireless
interfaces, the Module-based Wireless Node project (MW-
Node) [16] also allows coexistence of different
communication technologies and routing protocols within
one node. MW-Node maps one radio interface to one
routing protocol and accordingly it handles each interface
as a dedicated communication unit. There is no
possibility to use an multi-standard, multi-interface
routing protocol (e.g. EBCR [17]), which takes intelligent
decisions about the choice of the optimal radio interface.

ns2-MIRACLE [14] allows the coexistence of multiple
communication modules within each layer of the protocol
stack. The primary disadvantages of MIRACLE correlate
with the fundamental characteristics of ns2. The usage is
very complex and time-consuming. Furthermore, ns2 is
not able to simulate large network topologies with more
than 100 nodes efficiently [14].

Figure 2. Screenshot of SimANet - Simulation Platform for Ambient
Networks

12 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

PDNS - Parallel/Distributed NS [18] provides an
extension for ns2 to enable simulations in a parallel
computing environment. Similar to OMNet++, PDNS
uses a conservative (blocking based) approach for the
synchronisation and accordingly the possible speedup is
suboptimal. Furthermore, the integration in such a
complex framework like ns2 constrains PDNS to several
conceptional limitations.

To provide reliable simulation results for a first order
validation of new multi-standard communication
concepts before moving to implementation on a specific
hardware platform, an easy to use, modular simulation
platform is necessary. Consequently, the primary
objectives are versatility and practicality.

III. SIMANET

Figure 3. Runtime-efficient object localisation in a two-dimensional

area with an complexity of O(log n) (in expectation and
w.h.p.): exemplary the representation of an optimised
Compressed Quadtree data structure with seven objects:
inner tree nodes (grey rectangles), localised objects (grey
circles) and empty squares (white circles)

Figure 4. Randomised Skip Quadtree data structure including three

double linked, compressed quadtrees. The link pointers of
the several squares are represented by the dark grey arrows.
The nodes will be copied from Q0 to Q1 and from Q1 to Q2
with a probability of 0.5. Accordingly, in each quadtree
representation, the number of nodes and the quadtree
complexity is decreasing (represented by the light grey
quadtree structure and the deleted, light grey nodes).

With the focus on a scalable framework for
heterogeneous, mobile Ad Hoc networks, we designed
SimANet - Simulation Platform for Ambient Networking
(Figure 2). Similar to related simulation tools like ns2-
MIRACLE or ns2-MW-Node, SimANet is able to handle
multiple communication interfaces and different radio
standards within one network node concurrently. Based
on these capabilities, we are able to run behaviour
simulations of radio standard spanning routing concepts

and complex topology optimisation algorithms for large
scale network topologies.

A. Features
SimANet was designed to be as modular as possible to

enable a simple and fast extension with additional models
for power consumption, movement, communication
complexity or barrier simulation. Due to the strict
separation of simulator frontend and backend, different
operational modes are possible. A default GUI mode
provides multiple features for the interaction with the
node topology and supports miscellaneous options for the
import and export of data. For systems without a
dedicated graphic mode, SimANet provides a powerful
command line mode including a multifunctional scripting
language, which enables an automation of miscellaneous
simulation workflows. Additionally, a special
environment enables application scenarios on parallel
computing systems.

Find(p):
// Find the smallest square that covers
// the area of the point p by walking
// through the trees from right to left
InterestingSqare tempIS := rightmostTree

while tempIS != null
 tempIS :=
 FindInterestingSquare(tempIS, p)

// save current pointer and jump to
// the next left hand tree(Qk -> Qk-1)
lastIS := tempIS
tempIS := tempIS.left

// check whether point is really linked
// in the found interesting square
if pointDirectlyLinked(lastIS, p)
 Quadrant q := getQuadrant(lastIS, p)
 return lastIS.quadrants[q]
else
 return <p not found>

// returns the smallest square
// that covers the area of p
FindInterestingSquare(IS, p):
Quadrant q := getQuadrant(IS, p)

// calculated quadrant empty?
if IS.quadrants[q] is empty
 return IS

// no further recursion possible?
if IS.quadrants[q] is single point
 return IS

// recursion
recSquare := FindInterestingSquare
 (IS.quadrants[q], p)
if recSquare is not empty or single point
 return recSquare
else
 return IS

Source Code Listing 1: Localisation process based on the Skip
 Quadtree data structure. (Pseudocode)

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 13

© 2008 ACADEMY PUBLISHER

B. Design
The basic simulation engine has to manage all

networking nodes within the working area, including
neighbourhood localisation, communication and
movement. Especially the localisation of nodes during a
range search has to be done thousands of times in each
simulation step. Therefore, an optimised runtime for an
average and worst case localisation process is a primary
objective of the central simulation engine. The used data
structure has a significant influence on the performance
regarding memory and operating speed.

