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Abstract— This paper investigates the application of the
delayed normalized least mean square (DNLMS) algorithm
to echo cancellation. In order to reduce the amount of com-
putations, DNLMS is modified by using computationally-
efficient techniques including the M-Max algorithm, a Stop-
and-go (SAG) algorithm, and Power-of-two (POT) quanti-
zation. For the SAG algorithm, a new stopping criterion
related to the regressor energy is presented. Cumulatively,
these modifications lead to reductions in power and/or area.
Simulation results and comparisons with the normalized
least mean square (NLMS) algorithm are included to show
the advantages of the computationally-efficient algorithms.

Index Terms— adaptive filtering, echo cancellation, NLMS,
DNLMS

I. INTRODUCTION

Adaptive filters on the order of 100 or even 1000 are
typically applied in echo cancellation. When considering
VLSI implementation, such long filters would result in
large resource and high power consumption. Therefore,
there is a need for adaptive filtering algorithms geared
towards efficient implementation for echo cancellation
application.

One of the most common adaptive filtering algo-
rithms used in echo cancellation is the NLMS al-
gorithm. Recently, computationally-efficient techniques
have been applied to NLMS for echo cancellation [1].
The modifications to NLMS included adding power-of-
two (POT) quantization [2] of the error and regressor,
selective-partial coefficient update (namely the M-Max al-
gorithm [3]), and a simple stop-and-go (SAG) algorithm.

In this paper, the application of the delayed NLMS
(DNLMS) algorithm is considered. DNLMS has the
advantage of allowing pipelining in the error feed-
back [4], [5]. Pipelining is useful in VLSI design be-
cause it facilitates low-power or high-speed architec-
tures [6]. Moreover, DNLMS algorithm is modified with
computationally-efficient techniques that lead to reduced
power and/or area requirements. These techniques include
the M-Max algorithm, a SAG algorithm with a new
stopping criterion, and POT quantization of the error and
regressor energy. Through analysis and simulations, the
tradeoff between computational savings and performance
degradation is shown for adaptive echo cancellation sys-
tem using DNLMS algorithm that uses computationally-

efficient techniques. It is also shown how the proposed al-
gorithm has adequate performance in network and acous-
tic echo cancellation while achieving significant savings
in the amount of computations.

The remainder of this paper is organized as follows.
Section II provides background information on echo can-
cellation, while Section III provides background informa-
tion on the NLMS and DNLMS algorithms. Section IV
discusses computationally-efficient techniques which are
applied to DNLMS. Simulation results of network and
acoustic echo cancellation are given in Section V followed
by conclusions in Section VI.

II. ECHO CANCELLATION BACKGROUND

Echoes are delayed or distorted versions of a sound or
signal which have been reflected back to the source [7].
They become distinct and disruptive when their round
trip delay is longer than a few tens of milliseconds.
In telecommunications, echoes are categorized as either
network echoes or acoustic echoes.

Network echoes appear in telephone calls over the
public switched telephone network (PSTN). The link
connecting the two users is comprised of a two-wire line
to connect both phones to their respective local central
office and two separate unidirectional lines that make
a four-wire inter-office link, as shown in Fig. 1. The
hybrid transformer is the device that connects the two-
wire circuit to the four-wire circuit. Ideally, the hybrid
would transfer all energy from the incoming signal on
the four-wire circuit to the two-wire circuit. However, due
to imperfect impedance matching, some of the energy is
reflected back to its source on the four-wire branch as an
echo. Thus, hybrid or network echoes in the PSTN arise
from hybrid devices.

Acoustic echoes occur in a loudspeaker-enclosure-
microphone (LEM) system. In the LEM system, there
exists an electro-acoustic coupling between the loud-
speaker and the microphone, resulting in the microphone
picking up signals from the loudspeaker as well as signal
reflections off surrounding objects and boundaries [8], as
illustrated in Fig. 2. Acoustic echoes occur in applications
such as teleconferencing and hands-free telephony.

