
CLog: Low Cost Gigabit Full Packet Logging
Chad D. Mano, Jeff Smith, Bill Bordogna, Andrew Matta, Dan Dugovic, Aaron Striegel

Department of Computer Science and Engineering, University of Notre Dame, USA
Email: {chad.mano}@usu.edu, {jsmith30,wbordogn,amatta,dduguovic,striegel}@nd.edu

Abstract— Creating high quality network trace files is a dif-
ficult task to accomplish on a limited budget. High network
speeds may overburden an individual system running packet
logging software such as tcpdump, resulting in trace files
with missing information and making analysis difficult or
incomplete. High end specialized systems may perform the
job well, but may be out of reach due to financial constraints.
To that end, we developed the Cheap Logger (CLog) system
which utilizes inexpensive COTS hardware to create high
quality, complete network trace files. A scalable distributed
storage system enables the CLog system to expand and
continue to create high quality, complete network data trace
files even at extremely high data rates.

I. INTRODUCTION

An important aspect of various areas of computer
network research is the ability to perform analysis in a
large-scale network environment. However, most network
administrators are reluctant to allow an experimental
device to be incorporated into a live enterprise network,
particularly in critical areas such as the gateway to the
Internet. This leaves laboratory simulation as the only
remaining option to perform large-scale network analysis.

Software packages such as ns-2 [10] and OpNet are
useful for simulations where basic evaluation is the key
issue being addressed, but fall short in the ability to create
a highly accurate representation of actual data flow within
a large scale network. Although work has been conducted
on scaling ns-2 to larger scales [12], internal data traffic
payloads are not available. An accurate representation of
traffic is essential where packet payload analysis is needed
such as in intrusion detection, virus and worm detection,
and other areas [8], [11].

Although software router solutions such as the Click
router [13] offer the ability to create a limited network
either locally or via Planetlab, the data itself is limited to
synthetic or previously traced data, the capture of which
is the focus of the paper. A solution to the need for an
accurate representation of network traffic is to capture
and store live network data. On a small scale this can
be easily accomplished with a standard desktop computer
and an application such as tcpdump [6]. However, as
network capacity increases it becomes difficult to keep up
with line speeds resulting in an incomplete network trace.
Powerful systems designed for high speed packet logging

This paper is based on “High Speed Packet Logging on a Budget,”
by C. Mano, J. Smith, B. Bordogna, and A. Striegel, which appeared in
the Proceedings of the IFIP Networking, Coimbra, Portugal, May 2006.

This research was supported in part by the National Science Founda-
tion through the grant CNS03-47392.

are available, but may break the budget of a research
group [1], [5].

This financial hurdle led to our development of a high
speed network packet logger which can be built for a
fraction of the cost of a commercial system. The Cheap
Logger (CLog) system is built from inexpensive hardware
and can easily be scaled to meet increased demands for
logging speed. This paper describes the CLog system ar-
chitecture, associated utilities, and presents a performance
analysis of the system.

The remainder of the paper is organized as follows.
Section II briefly presents the motivation and background
for the project. Section III details the architecture of
the system including communication protocols developed
for management of the system. Section IV analyzes the
performance capabilities of the system. Finally, Section
V summarizes the work.

II. MOTIVATION AND BACKGROUND

For various endeavors in our research group, a trace of
live network traffic is needed to measure the performance
and scalability of systems which have been developed.
Experiments for group range from similarity analyses of
packet payloads for bandwidth conservation to long term
monitoring of botnet characteristics. In each case, the
packet header and the packet payload are necessary to
record in order to construct an accurate assessment of
traffic.

The source of the live data is provided through a tap
of the University of Notre Dame Internet gateway. The
network tap comes from a fiber gigabit link at the edge
of the Notre Dame network which feeds an OC-12 line
to the University’s ISP via multiple 100Mb/s connections.
The tap point averages just over 150 Mb/s utilization in
each direction with continued patterns of growth.