For SimANet, the Skip Quadtree [19] was chosen. It is
an improvement of the common compressed geometric
quadtree (Figure 3), whose worst case depth is O(n) [19],
whereas n represents the number of network nodes. Thus,
node localisations and range searches, which are needed
to find neighbour nodes, would be inefficient.

Figure 5. Distributed simulation scenario with six computing nodes:
dependent on the current node distribution, the simulation
engine is able to reallocate the borders of the several sectors
during the runtime. This allows an optimised usage of the
available hardware resources and reduces the network load
within the cluster. Thereby, the reallocation process is
critical to avoid polygons like in the case 2a. A structured
algorithm realises the cases 2b and 3.

The Skip Quadtree solves this problem by managing
several compressed quadtrees in a double linked list,
represented by Q0 ... Qk-1. Each tree has a corresponding
point set, S0 ... Sk-1. S0 is equal to the initial input set and
includes all point in the simulation area. The additional
quadtrees represent subsets of the input set S0. Si+1 is
derived from Si. Thereby, each point from Si will be
inserted into the set Si+1 with a predefined probability
(default value 0.5). The value k represents the number of
created quadtrees, normally log n. Congruent inner nodes
in adjacent trees are double linked. Figure 4 shows an
exemplary skip quadtree.

The localisation process of a chosen object starts with
a search within the rightmost tree. If the object isn't
found, the algorithm steps back to the smallest square that
covers the area of the object (i.e. the last visited inner
node) and uses its link to the equal-sized and -positioned
square in the left neighbour tree. After that the algorithm
repeats this procedure starting from there. The processes
for inserting and deleting an object are similar. Source
code listing 1 represents the localisation process in
pseudocode.

Interestingly, the number of searching steps per tree is
constant w.h.p., as proven in [19]. Accordingly, the total
number of steps per query is O(log n).

Another feature of the Skip Quadtree, which is very
important in relation to the SimANet platform, is the
ability to answer queries for a range search within a
defined radius around a chosen node in O(log n). Further
detailed information regarding these algorithms are
presented in [19].

C. Parallelisation
As already mentioned, one goal of SimANet is the

ability to handle huge simulation scenarios. To improve
the simulation speed and the maximum number of
simultaneous nodes, the simulator backend was designed
to support a parallel computing environment using MPI
(Message Passing Interface). Thereby, an efficient
parallelisation seemed to be difficult, because the
simulation of networks is communication dominant. In
SimANet, we use a geometric partitioning algorithm,
where each processor is simulating its own area in shape
of a rectangle. Simulated nodes near the edges of these
sectors are critical, because the transmission ranges of the
radio modules cross the borders. Accordingly, the
simulation speed slows down significantly. Another
problem concerns the time synchronisation of the
distributed simulator instances. The possibility to ensure
isochronous simulation times would produce a heavy
network and CPU overhead. Consequently, we wouldn't
be able to create optimised simulation scenarios with an
adequate speedup in a parallel computing environment.

The idea of simulating into the future and going back
in time if necessary (as proposed in [20]) turned out to be
inadequate due to the amount of simulated network traffic
at the sector borders. The states of the simulator instances
are changing too fast to achieve a sufficient speedup.

In order to minimise network communication and
synchronisation overhead, several approaches were
implemented. The most important one is a model of
tolerated time inaccuracy, using a sliding time window
per node. Typically, sliding window algorithms are used
for the flow control during a data transmission within a
distributed communication network. Thereby, the
algorithms allow a continuous data flow between an
asynchronous transmitter and receiver. We adopt this
concept for the simulation of multiple network nodes in a
distributed computing environment.