The basic principle of echo cancellation is to eliminate
the echo by subtracting from it a synthesized replica. This
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Figure 1. Network echoes over the PSTN.

Figure 2. Acoustic echoes.

method of echo control is used to eliminate both network
and acoustic echoes. Accordingly, the two different types
of echo cancellation are network echo cancellation (NEC)
and acoustic echo cancellation (AEC).

In order to create the synthetic echo, the unknown time-
varying echo path impulse response is modelled using
an adaptive filter. For network echoes, the echo path
includes the hybrid transformer, which is different each
time a link is arranged. For acoustic echoes, the echo
path includes the LEM system, which is dependent on the
physical environment. Figure 3 shows the system model
used to simulate echo cancellation. When excited by the
received signal, the adaptive filter outputs a synthetic
echo. By subtracting the synthetic echo, the genuine echo
is effectively removed prior to return-transmission. Usu-
ally during adaptation, the near-end signal is assumed to
be simply noise. This is an adequate assumption because
a double-talk detector (DTD) is usually implemented to
pause the adaptive filter’s adaptation, in order to avoid
divergence, when both received and near-end signals are
present, i.e. during double talk [9].

A typical measure of echo canceller performance is
the echo return loss enhancement (ERLE) ratio, which
is defined as

ERLE = 10 log10

E[d2(n)]

E[(d(n) − y(n))2]
dB, (1)

where d(n) is the desired signal (or the actual echo) and
y(n) is the output of the filter (or the synthetic echo).

III. NLMS AND DNLMS ALGORITHMS

The NLMS algorithm is commonly used in adaptive
filtering, especially for echo cancellation, because of its
simplicity and well-established stability characteristics

Figure 3. Adaptive echo cancellation system.

[10]. The coefficient update equation for the NLMS
algorithm is given by

w(n + 1) = w(n) + µ(n)e(n)x(n), (2)

where w(n) = [w0(n) w1(n) · · · wN−1(n)]T is the N -
element adaptive filter coefficient vector at sampling in-
stant n, and x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T

is the N -element regressor vector containing the N last
samples of the input x(n) at sampling instant n, where
N is the filter length. The error e(n) and the step-size
µ(n) are described by the relations

e(n) = d(n) − y(n) (3)

µ(n) =
α

‖x(n)‖2 + β
, (4)

where the output y(n) = w
T (n)x(n), 0 < α ≤ 2, β is a

small constant preventing division by zero, and ‖·‖ is the
l2 norm operation. The quantity ‖x(n)‖2 will be referred
to as the regressor energy in the remainder of this paper.

It is the feedback error of NLMS that limits the
speed of adaptation and prohibits pipelining. Pipelining
is a technique of breaking up a signal path by inserting
delays, thereby decreasing the critical path and facilitating
either a low-power or high-speed architecture. To allow
pipelining, (2) can be modified by inserting delays of D

samples, resulting in the coefficient update equation for
the DNLMS algorithm, i.e.

w(n + 1) = w(n) + µ(n−D)e(n−D)x(n−D). (5)

However, there is a tradeoff between the number of
samples delayed, D, and the convergence performance
of the algorithm.

IV. APPLICATION OF COMPUTATIONALLY-EFFICIENT

TECHNIQUES TO DNLMS

In this section, the DNLMS algorithm given in (5) is
modified to reduce the amount of computations.

A. M-Max Algorithm

Partial update algorithms update only a portion of the
filter coefficients, effectively reducing the demand of
memory resources and computation power when imple-
menting adaptive filtering algorithms on digital signal
processors (DSPs) [11]. Since the computational cost of
adaptive filtering algorithms is proportional to the filter
length, partial update algorithm are most effective in long
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filter applications such as in echo cancellation applica-
tions. Partial update algorithms are considered for VLSI
implementation because updating only a portion of the
coefficients would decrease the switching activity in the
device, thereby reducing the dynamic power consumption
[12].