In the past, a single HP zx2000 Itanium2 high perfor-
mance workstation was used as the packet logging system.
Even this relatively fast desktop system (4 GB memory,
15k SCSI disk) would drop a significant number of
packets leaving an incomplete trace file of network traffic.
Although the workstation was capable of processing each
packet via libpcap, the bottleneck, it was discovered,
proved to be the disk writes. Despite accommodations for
block writes, the workstation could simply not keep up
with amount and speed of the traffic coming from the tap.
While RAID systems could offer increased throughput,
similar bottlenecks would occur on all but the most high
performance systems.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 17

© 2006 ACADEMY PUBLISHER



Figure 1. Illustration of the Cheap Logger system.

To that end, we developed a solution that distributes
data writing tasks over multiple systems, thus reliev-
ing the bottleneck created by a single system logger.
Two important requirements for the system were that it
should be inexpensive and scalable. The components of
the system are typical commercial-off-the-shelf (COTS)
hardware, making the creation of the system affordable.
The client/server architecture makes the system scalable
as additional inexpensive clients and additional storage
may be dynamically added to the system as network
capacity increases.

III. ARCHITECTURE

The physical architecture of the CLog system is based
on the standard client/server model. The server acts as
the gateway for the network tap and forwards data to
be logged to each individual client system as illustrated
in Figure 1. The server itself need only be capable of
processing packets for simple store/forward operations.
Clients need simply be capable of access to large amounts
of inexpensive storage.

For our internal setup, a Sun dual Opteron 244 work-
station with 1GB or RAM was utilized as the server. As
space and mobility constraints required all components to
fit onto a small cart, the client and storage mechanisms
needed to remain small. Therefore, Apple 1.25 GHz Mac
mini (PowerPC-based) systems running Darwin Kernel
Version 1.9.0 (Mac OS X) were utilized as the client
machines for the system. An external LaCie Firewire 7200
RPM 500GB hard drive was attached to each Mac mini
for data storage. With the advent of the new Intel-based
Mac mini machines and their inclusion of USB 2.0, USB
2.0 drives would also suffice. Performance results are
presented later in the paper for both the PowerPC and
Intel-based Mac mini systems.

The remainder of this section details the individual
components of the CLog system and the communication
protocols designed to maintain data consistency and in-
corporate management capabilities.

A. Server

The server provides the central control of the system
and is the gateway for the network tap data. The server
must have at least two Ethernet ports and a third if
remote access is required to operate the system. Remote
management is simply performed by establishing an SSH

Figure 2. Diagram of the data flow within the Cheap Logger server.

session from a different system. We utilized the on-
board 1Gb/s Ethernet port for remote management and
installed an Intel Pro/1000 MT dual port 1Gb/s NIC
for the required input/output ports. In general, we found
a separate high performance adapter (not included on
the motherboard) was often necessary to scale to higher
speeds due to features such as interrupt chaining.

The data flow of the network tap traffic is one-way
as the CLog system does not inject data back into the
network. Therefore, the port which is connected to the
network tap is designed as the inbound port (i-port) and
the remaining port is designated the outbound port (o-
port). The o-port is connected to a 1Gb/s switch which,
in turn, is connected to each client system. As traffic
is primarily unidirectional on the Gigabit switch (CLog
server to clients), most COTS switches will suffice for
distribution to the clients.

The processing of the network tap data at the server
is kept minimal to allow the server to keep up with the
speed of the incoming packets. The data flow of within
the server is illustrated in Figure 2. When a packet is
captured on the i-port, the server immediately writes the
packet to tail point of a ring buffer (default of 10 MB).
A separate thread removes packets from the head point
of the buffer and overwrites the destination MAC address
in the Ethernet header of the packet. The packet is then
transmitted on the o-port and is forwarded on to one of
the client systems via the switch.

While it is possible to implement a load balancing
scheme to enhance the overall effectiveness of the dis-
tributed writing system, the complexity of such a scheme
offers little benefit. As the client systems are simply log-
ging and not analyzing packets, load across the systems
is already well distributed. Thus, a simple round-robin
system is utilized to determine the destination client of
each packet. The round-robin method is essentially a least
recently used queue of all client systems.