The key idea is to allow a specified maximum drift
between the times of neighbour computing nodes, defined
as td. To exploit the physical network topology, each CPU
has to communicate with its directly attainable

14 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

neighbourhood. Thereby, the several computing units
exchange their current time stamps to calculate an upper
limit of the simulation time, forming a sliding time
window. If this limit is reached, the simulation has to be
suspended. In an optimal case, this will never happen,
because new requests are sent to the neighbour CPUs
after simulating the half of the current time window,
which will enhance the time window.

Init: long timeLimit := td
 list listResponseTimes := <empty>
 int countResponsesNeeded := 0

 TIME_HALF := td / 2
 TIME_UP := td

If TIME_HALF is reached:
 countResponsesNeeded := #neighbour CPUs
 listResponseTimes.clear()
 for each neighbour CPU p do
 Network.Send(p, TIME_REQUEST,
 currentTime() + td)

If TIME_UP is reached:
 // if not all necessary time responses
 // have been received, pause simulation
 if countResponsesNeeded != 0
 pauseSimulation()

// neighbour CPU asks for current time
If incoming "TIME_REQUEST" Message:
if timeLimit >= msg.requestedTime

 // send time response immediately
 Network.Send(msg.source, TIME_RESPONSE,

 currentTime() + td)
 else
 // delay time response
 Create delayed Transmit Event when the
 Condition is reached

// time response received from a neighbour
If incoming "TIME_RESPONSE" Message:
 countResponsesNeeded :=
 countResponsesNeeded -1
 listResponseTimes.add(msg.time)

 if countResponsesNeeded = 0
 // all queried neighbour processor
 // have responded -->
 // update the own time limit
 timeLimit =
 listResponseTimes.getMinimum()

 // update triggers for time events
 TIME_HALF := currentTime() + (timeLimit

 - currentTime()) / 2
 TIME_UP := timeLimit

 listResponseTimes.clear()
 if simulation is paused
 continueSimulation()

Source Code Listing 2: Adapted sliding time window algorithm, which

enables a continuous simulation process in a
distributed computing environment.
(Pseudocode)

The higher the value of td, the higher the inaccuracy,

but also the higher the parallelisation efficiency. By now,
an optimal td has to be determined manually for each
simulation scenario. Further work has to be done on
dynamic, optimal control of td. The pseudocode
representation of the dynamic sliding time window
process is shown in source code listing 2.

while(true)
// equalisation within one row
if right neighbor rn exists
 l1 = getLoad()
 l2 = rn.getLoad()
 if abs(1 - l1/l2) > THRESHOLD_X
 x1 = getMiddlePosition().x
 x2 = rn.getMiddlePosition().x
 dx = x2 - x1

 moveRightBorder(x1 + dx * l2 /
 (l1 + l2))
 commitBordersGlobally()

// equalisation among rows - only row
// masters (one per row) may execute this
if rowmaster
 if bottom neighbor bn exists
 l1 = row.getLoad()
 l2 = bn.row.getLoad()
 if abs(1 - l1/l2)> THRESHOLD_Y
 y1 = getMiddlePosition().y
 y2 = rn.getMiddlePosition().y
 dy = y2 - y1
 moveBottomBorder(y1 + dy * l2 /
 (l1 + l2))
 commitBordersGlobally()

// execute the whole loop regularly
sleep for tsleep milliseconds

Source Code Listing 3: Dynamic reallocation algorithm for distributed

simulations in a parallel computing environ-
ment. (Pseudocode)

Another improvement regarding parallelisation is a

dynamical resize and reallocation of the simulation areas
to the available hardware resources depending on the
computing load. This has to be done in a structured way
in order to keep the topology simple and the topology
management overhead low. Resizing a single rectangle in
both dimensions in a grid is complex and results in
arbitrary shapes of the former neighbour rectangles (see
Figure 5 – case 2a).