A straightforward selective-partial coefficient update
algorithm is the M-Max algorithm [3]. The M-Max al-
gorithm, which was originally applied to NLMS, only
updates the taps corresponding to the M largest values
of the regressor, where M < N . The M-Max-NLMS
algorithm saves N − M coefficient updates per iteration
while maintaining close performance to NLMS. Extend-
ing this algorithm to DNLMS yields the M-Max-DNLMS
algorithm, for which the coefficient update equation is
given by

wi(n + 1) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi(n) + µ(n−D)e(n−D)x(n−i−D),
if i corresponds to one of the first M

maxima of |x(n−i−D) |

wi(n), otherwise

(6)

where i = 0, ..., N −1. The overhead cost of this M-Max
algorithm includes implementing a sorting algorithm. If
the SORTLINE sorting algorithm [13] is used, the amount
of additional comparisons per iteration would be approx-
imately �2log2N� + 2.

B. SAG Algorithm

A SAG technique was first introduced in [14] to
improve the convergence capabilities of decision-aided
blind joint equalization and carrier recovery. The idea
behind this algorithm is to “stop” adaptation or let it “go”
based on the level of the error at the particular sampling
time under consideration. In [1], the SAG concept is
applied to NLMS in order to further reduce the amount of
computations. In this SAG algorithm, when the magnitude
of the error is below a pre-defined threshold, coefficient
adaptation is stopped for that iteration. This reduces
the amount of computations required for the coefficient
updates. The coefficient update equation for the SAG-
NLMS algorithm is given by

w(n + 1) = w(n) + f(n)µ(n)e(n)x(n) (7)

where

f(n) =

{
1, |e(n) |> κ

0, |e(n) |≤ κ
(8)

In (8), κ is a positive real number and f(n) is the flag
indicating whether or not to update the coefficients. In [1],
κ was determined by observing the statistics of | e(n) |
over a large number of iterations. Here, the SAG-threshold
is related to the regressor energy.

Consider the instantaneous gradient estimate given by

∆w(n) = w(n + 1) − w(n)

=
α

‖x(n)‖2
e(n)x(n) (9)

where, for simplicity, the β term has been omitted. The
coefficient update should be stopped when the | e(n) |
is small so that | ∆w(n) | is significantly small and
w(n + 1) ≈ w(n). To ensure that this condition is true
for all values in the vector ∆w(n), let us define the
stopping criterion in terms of the largest magnitude of
∆w(n), which is associated with the largest magnitude
of x(n). The new SAG-stopping criterion is defined as
max{| ∆w(n) |} ≤ κ, where again κ is a positive real
number. Substituting (9) into this condition gives

|e(n) |≤
κ

α max{|x(n) |}
‖x(n)‖2. (10)

To avoid division, the stopping criterion in (10) can be
rewritten as

α

κ
max{|x(n) |} |e(n) |≤ ‖x(n)‖2, (11)

where the ratio α
κ

can be implemented as a single con-
stant. Now, applying the SAG algorithm to DNLMS with
the new stopping criterion gives SAG-DNLMS, for which
the coefficient update equation is given by

w(n + 1) =

w(n) + f(n−D)µ(n−D)e(n−D)x(n−D) (12)

where

f(n−D) =⎧⎪⎪⎨
⎪⎪⎩

1, ‖x(n−D)‖2 <
α
κ

max{|x(n−D) |} |e(n−D) |
0, ‖x(n−D)‖2 ≥

α
κ

max{|x(n−D) |} |e(n−D) |

(13)

One overhead cost of the SAG algorithm is the cal-
culations of f(n−D), which requires one comparison
and two multiplications per iteration. However, if the
constants α and κ are power-of-two numbers, then one
of the multiplications can be replaced with a shift op-
eration. Another overhead cost is the implementation of
a max selection algorithm. A fast algorithm for maxi-
mum/minimum calculation across a sliding data window
has been proposed in [15] and was labeled the MAXLIST
algorithm. This algorithm requires three comparisons and
O(log N) memory locations on average for independent
and identically distributed (i.i.d.) input signals. However,
if the SAG algorithm is to be used with the M-Max
algorithm, then the sorting algorithm also serve to find
the maximum values of the regressor.