B. Client

The clients perform the “physical labor” of the system
of writing the network data to disk. A custom packet
logger application, similar to tcpdump, was developed
using the Libpcap [4] library. In short, the logger contains
only mechanisms to log packets to disk and maintain sta-
tus communications with the server. The packet logging
process is discussed here with the server communication
for management purposes to be presented later in this
section.

18 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER



Figure 3. Illustration of the Cheap Logger client system.

Once a client is connected to a server, the client is able
to begin logging packets. In order to do this efficiently, a
packet buffer and a multi-threaded disk writing process is
utilized as illustrated in Figure 3. Each incoming packet is
stored in a block-wise packet buffer. A parameter setting
determines the maximum size of the buffer based on the
number of packets contained in the buffer. When the
buffer reaches the its limit, an alternate thread is used
to take the data in the packet buffer and write it to disk.

The main thread is able to continue to capture new
packets while the disk writing takes place. The new packet
writing thread is placed in a queue of all packet writing
threads. A new thread is created each time the packet
buffer is filled to prevent packet loss which may occur
if a single thread was expected to perform all writing
responsibilities. In such a case, the thread may be busy
writing and unable to collect data from the packet buffer
at the instant it is needed.

In addition to the other threads, an auxiliary thread
is created to simply manage the creation and closing of
existing data files. As the file open operation can be a
relatively costly operation in the context of a continuous
stream of packets, the sole purpose of the auxiliary thread
is to maintain a bank of files such that several new file
handles are always available to the central writing thread.
Thus, it is possible to have relatively small file sizes
without a critical loss of performance.

The log files are stored in standard tcpdump format.
This allows the final trace files to be analyzed using
existing applications such as such as tcpdump or ethereal
[2] and others. A critical portion of the logging format
is the timestamp header is stored with each packet. The
timestamp is important for any timing related analysis or
to simulate the data flow at a later time using an appli-
cation such as tcpreplay [7]. It is essential to maintain
precise timing data for the entire system. This property is
maintained by the timestamp synchronization process.

1) Timestamp Synchronization: Timestamps are cre-
ated when a new packet arrives at the packet logging
system using the libpcap library. In the Clog system this
results in two timestamps being associated with each
packet. First, when a packet is received by the server a
timestamp is created. This timestamp is the most precise
in relation to other packet timestamps as all timestamps
at this point are based on a single clock and are recorded
prior to processing within the CLog system. The second
timestamp is recorded on the client systems, each using

Figure 4. Illustration of the timestamp system.

the local clock to determine the timestamp value.
This second timestamp is not useful as clocks most

certainly vary slightly, even if attempts are made to
synchronize the clocks with a common time server [9].
In addition, the timestamps generated on the clients are
created after the packets have spent a non-trivial amount
of time due to processing and transmission in the server
system. The time synchronization solution requires the
original timestamps to ultimately replace the timestamps
recorded on the client systems.

Libpcap headers (including timestamps) are prepended
to the packets and are not actually part of the raw packet.
Therefore, timestamps cannot simply be added to each
existing packet header prior to forwarding the packet to
the client. In addition, appending timestamps as a footer
to the payload of each packet is not possible due to
MTU restrictions. Even without the MTU restriction, the
overhead of updating existing packet header information
(size information and checksums) may prove to create a
new bottleneck for the system.

Our solution was to log timestamps as generated on the
server and periodically forward the log to the associated
client. Figure 4 illustrates this process. When a packet
is received by the server, a timestamp is immediately
generated. An individual timestamp consists of two parts,
the number of seconds (tv sec) since the Epoch (00:00:00
UTC, January 1, 1970) and the number of additional
microseconds (tv usec).

Once the timestamp is determined via libpcap, a log
entry is created holding the timestamp, a rolling 16 bit
ID for the packet for re-assembly and loss identification,
and the lower 2 bytes of the source IP. The lower 2 bytes
of the source IP are stamped with ID and the packet is
forwarded to the client. A buffer of log entries is kept until
a fixed number upon which the buffer is dispatched via a
special packet to the next round robin client and recorded
on the disk of the server. Optionally, server-side recording
may be disabled for storage or performance purposes.