Figure 5 illustrates an exemplary scenario. The
resizing processes in the vertical and horizontal
dimensions are done independently. In a first step, the
grid of nodes can be treated as rows, stacked onto each
other (Figure 5 – case 2b). Each row contains several
rectangles with computing units, located next to each
other. The load balancing algorithm works as follows: If
the load difference between two neighbour areas exceeds
a certain percentage, the border between these sectors is
moved accordingly. This process is repeated until the
load is balanced among all sectors in the row. Note that
the rectangles are resized only in the horizontal direction;

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 15

© 2008 ACADEMY PUBLISHER

the top and bottom edges are not modified. In the second
step, load balancing is done among the several rows,
again moving the borders between neighbours, if the load
difference between the rows is too high (Figure 5 – case
3). But this time, the borders between the rows are moved
vertically. The left and right edges of rectangles are not
changed. Using this approach, the rectangle shape of each
simulation area is ensured. The source code listing 3
illustrates the dynamic reallocation process.

IV. SIMULATION RESULTS

For testing the performance of SimANet, all simulation
scenarios were launched on the Chemnitz High
Performance Linux Cluster (CHiC), which provides a
highly parallel computing infrastructure with more than
500 computing nodes and an InfiniBand network
interconnection. Furthermore, for the comparison to
related network simulation tools, several test cycles are
performed on a conventional desktop PC with 2 GB of
RAM and a single core Pentium 4 CPU.

A. Performance I – Simulation engine
First simulations measure the performance of three

known data structures for the object localisation in an n-
dimensional area. As already mentioned, this data
structures represent the core of each simulation engine.
We compare the compressed quadtree, the proposed skip
quadtree and a trivial list implementation with object
identifier and X/Y coordinates. The test cases include
three different application scenarios. In each scenario, the
runtime for 3 million random node localisations was
measured. Due to the different parameters of the several
test cases, the simulation results in figure 6 illustrate
relative values. Thereby, the runtime of the proposed skip
quadtree represents the 100% reference value.

Figure 6. Performance analysis I: three different data structures for the
object localisation within the simulation engine - Trivial
object list with identifier and X/Y coordinates; Compressed
Quadtree; Skip Quadtree. The measurements of the Skip
Quadtree represent the reference value of the simulation
time.

Scenario I measures a worst case scenario for common
compressed quadtree data structures. Thereby, a small
scale network topology with only 62 nodes is arranged in

a line, where the distance from one node to the next one
doubles each time. Accordingly, the compressed quadtree
reaches its worst case depth of n. As expected in this
scenario, the trivial list implementation is significant
faster than both quadtree data structure, which results
from the small number of network nodes. The second
scenario combines the topology of scenario I with 5000
additional, random distributed nodes. Due to the
increased number of available nodes, the performance of
the list implementation is absolutely weak. The
compressed quadtree needs more than 300% of time in
comparison to the skip quadtree approach. The scenario
III represents a random distribution of 500 nodes with a
defined hotspot, where the node density is very high. In
this case the difference between compressed quadtree and
skip quadtree is minimal.

In conclusion, the skip quadtree approach is better
within node topologies where the depth of a representing
compressed quadtree is >O(log n). The trivial list
implementation is not feasible and inefficient for a large
number of network nodes.

B. Performance II – Parallelisation
In figure 7 we present some performance

measurements using parallelisation. Simulation scenarios
with 1000 to 100000 randomly distributed network nodes
were run on 1, 2, 4, 8 and 16 processors using the CHiC.
As expected, only very large scenarios could be
parallelised efficiently, which results from the
communication bottleneck between neighbour
sectors/processors. The results of small simulation
scenarios, for example 1000 network nodes on two
processors, offer a moderate speedup of 1.18. Further
tests on four or more processors produce a speedup even
below 1.

Figure 7. Performance analysis II: several, distributed simulation
scenarios on the CHiC. The simulation of 50000 nodes on
four processors almost reaches the theoretical speedup limit.
Even larger network sizes provide additional speedup.
Without using the sliding time window algorithm, the
parallelisation didn't result in measurable speedup at all.

Parallelisation of larger networks performed much
better. A scenario of 5000 nodes gained a speedup of 3.16
on four computing nodes; a size of 50000 reached a
speedup of 3.81 on four computers. Due to the necessary

16 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

communication effort, the usage of more processors does
not improve the speedup significantly.

Considering the communication aspect, we expect
further improvements by optimising the communication
library. By now, we use jMPI [21], a native Java MPI
implementation using TCP. An implementation like
mpiJava, which uses Java Native Interfaces and UDP,
promises a significant performance boost. Unfortunately,
this requires some special adjustments on the computing
cluster.