C. POT Quantization

POT error quantization has been applied to LMS in
order to reduce multiplication to a shift operation, re-
ducing the amount of computations [2]. The quantization
is a nonlinear operation that results in the error being
represented as a binary word with a single “1” bit. This
idea can be extended to the regressor energy, thereby

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 3

© 2006 ACADEMY PUBLISHER



−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Input

Q
{I

np
ut

}

Figure 4. Transfer characteristic of POT quantizer for a = 2, b = 2,
and τ = 0.

allowing the division operation in (4) to be implemented
as a shift operation. The POT quantization is given as

Q{·} =

⎧⎨
⎩

sgn{·}2a−1, | · |≥ 2a−1

sgn{·}2�log2(|·|)�, 2−b ≤| · |< 2a−1

sgn{·}τ, | · |< 2−b

(14)

where a ≥ 0 is the number of integer bits excluding the
sign bit, b ≥ 0 is the number of fractional bits, and τ

is set to either 0 or 2−b. Figure 4 illustrates the transfer
characteristic of the POT quantizer for a = 2, b = 2, and
τ = 0.

By applying POT quantization to its error and regressor
energy, DNLMS is modified to the Quantized-Error-
Regressor-energy DNLMS (QER-DNLMS) algorithm, for
which the coefficient update equation is given by

w(n+1) = w(n)+µ(n−D)Q{e(n−D)}x(n−D) (15)

where
µ(n−D) =

α

Q{‖x(n−D)‖2 + β}
. (16)

Note that if α is chosen to be a POT number, then
QER-DNLMS coefficient update equation will consist of
N + 1 shifts plus 2 POT quantizations in place of N

multiplications and 1 division.

D. Proposed Algorithm

The proposed algorithm is the DNLMS modified with
all the techniques previously mentioned in this section.
Its coefficient update equation is given by equation (17),
where f(n−D) is defined in equation (18) and µ(n−D)
is that in equation (16).

Table I summarizes the total number of multiplications,
divisions, additions, shifts, and comparisons that execute
over m input samples for each algorithm. The amount of
computations was derived under the following assump-
tions: α is a POT number for all algorithms, resulting in at
least one shift operation in the coefficient update calcula-
tion; the ratio α

κ
is implemented as a single constant equal

to a POT number; the regressor energy is calculated recur-
sively as ‖x(n)‖2 = ‖x(n − 1)‖2 + x2(n) − x2(n − N),
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Figure 5. Impulse responses of (a) a hybrid echo path from ITU G.168
and (b) an acoustic echo path of the inside of a car.

requiring 2 multiplications and 2 additions per iteration;
the SAG algorithms have only g out of m samples in
the “GO” mode; and when the SAG algorithms are the
“STOP” mode, µ(n) is not calculated. It can be seen that
the proposed algorithm experiences the most reductions
in multiplications, divisions, and additions at the expense
of shifts and comparisons.

V. SIMULATION RESULTS

In this section, two simulation examples are considered
to compare the performance of all algorithms previously
discussed in Sections III and IV.

A. Network Echo Cancellation with White Gaussian Input

In this set of simulations, the performance of each
algorithm mentioned in the previous sections is investi-
gated under varying parameters for NEC. Simulations are
carried out using an echo path impulse response model
from the International Telecommunication Union (ITU)
G.168 Recommendation [16], shown in Fig. 5(a). The
input is white Gaussian noise (WGN) with signal-to-
noise ratio (SNR) of 30 dB. The echo return loss (ERL),
which is the ratio of the input signal power to the echo
signal power, is 6 dB. The filter length is chosen to equal
the channel length, i.e., N = 96. All simulations have
parameters α = 0.5 and β = 0.008. The mean squared
error (MSE) is calculated as the average instantaneous
squared error over 200 trials.