The Libnet [3] C library is used to create the timestamp
log packet to send to the client. The Ethertype field of the
Ethernet header is modified to a custom value enabling
the post-processing step to identify timestamp log packets.
The post-processing procedure can be implemented in one
of two ways. First, the timestamps can be corrected on

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 19

© 2006 ACADEMY PUBLISHER



Loop Until

Acknowledged

ClientServer

Announce

Acknowledgement

Packets & Timestamps

Status

Loop Until

Stop/Quit

Loop Until

Stop/Quit

Record MAC Address

QuitStop

Figure 5. Illustration of the communication protocol between clients
and the server.

the trace files from a single client. A packet sorter can
then be applied later to merge the files from all clients.
The other option is to process trace files from all clients
simultaneously which results in new trace files containing
the merged data from all files.

Sorting and re-assembly of packets is provided by a
utility program that is executed on the server. The server
contacts each client for its repository of data and re-
assembles/writes back the new files to the clients. The
old ’marked’ files are deleted and replaced with similarly
sized log files in the correct order and possessing the
correct timestamp. Reassembly is done off-line due to
the complexity and bandwidth associated with moving
data files between the clients and server. The reassembly
utility also possesses mechanisms for extracting specific
time periods/packet ranges from the array of data files.

C. Communication

Communication between the server and clients is re-
quired for two purposes: for the discovery of clients in the
system, and for statistical updates throughout the capture.
This communication protocol is efficiently implemented
using the libnet library and handles all communication
via Ethernet addressing and therefore does not require IP
layer processing. The basic communication structure is
illustrated in Figure 5.

A client, when ready to begin logging, broadcasts an
announce (ANN) message and continues to do so until a
response is received. The server listens on the o-port for
ANN messages and responds with an acknowledgment
(ANN ACK). The server then adds the MAC address
of the client to the LRU queue for packet delivery. For
management convenience, the client includes a name with
the ANN message enabling the server to display a name,
rather than simply and ID number or MAC address on
the management interface.

Upon receiving the ANN ACK message the client
terminates the broadcast ANN message, but continues
to send statistical updates periodically via STATUS mes-
sages. These status messages enable the system adminis-
trator to view logging statistics for each client individually
as well as system statistics such as disk usage. Details on
the statistical reports and management interface will be
provided in the next section.

Figure 6. Screenshot of the overall system status report screen.

Client systems must quickly check the Ethertype field
of each Ethernet header in order to effectively process
management communication as network tap data arrives
on the same data port. When the capture is complete the
server can send a STOP message to the client, notifying
the client that additional packets will not be delivered. In
addition, a client may also send a QUIT message if it
must be removed from the system.

D. Management Utility

The management utility is designed to give an ad-
ministrator the ability to view statistics regarding the
data capture and to perform basic functionality such as
starting and stopping the capture. A detailed description
of each feature of the utility is unnecessary here, but
the illustration of a few management screens provides a
general idea of the reporting system. Further information
is available via the CLog website1.

Figure 6 shows the overall statistics of the current
capture. The most important feature is the detail of
the number of packets dropped, categorized by packets
dropped by the system kernel and those dropped by CLog.
These statistics enable an administrator to quickly identify
the existence of a problem if the percentage of dropped
packets increases to unexpected levels.

Figure 7 details the statistics of individual systems
including total disk usage. This enables an administrator
to predict with better clarity when a client may fill up
and identify the cause of any problems related to the
performance of the data capture. While disks cannot be
hot swapped in the sense that a client must be leave/rejoin
the server, new disks can easily be added/parsed while the
logging system is running.

In addition, a web monitoring tool is available to
observe the raw statistics of the CLog system. While the
web system does not provide for interactions with the
server, it allows the CLog server to output its current
status to a separate web server.