Another bottleneck in a parallel computing
environment concerns the dumping of simulation
snapshots into an output file. The current implementation
uses a master-slave algorithm, where a master computer
collects serialised data from the slave computing nodes
and writes it into a file. To avoid this problem, SimANet
can use the centralised and diskless storage architecture
of the CHiC. A possible solution manages one single
dump file, which is located in this storage network.
Thereby, each computing node is able to append its own
data into this file. To ensure the simulation continuation
during the dumping process, the caching of temporary
data is necessary.

Neither OMNet++ nor ns2 achieve such a performance
regarding parallel simulation scenarios. Both frameworks
only provide conservative, blocking approaches to
synchronise the several computing nodes. Accordingly,
this prevents a suitable speedup.

C. Memory Usage

Figure 8. Memory usage of ns2 [7], OMNet++ and SimANet,
dependent on different simulation scenarios (GUI enabled).
With SimANet less than one kB is needed per simulated
node. The linear memory increase per node in large scale
networks results from the efficient neighbourhood
management.

SimANet was designed to be as lightweight as
possible. Each simulated network node uses only about
0.85 kB of memory in average. This value highly depends
on the neighbourhood management of each node. In the
current implementation, each simulated node maintains a
list of neighbour nodes, which are used for
communication. Thus, the memory usage per node may
vary around ±200 bytes, depending on the network
density. As figure 8 shows, the additional memory used
by the skip quadtree data structure is minimal, because

the node payload is stored only once, of course. The GUI,
implemented in Java Swing, uses 12 to 16 MB of
memory; the simulator backend (without GUI) needs less
than 1 MB. This memory-saving architecture enables us
to simulate large scale Ad Hoc networks also on
moderate computer hardware.

In comparison to simulation tools like ns2 or
OMNet++, which need >>100 MB of memory to
simulate 1000 nodes, SimANet is substantially more
efficient. Furthermore, the initialisation time for creating
a 1000 node simulation scenario with OMnet++ needs
more than 30 minutes on a Pentium 4 workstation.

V. CONCLUSION

The simulation of realistic network scenarios like in
[22] verifies the restricted capabilities of OMNet++
regarding large scale network topologies. In our opinion,
the exorbitant memory usage, the huge initialisation time
and the missing features for a parallelisation make the
simulation tool not feasible for large scale simulation
scenarios. As already mentioned in [7] the limitation of
the ns2 framework is similar to OMNet++. In the original
version, simulation scenarios with 100+ nodes are not
feasible. Using the proposed improvements and
modifications, the limit will be enhanced to 3000 nodes.
Anyway, this value represents the upper bound of the ns2
software. At present, the number of available extensions
and simulation models for ns2 or OMNet++ are definitely
higher and consequently, these frameworks support more
specific application scenarios. The conceptional
disadvantages still remain.

In contrast to that, the presented SimANet platform
enables the simulation and visualisation of 10000+ nodes
on a standardised single CPU computer system. Due to
the usage of Java, the development of additional,
application specific extensions is simple and very fast.
Features for a parallelised operation mode allow an
additional improvement of the simulation performance.
Thereby, first simulation results demonstrate an excellent
speedup. Further comparisons with related simulation
frameworks like ns2 or OMnet++ verify the advantages
of SimANet regarding first order validations of new
communication concepts.

REFERENCES

[1] T. Cooklev. Wireless Communication Standards - A Study
of IEEE 802.11., 802.15., and 802.16. IEEE Press, New
York, USA, 2004.

[2] Adam S. Harrington, Chin-Gi Hong, and Anthony L.
Piazza. Software Defined Radio - The Revolution of
Wireless Communication. International Engineering
Consortium, 2004.

[3] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and
Shantidev Mohanty. Next generation/dynamic spectrum
access/cognitive radio wireless networks: A survey.
Computer Networks Journal (Elsevier), 50(13):2127–2159,
September 2006.

[4] Bengt Ahlgren, Lars Eggert, Brje Ohlman, and Andreas
Schieder. Ambient networks: Bridging heterogeneous
network domains. In Proceedings of the 16th Annual IEEE
International Symposium on Personal Indoor and Mobile

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 17

© 2008 ACADEMY PUBLISHER

Radio Communications (PIMRC), Berlin, Germany,
September 2005. IEEE Computer Society.