The first simulation shows how the adaptation delay
affects NLMS performance. Figure 6 shows the results
using different values of D for DNLMS, where D = 0
represents NLMS. It can be seen that as D increases,
convergence time increases. Convergence time is defined
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wi(n + 1) =

8>>><
>>>:

wi(n) + f(n−D)µ(n−D)Q{e(n−D)}x(n−i− D), if i corresponds to one of the first
M maxima of |x(n−i−D) |

wi(n), otherwise
(17)

f(n−D) =

8<
:

1, |x(n−D)‖2 < α

κ
max{|x(n−D) |} |Q{e(n−D)}|

0, ‖x(n−D)‖2 ≥ α

κ
max{|x(n−D) |} |Q{e(n−D)}|

(18)

TABLE I.
NUMBER OF OPERATIONS EXECUTED OVER m INPUT SAMPLES

Algorithm No. of Multiplications No. of Divisions No. of Additions No. of Shifts No. of Comparisons
NLMS m(2N + 2) m m(2N + 3) m 0

DNLMS m(2N + 2) m m(2N + 3) m 0
M-Max-DNLMS m(M + N + 2) m m(M + N + 3) m m(2�log2N� + 2)

SAG-DNLMS gN + m(N + 3) g gN + m(N + 3) g + m 4m
QER-DNLMS m(N + 2) 0 m(2N + 3) m(N + 2) 0

Proposed algorithm m(N + 2) 0 gM + m(N + 3) g(M + 2) + 2m m(2log2N + 3)
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Figure 6. MSE curves of DNLMS for different D’s.

as the time required for the MSE curve to reach 90% of its
final MSE value. For the remaining simulations, D = 32
is used to obtain reasonable performance.

Next, the affects of using different values of M for
M-Max-DNLMS are illustrated. Note that for M = N

the M-Max-DNLMS is reduced to DNLMS. Figure 7
shows that as M decreases, there is more degradation
in convergence performance.

Next, simulations to investigate how varying κ affects
the MSE learning curve of SAG-DNLMS are carried out.
Note that κ = 0 represents DNLMS. It is shown in
Fig. 8 that as κ increases, convergence time increases.
Table II shows how often, on average over 200 trials,
the SAG-DNLMS coefficients were updated before and
after convergence. This table also includes results for
the proposed algorithm, which will be discussed later.
For SAG-DNLMS, it can be seen that as κ increases,
the percentage of samples in the “GO” mode decreases
drastically, especially after convergence.

The next simulation results show how DNLMS is
affected by POT quantization. Quantized-Error DNLMS
(QE-DNLMS) has POT quantization of the delayed error
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Figure 7. MSE curves of M-Max-DNLMS for different M ’s.

TABLE II.
IMPACT OF SAG ALGORITHM UNDER WGN INPUT

Algorithm κ
Percent Samples in “GO” mode

Before After
Convergence Convergence

SAG-DNLMS 0.0005 63.24 35.32
SAG-DNLMS 0.0010 31.64 6.75
SAG-DNLMS 0.0015 21.16 1.41

Proposed 2−11 44.97 14.13

e(n−D) to an 8-bit word (a = 1, b = 6). Quantized-
Regressor-energy DNLMS (QR-DNLMS) has POT quan-
tization of the delayed regressor energy ‖x(n − D)‖2

to an 8-bit word (a = 7, b = 0). As mentioned in
the previous section, QER-DNLMS has POT quantiza-
tion of both the delayed error and regressor energy to
the same wordlengths used for QE-DNLMS and QR-
DNLMS respectively. For QE-DNLMS, τ = 0 and for
QR-DNLMS, τ = 2−b because both achieved better
performances for those choices of τ . Figure 9 shows that,
compared to DNLMS, QE-DNLMS converges slower but
achieves a lower steady-state MSE, QR-DNLMS con-
verges slower and achieves a higher steady-state MSE,
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Figure 9. MSE curves of DNLMS under different quantization algo-
rithms.

and QER-DNLMS achieves similar performance.
Finally, the performance of the proposed algorithm is

compared to that of NLMS. The parameter chosen include
D = 32, M = 32, κ = 2−11, quantization of e(n−D)
to an 8-bit word (a = 1, b = 6, τ = 0), and quantization
of ‖x(n−D)‖2 to an 8-bit word (a = 7, b = 0, τ =
2−b). From Fig. 10, it can be seen that the proposed
algorithm has moderate performance degradation when
compared to NLMS. From Table II, it can be seen that
the proposed algorithm experiences significant reductions
in computations due to its SAG-related portion alone.