As noted earlier, the management utility includes the
ability to control data which has been collected on the

1http://gipse.cse.nd.edu/CLog

20 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER



Figure 7. Screenshot of the client status report screen.

client systems. CLog allows the trace to be reassem-
bled/stored without requiring a massive central repository.
As each client may possess 500 GB to multiple terabytes,
the use of a central repository with enough simultaneous
storage is simply not feasible. CLog uses limited amounts
of space in a temporary directory on the server coupled
with intelligent network transfers to the clients to provide
a simple re-assembly/ordering step. Additional features
under development include the ability to allow CLog to
replay the network flow based on some parameter such
as time-of-day or average bandwidth consumption. An
experimental system could then be fed the output from
CLog, replaying the feed from a live network.

IV. PERFORMANCE

The performance metrics we address here are directed
at the ability of the CLog system to record network
traces in terms of the percentage of dropped packets.
Processor and memory usage cannot be ignored, but in
this case extensive analysis is not necessary due to the
minimal impact on the components. CPU usage ranged
from 5% to 10% even when processing high bandwidth
rates. Memory usage was limited as well and is only an
issue when the line speed is greater than the CLog system
can process. However, in such a case more memory may
not necessarily solve the problem as a larger buffer does
not resolve the issue of the buffer being filled faster than
it can be emptied.

Performance evaluations were conducted in two sce-
narios, a simple scenario with synthetic traffic to test
raw tcpdump performance and through scenarios playing
back previously captured (albeit slightly lossy) traffic at
accelerated rates. The key performance metric was the
loss rate recorded for the packets with the target loss rate
at less than 1% over the course of the trace.

A. Synthetic Traffic

In the first test environment, UDP packets were sent
at the various logging devices to measure overall perfor-
mance. A custom-built UDP mechanism directed packets
at the client that recorded the entire packet and data
payload to its local disk. ICMP error messages were

TABLE I.
LOSS RATES FOR VARIOUS RAW BANDWIDTH RATES (EC = EXCEEDS

CAPACITY)

Relative Power PC Intel Dual Core Sun Dual Opteron
Speed Mac Mini Mac Mini Workstation

10 Mb/s 0.99% 0.73% 0.00%
20 Mb/s 0.97% 0.63% 0.02%
40 Mb/s 2.29% 0.87% 0.01%
60 Mb/s 6.56% 0.71% 0.05%
80 Mb/s 7.26% 0.74% 0.04%

120 Mb/s EC 1.16% 0.51%
160 Mb/s EC 1.34% 0.50%
200 Mb/s EC EC 0.82%
240 Mb/s EC EC 2.56%
280 Mb/s EC EC 3.59%
320 Mb/s EC EC EC

disabled to avoid CPU overhead and the test network
was isolated to avoid background traffic from the campus
network.

Each client had its performance using the most recent
version of tcpdump filtering traffic for only inbound
UDP traffic (src host 192.168.0.10) along with a snaplen
(maximum packet capture size) of 1600 bytes and no limit
to the overall file size. Traffic was provided via CBR UDP
traffic possessing a data payload of 1400 bytes and a
total recorded packet size of 1442 bytes (all headers).
Loss measurements were collected using the reporting
mechanism of tcpdump and validated by the size of the
final packet capture.

Three systems were compared in the tests, the
PowerPC-based Mac mini (1.25 GHz, single processor)
used as a client in the later tests, a new Intel-based Mac
mini (1.66 GHz, dual-core) as well as the workstation
operating as the CLog server (Sun Opteron 244 dual
CPU workstation). Notable differences between the two
versions of the Mac mini include dual-core (Intel) versus
single CPU (PowerPC) and the inclusion of a Gigabit
adapter (Intel) versus Fast Ethernet (PowerPC). The Ita-
nium2 workstation used for previous logging capacities
was not included due to its rarity in the research commu-
nity.

From Table I, several interesting observations can be
drawn. First, the overhead of Mac OS X versus Linux is
significant enough to introduce almost 1% loss even at
low traffic levels. Despite possessing a second core, the
Intel variation still suffers nearly the same losses until
the PowerPC variation simply becomes overwhelmed and
rapidly increases its loss. As will be shown later, our
optimized client logging program significantly reduces
this loss. An increase in the priority level of tcpdump via
renice improves performance slightly but does not reduce
the loss to the near zero levels observed on the Opteron
workstation.