[5] Matthias Vodel, Mirko Caspar, and Wolfram Hardt.
Performance analysis of radio standard spanning
communication in mobile ad hoc networks. In Proceedings
of the 7th IEEE International Symposium on
Communications and Information Technologies (ISCIT),
pages 848–853, Sydney, Australia, October 2007. IEEE
Computer Society.

[6] A. Varga. The OMNet++ distrete event simulation system.
http://www.omnetpp.org, 1999. [Online].

[7] Valeri Naoumov and Thomas Gross. Simulation of large
ad hoc networks. In Proceedings of the 6th ACM
International Workshop on Modeling Analysis and
Simulation of Wireless and Mobile Systems (MSWIM ’03),
pages 50–57, San Diego, USA, 2003. ACM Press.

[8] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive
Bagrodia, and Mario Gerla. Glomosim: A scalable network
simulation environment.Technical report, 1999.

[9] J. Cowie, A. Ogielski, and D. Nicol. The SSFNet network
simulator, http://www.ssfnet.org/homePage.html, 2002.
[Online].

[10] S.Y. Wang and Y.B. Lin. NCTUns network simulation and
emulation for wireless resource management. Wiley
Wireless Communications and Mobile Computing,
5(8):899–916, December 2005.

[11] Australia’s ICT Research Centre of Excellence. Castalia -
a simulator for WSNS. http://castalia.npc.nicta.com.au/,
2008. [Online].

[12] Y. Ahmet Sekercioglu, Andras Varga, and Gregory K.
Egan. Parallel simulation made easy with OMNet++. In
Proceedings of the 15th European Simulation Symposium
(ESS2003), Delft, The Netherlands, October 2003.

[13] Thomas R. Henderson, Sumit Roy, Sally Floyd, and
George F. Riley. ns-3 project goals. In WNS2 ’06:
Proceeding from the 2006 Workshop on NS-2: the IP
Network Simulator, page 13, Pisa, Italy, 2006. ACM Press.

[14] Nicola Baldo, Federico Maguolo, Marco Miozzo, Michele
Rossi, and Michele Zorzi. ns2-MIRACLE: a modular
framework for multi-technology and cross-layer support in
network simulator 2. In Proceedings of the 2nd
International Conference on Performance Evaluation
Methodologies and Tools (ValueTools ’07), pages 1–8,
Nantes, France, 2007. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[15] Siddharth Saha. TeNS - the enhanced network simulator.
http://www.cse.iitk.ac.in/users/braman/tens/. [Online].

[16] Laurent Paquereau and Bjarne E. Helvik. A module-based
wireless node for ns-2. In WNS2 ’06: Proceeding from the
2006 Workshop on NS-2: the IP Network Simulator, page
4, Pisa, Italy, 2006. ACM Press.

[17] Matthias Vodel, Mirko Caspar, and Wolfram Hardt.
Energy-balanced cooperative routing approach for radio
standard spanning mobile ad hoc networks. In Proceedings
of the 6th International Information and
Telecommunication Technologies Symposium (I2TS),
pages 42–47, Brasilia, Brazil, December 2007. IEEE
Region 9.

[18] Dr. George Riley and Alfred Park. PDNS -parallel/
distributed ns. http://www.cc.gatech.edu/computing/
compass/pdns/index.html, 2004. [Online].

[19] David Eppstein, Michael T. Goodrich, and Jonathan Z.
Sun. The skip quadtree: A simple dynamic data structure
for multidimensional data. In SCG ’05: Proceedings of the
21st Annual Symposium on Computational Geometry,
pages 296–305, Pisa, Italy, 2005. ACM Press.

[20] G.F. Riley, R.M. Fujimoto, and M.H. Ammar. A generic
framework for parallelization of network simulations. In
Proceedings of the 7th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 128–135, 1999.

[21] Steven Raymond Morin, Ian Harris Member, Seshu B.
Desu, and Department Head. jMPI: Implementing the
message passing interface standard in java. In IPDPS
Workshop on Java for Parallel and Distributed
Computing, 2002.