B. Network and Acoustic Echo Cancellation with Com-
posite Source Signal Input

In this simulation example, NLMS and the proposed
algorithm are simulated for both NEC and AEC applica-
tions. The input used in this simulation is the composite
source signal (CSS) from ITU G.168. The CSS has been
downsampled to 8 kHz. It is approximately 350 ms long
and consists of a 48.62 ms duration voice signal, a 200 ms
duration pseudo-noise signal, and a 101.38 ms duration
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Figure 10. MSE curves of NLMS and Proposed algorithm.

pause. This sequence is repeated as many times as needed,
with an inversion at each repetition, to create a longer
signal.

For NEC, the echo path shown in Fig. 5(a) is once
again used. For AEC, the echo path impulse response
model of the inside of a car, shown in Fig. 5(b), is used.
The SNR is 30 dB. The filter lengths are given as N = 96
for NEC and N = 300 for AEC. Algorithmic parameters
for NLMS and the proposed algorithm in both NEC and
AEC simulations include α = 0.125 and β = 0.008.
Additionally, the proposed algorithm has the following
parameters: M = 32 for NEC and M = 128 for AEC;
κ = 2−13 for NEC and κ = 2−14 for AEC; and all
remaining parameters are the same as the ones used in
the first simulation example.

Figure 11 shows the residual echo and corresponding
ERLE of NLMS and the proposed algorithm for NEC
simulation. It is shown that the echo is effecitively can-
celled after the first CSS sequence for both algorithms.
Also, the proposed algorithm achieves similar ERLE
performance to NLMS.

For AEC simulation, Fig. 12 shows that the echo
is effectively cancelled after the third CSS sequence.
Although the proposed algorithm initially has a lower
ERLE performance than NLMS in periods when the input
is a voice signal, it achieves similar ERLE performance
to NLMS in all other periods.

Finally, Table III shows, for the proposed algorithm
under NEC and AEC simulations, how often the samples
were in the “GO” mode over the voice, pseudo noise,
and pause portions of the input. It can be seen that
the proposed algorithm provides a significant amount of
computational savings, especially during periods of pause.

VI. CONCLUSION

In this paper, computationally-efficient DNLMS-based
algorithms have been considered for echo cancellation
applications. Our interest in DNLMS stems from the
fact that unlike NLMS, DNLMS allows pipelining, which
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Figure 11. Residual echo and ERLE of NLMS and proposed algorithm for NEC.
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Figure 12. Residual echo and ERLE of NLMS and proposed algorithm for AEC.

TABLE III.
IMPACT OF SAG ON PROPOSED ALGORITHM UNDER CSS INPUT

Percent Samples in “GO” mode

Voice Pseudo Noise Pause

NEC 32.13 42.23 2.42
AEC 34.33 50.54 6.28

in turn allows low-power or high-speed architectures
when considering VLSI implementation. The DNLMS
algorithm has been modified by using the M-Max al-
gorithm and a SAG algorithm. This has decreased the
amount of computations, which would result in reduced
power consumption. For the SAG algorithm, a new and
effective stopping criterion has been introduced. Power-
of-two quantization was incorporated in DNLMS, which
has reduced multiplication or division operation to a
single shift, thus further reducing the amount of com-
putations. NEC and AEC simulations have shown that,
compared to NLMS, the proposed algorithm experienced
only moderate performance degradation when using either
WGN input or ITU G.168 CSS input.
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