The EC notation is used to denote when the traffic
exceeds the capacity of tcpdump to even record errors.
While the PowerPC Mac mini is still able to reliably
record losses in plain vanilla tcpdump near the capacity
of Fast Ethernet, the Intel-based Mac mini tops out
considerably higher. The Opteron workstation possesses

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 21

© 2006 ACADEMY PUBLISHER



0 200 400 600 800 1000
Log File Size (MB)

0

2

4

6

8

Pa
ck

et
 L

os
s 

R
at

e 
(%

)

Clog
tcpdump

Figure 8. Illustration of packet drop rate of a client system.

the fastest raw logging speed due to several factors:
its usage of Linux, the incorporation of a server-grade
network adapter, and a much faster disk (SCSI). However,
the workstation could at best support an extremely limited
recording time at an acceptable loss rate (200 Mb/s or
less, one direction, 100 Mb/s bi-directional) even if large
capacity (750 GB+) drives were utilized.

B. Replayed Trace Traffic

Performance evaluation was also conducted using a
large trace file collected from the gateway to the Internet
of the University of Notre Dame. The files were replayed
using tcpreplay [7] which is able to change the rate of
replay to modify bandwidth rates. The actual network
trace file is advantageous as the performance of the CLog
system is not only affected by the bandwidth of the data,
but also by the density in terms of packets per second.

There are two areas of the system where packets may
be dropped, in the server or in a client. If there are more
packets available than the clients can record then the
server is unable to empty its storage buffer quickly enough
and packets are lost within the server. Because packets
are dropped in this way to handle data overload, client
systems are not actually affected by a dramatic increase
in bandwidth consumption on the network that is being
monitored. However, packet loss in the clients still does
occur as show in Figure 8.

The packet loss rate in clients is a function of the
number of new log files created. A single trace file was
used as input for the experiments which are represented
by this graph, meaning the size parameter of the log
files was the determining factor on the number of files
created. Identical experiments show that tcpdump is not
affected in the same manner. Tcpdump was running on the
same workstation used as the server for the CLog system
utilizing an internal SCSI hard drive for storage. The fact
that tcpdump file sizes did not influence the packet loss
rate of the capture indicates the CLog clients may be
optimized to reduce or eliminate this drawback. This issue
will be addressed in future development of the system. For

0 100 200 300 400
Average Bandwidth (Mb/s)

0

40

80

Pa
ck

et
 L

os
s 

R
at

e 
(%

)

Figure 9. Performance of a single client Cheap Logger implementation.

the remainder of the performance measurements log files
of size 250MB were used

The overall performance of the system can be deter-
mined by measuring the packet loss on the server while
varying the number of clients and the speed of the input
data. Figure 9 shows the packet loss rate of the system
with only a single client logging packets. The input speed
is the average speed over the trace file replay. Peak
bandwidth during the replay is approximately 50% higher
than the average speed.

A single client is able to avoid packet loss at approxi-
mately an average bandwidth speed of 85Mb/s. At higher
rates the storage buffer of the server reaches maximum
capacity and packets are lost. As the average bandwidth
rate increases, the system reaches a threshold where the
buffer loses all effectiveness and extreme packet loss
occurs. This can be seen in each case where a dramatic
increase in packet loss occurs.

Figure 10 illustrates the same data associated with a
varying number of clients as well as with the tcpdump
packet logger. The original problem the CLog system was
designed to overcome was the inability of a hard disk to
keep up with the data served by a network monitoring
feed. This figure clearly shows the effectiveness of the
solution as the introduction of additional client systems
greatly improves over the single tcpdump system. It is
important to implement a sufficient number of clients for
the rate of the data to be recorded as the CLog system
reaches a saturation point where packet loss increases
dramatically and, in fact, performs much worse than
tcpdump. When a sufficient number of clients are added,
however, it is possible to record a much more complete
trace of network data flow.