[22] Roland Bless. Using realistic internet topology data for
large scale network simulations in OMNet++. In 2nd
International OMNeT++ Workshop, Berlin, Germany,
January 2002. TU Berlin.

Matthias Vodel was born in Germany in
1982. He received the German Diploma
degree (equal to M.Sc.) in Computer Science
with the focus on computer networks and
distributed systems from the Chemnitz
University of Technology / Germany in 2006.
The major field of study during his master

thesis deals with new routing strategies and topology
optimisation algorithms in mobile Ad Hoc networks.

In 2005, he studies one term at the University of Sussex /
United Kingdom at the Dept. of Informatics. Currently, he
works as a research assistant and Ph.D. student at the
Department of Computer Science, Chair of Computer
Engineering at Chemnitz University of Technology, Germany.

Actual research projects focus self-organisation in mobile Ad
Hoc networks and radio standard spanning wireless
communication technologies like Ambient Networking,
Cognitive Radio or Software Defined Radio. Additional fields
of interest concern network security, protocol engineering and
embedded systems.

During a research exchange at the King Mongkut’s
University of Technology Northern Bangkok / Thailand in May
2008, Mr. Vodel received the best paper award for the
conference paper “EBCR - A Routing Approach for Radio
Standard Spanning Mobile Ad Hoc Networks”.

Matthias Sauppe was born in 1985 in
Germany. Currently he is a German Diploma
student (equal to M.Sc.) for computer science
at the University of Technology in Chemnitz /
Germany and is going to finish his study in
March 2009. His major field of study focuses
electronics and embedded design.

Besides the academic studies he works as student research
assistant at the computer engineering Dept. under guidance of
Mr. Vodel.

In 2003, Mr. Sauppe successfully participated several
computer science competitions and reaches the final round of
the German National Computer Science Olympics, where he got
delegated into the German National Team for the International
Baltic Olympiad in Informatics (BOI). With the German
National Team he received the 3rd in 2004.
His research interests include microprogramming, Linux Kernel
/ driver engineering and wireless communication technologies.

18 JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008

© 2008 ACADEMY PUBLISHER

Mirko Caspar was born in the former German
Democratic Republic in 1980 and received the
German Diploma degree (equal to M.Sc.) in
Computer Science, focuses electrical engineering
and embedded systems, from Chemnitz
University of Technology, Germany, in 2006.

He is currently research assistant at the Department of
Computer Science, Chair of Computer Engineering at Chemnitz
University of Technology, Germany where he also is pursuing
his Ph.D. degree under guidance of Prof. Dr. W. Hardt. His
special field of interests are Test-Automation for Embedded
Systems, Organic/Pervasive Computing and Radio-Standard-
Spanning Communications.

For his Diploma/Master thesis, Mr. Caspar received a special
award within the “SAX-IT Nikolaus-Joachim-Lehmann-Preis”

Prof. Dr. Wolfram Hardt is professor for

computer science and head of the Computer
Engineering Group at the Chemnitz University
of Technology. He was born Germany 1965
and received the German Diploma degree

(equal to M.Sc.) in Computer Science in 1991 from the
University of Paderborn. Accordingly, Prof. Hardt received the
Ph.D. degree in Computer Science from the University of
Paderborn in 1996.

From 2000 to 2002 he was chair of the Computer Science
and Process Laboratory at the University of Paderborn /
Germany. After that he worked as chair of the operating
systems Dept. at the University of Kassel / Germany. Since
2003 Prof. Hardt became chair of the computer engineering
Dept. at the Chemnitz University of Technology / Germany.
Furthermore, since 2006 he is dean of the Faculty for Computer
Science and the scientific director of the university computing
centre at the Chemnitz University of Technology / Germany.
He is editor of a scientific book series about self-organising
embedded systems and has published more than 50 papers.

Prof. Hardt is member of the Association for Electrical,
Electronic and Information Technologies (VDI/VDE), the
Association for Computer Science (GI) and the Association for
Computing Machinery. Since 2006 he is committee member of
the DATE conference – “Design Automation and Test in
Europe”; Topic: System Synthesis and Optimization. His
research interests include Hardware/Software Codesign,
Organic Computing and Reconfigurable Hardware.

JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7, DECEMBER 2008 19

© 2008 ACADEMY PUBLISHER