At an average data rate of approximately 375Mb/s the
number of dropped packets for the five client system is
non-zero, although somewhat negligible (0.6%). We note
this because the packet loss is reported not as a loss within
the CLog system, but as a result of the kernel dropping
packets. We have not determined the exact cause of the
packet loss, and therefore do not know if this is a result

22 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER



1 Client 2 Clients

tcpdump

3 Clients
4 Clients

5 Clients

Figure 10. Comparison of the Cheap Logger system with multiple
clients to an implementation of tcpdump.

of hardware system capabilities or the CLog system. At
an average data rate of approximately 470Mb/s tcpreplay
seems to level off and is not able to replay our trace file at
greater speeds. At this speed the CLog system still does
not report any packet loss, but loss due to kernel packet
drops was measured at 0.9%.

V. SUMMARY

Capturing complete network trace files can be very
difficult where speeds are high and budgets are low. The
Cheap Logger (CLog) system is designed to eliminate
this tradeoff by providing high quality network data
capture without breaking the bank. The system utilizes
COTS hardware and is easily scaled with the addition of
individual client systems. Once a data capture is complete
simple post processing steps reconstruct the original flow
by merging files from the distributed logging system.
Timestamp synchronization is handled via an efficient
timing reporting mechanism and postprocessing of the
logged files.

The system significantly outperforms a single system
running tcpdump, a very commonly used packet logging
application. The current version of the CLog system can
be obtained at http://gipse.cse.nd.edu/CLog.

REFERENCES

[1] Conduant corporation. http://www.conduant.com/.
[2] Ethereal. http://www.ethereal.com.
[3] Libnet C library. http://www.packetfactory.net/libnet/.
[4] Libpcap C library. http://www.tcpdump.org.
[5] Network flight recorder. http://www.nfr.net/.
[6] Tcpdump. http://www.tcpdump.org.
[7] Tcpreplay project. http://tcpreplay.sourceforge.net/.
[8] H.-A. Kim and B. Karp. Autograph: Toward automated,

distributed worm signature detection. In Proceedings of
USENIX Security Symposium, pages 271–286, San Diego,
CA, August 2004.

[9] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[10] S. McCanne and S. Floyd. ns Network Simulator.
http://www.isi.edu/nsnam/ns/.

[11] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In Proceedings of USENIX OSDI,
San Francisco, CA, December 2004.

[12] G. F. Riley, M. H. Ammar, R. M. Fujimoto, K. Perumalla,
and D. Xu, Distributed Network Simulations using the
Dynamic Simulation Backplane International Conference
on Distributed Computing Systems 2001 (ICDCS’01)

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek The Click modular router. ACM Transactions
on Computer Systems 18(3), August 2000, pp. 263-297.

Chad Mano is currently an assistant professor in the Depart-
ment of Computer Science at Utah State University. He received
his Ph.D. in the summer of 2006 in Computer Science at
the University of Notre Dame. His research interests include
computer security, focusing on rogue wireless detection, net-
work intrusion detection, secure communication protocols, and
computer security education.

Jeff Smith, Bill Bordogna, Andrew Matta, and Dan Dugovic
are all undergraduate students at the University of Notre Dame in
the Department of Computer Science and Engineering. All were
participants in the National Science Foundation (NSF) Research
Experience for Undergraduate (REU) working on components
of the NSF CAREER grant of Dr. Striegel.

Aaron Striegel is currently an assistant professor in the Depart-
ment of Computer Science and Engineering at the University
of Notre Dame. He received his Ph.D. in December 2002
in Computer Engineering at Iowa State University under the
direction of Dr. G. Manimaran. His research interests include
networking (bandwidth conservation, QoS), computer security,
grid computing, and real-time systems. During his tenure as a
student at Iowa State, he worked for various companies in re-
search and development that included Sun Microsystems, Archi-
tecture Technology Corporation, and Emerson Process. He has
received research and equipment funding from NSF, DARPA,
Sun Microsystems, Hewlett Packard, Architecture Technology
Corporation, and Intel. Dr. Striegel was the recipient of an NSF
CAREER award in 2004.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 23

© 2006 ACADEMY PUBLISHER




